diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_gf2m.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_gf2m.c | 1323 |
1 files changed, 0 insertions, 1323 deletions
diff --git a/src/lib/libcrypto/bn/bn_gf2m.c b/src/lib/libcrypto/bn/bn_gf2m.c deleted file mode 100644 index d83ae291ec..0000000000 --- a/src/lib/libcrypto/bn/bn_gf2m.c +++ /dev/null | |||
@@ -1,1323 +0,0 @@ | |||
1 | /* $OpenBSD: bn_gf2m.c,v 1.21 2016/03/12 21:44:11 bcook Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * In addition, Sun covenants to all licensees who provide a reciprocal | ||
13 | * covenant with respect to their own patents if any, not to sue under | ||
14 | * current and future patent claims necessarily infringed by the making, | ||
15 | * using, practicing, selling, offering for sale and/or otherwise | ||
16 | * disposing of the ECC Code as delivered hereunder (or portions thereof), | ||
17 | * provided that such covenant shall not apply: | ||
18 | * 1) for code that a licensee deletes from the ECC Code; | ||
19 | * 2) separates from the ECC Code; or | ||
20 | * 3) for infringements caused by: | ||
21 | * i) the modification of the ECC Code or | ||
22 | * ii) the combination of the ECC Code with other software or | ||
23 | * devices where such combination causes the infringement. | ||
24 | * | ||
25 | * The software is originally written by Sheueling Chang Shantz and | ||
26 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
27 | * | ||
28 | */ | ||
29 | |||
30 | /* NOTE: This file is licensed pursuant to the OpenSSL license below | ||
31 | * and may be modified; but after modifications, the above covenant | ||
32 | * may no longer apply! In such cases, the corresponding paragraph | ||
33 | * ["In addition, Sun covenants ... causes the infringement."] and | ||
34 | * this note can be edited out; but please keep the Sun copyright | ||
35 | * notice and attribution. */ | ||
36 | |||
37 | /* ==================================================================== | ||
38 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
39 | * | ||
40 | * Redistribution and use in source and binary forms, with or without | ||
41 | * modification, are permitted provided that the following conditions | ||
42 | * are met: | ||
43 | * | ||
44 | * 1. Redistributions of source code must retain the above copyright | ||
45 | * notice, this list of conditions and the following disclaimer. | ||
46 | * | ||
47 | * 2. Redistributions in binary form must reproduce the above copyright | ||
48 | * notice, this list of conditions and the following disclaimer in | ||
49 | * the documentation and/or other materials provided with the | ||
50 | * distribution. | ||
51 | * | ||
52 | * 3. All advertising materials mentioning features or use of this | ||
53 | * software must display the following acknowledgment: | ||
54 | * "This product includes software developed by the OpenSSL Project | ||
55 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
56 | * | ||
57 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
58 | * endorse or promote products derived from this software without | ||
59 | * prior written permission. For written permission, please contact | ||
60 | * openssl-core@openssl.org. | ||
61 | * | ||
62 | * 5. Products derived from this software may not be called "OpenSSL" | ||
63 | * nor may "OpenSSL" appear in their names without prior written | ||
64 | * permission of the OpenSSL Project. | ||
65 | * | ||
66 | * 6. Redistributions of any form whatsoever must retain the following | ||
67 | * acknowledgment: | ||
68 | * "This product includes software developed by the OpenSSL Project | ||
69 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
70 | * | ||
71 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
72 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
73 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
74 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
75 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
76 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
77 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
78 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
79 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
80 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
81 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
82 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
83 | * ==================================================================== | ||
84 | * | ||
85 | * This product includes cryptographic software written by Eric Young | ||
86 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
87 | * Hudson (tjh@cryptsoft.com). | ||
88 | * | ||
89 | */ | ||
90 | |||
91 | #include <limits.h> | ||
92 | #include <stdio.h> | ||
93 | |||
94 | #include <openssl/opensslconf.h> | ||
95 | |||
96 | #include <openssl/err.h> | ||
97 | |||
98 | #include "bn_lcl.h" | ||
99 | |||
100 | #ifndef OPENSSL_NO_EC2M | ||
101 | |||
102 | /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ | ||
103 | #define MAX_ITERATIONS 50 | ||
104 | |||
105 | static const BN_ULONG SQR_tb[16] = | ||
106 | { 0, 1, 4, 5, 16, 17, 20, 21, | ||
107 | 64, 65, 68, 69, 80, 81, 84, 85 }; | ||
108 | /* Platform-specific macros to accelerate squaring. */ | ||
109 | #ifdef _LP64 | ||
110 | #define SQR1(w) \ | ||
111 | SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ | ||
112 | SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ | ||
113 | SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ | ||
114 | SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] | ||
115 | #define SQR0(w) \ | ||
116 | SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ | ||
117 | SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ | ||
118 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
119 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
120 | #else | ||
121 | #define SQR1(w) \ | ||
122 | SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ | ||
123 | SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] | ||
124 | #define SQR0(w) \ | ||
125 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
126 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
127 | #endif | ||
128 | |||
129 | #if !defined(OPENSSL_BN_ASM_GF2m) | ||
130 | /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, | ||
131 | * result is a polynomial r with degree < 2 * BN_BITS - 1 | ||
132 | * The caller MUST ensure that the variables have the right amount | ||
133 | * of space allocated. | ||
134 | */ | ||
135 | static void | ||
136 | bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
137 | { | ||
138 | #ifndef _LP64 | ||
139 | BN_ULONG h, l, s; | ||
140 | BN_ULONG tab[8], top2b = a >> 30; | ||
141 | BN_ULONG a1, a2, a4; | ||
142 | |||
143 | a1 = a & (0x3FFFFFFF); | ||
144 | a2 = a1 << 1; | ||
145 | a4 = a2 << 1; | ||
146 | |||
147 | tab[0] = 0; | ||
148 | tab[1] = a1; | ||
149 | tab[2] = a2; | ||
150 | tab[3] = a1 ^ a2; | ||
151 | tab[4] = a4; | ||
152 | tab[5] = a1 ^ a4; | ||
153 | tab[6] = a2 ^ a4; | ||
154 | tab[7] = a1 ^ a2 ^ a4; | ||
155 | |||
156 | s = tab[b & 0x7]; | ||
157 | l = s; | ||
158 | s = tab[b >> 3 & 0x7]; | ||
159 | l ^= s << 3; | ||
160 | h = s >> 29; | ||
161 | s = tab[b >> 6 & 0x7]; | ||
162 | l ^= s << 6; | ||
163 | h ^= s >> 26; | ||
164 | s = tab[b >> 9 & 0x7]; | ||
165 | l ^= s << 9; | ||
166 | h ^= s >> 23; | ||
167 | s = tab[b >> 12 & 0x7]; | ||
168 | l ^= s << 12; | ||
169 | h ^= s >> 20; | ||
170 | s = tab[b >> 15 & 0x7]; | ||
171 | l ^= s << 15; | ||
172 | h ^= s >> 17; | ||
173 | s = tab[b >> 18 & 0x7]; | ||
174 | l ^= s << 18; | ||
175 | h ^= s >> 14; | ||
176 | s = tab[b >> 21 & 0x7]; | ||
177 | l ^= s << 21; | ||
178 | h ^= s >> 11; | ||
179 | s = tab[b >> 24 & 0x7]; | ||
180 | l ^= s << 24; | ||
181 | h ^= s >> 8; | ||
182 | s = tab[b >> 27 & 0x7]; | ||
183 | l ^= s << 27; | ||
184 | h ^= s >> 5; | ||
185 | s = tab[b >> 30]; | ||
186 | l ^= s << 30; | ||
187 | h ^= s >> 2; | ||
188 | |||
189 | /* compensate for the top two bits of a */ | ||
190 | if (top2b & 01) { | ||
191 | l ^= b << 30; | ||
192 | h ^= b >> 2; | ||
193 | } | ||
194 | if (top2b & 02) { | ||
195 | l ^= b << 31; | ||
196 | h ^= b >> 1; | ||
197 | } | ||
198 | |||
199 | *r1 = h; | ||
200 | *r0 = l; | ||
201 | #else | ||
202 | BN_ULONG h, l, s; | ||
203 | BN_ULONG tab[16], top3b = a >> 61; | ||
204 | BN_ULONG a1, a2, a4, a8; | ||
205 | |||
206 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); | ||
207 | a2 = a1 << 1; | ||
208 | a4 = a2 << 1; | ||
209 | a8 = a4 << 1; | ||
210 | |||
211 | tab[0] = 0; | ||
212 | tab[1] = a1; | ||
213 | tab[2] = a2; | ||
214 | tab[3] = a1 ^ a2; | ||
215 | tab[4] = a4; | ||
216 | tab[5] = a1 ^ a4; | ||
217 | tab[6] = a2 ^ a4; | ||
218 | tab[7] = a1 ^ a2 ^ a4; | ||
219 | tab[8] = a8; | ||
220 | tab[9] = a1 ^ a8; | ||
221 | tab[10] = a2 ^ a8; | ||
222 | tab[11] = a1 ^ a2 ^ a8; | ||
223 | tab[12] = a4 ^ a8; | ||
224 | tab[13] = a1 ^ a4 ^ a8; | ||
225 | tab[14] = a2 ^ a4 ^ a8; | ||
226 | tab[15] = a1 ^ a2 ^ a4 ^ a8; | ||
227 | |||
228 | s = tab[b & 0xF]; | ||
229 | l = s; | ||
230 | s = tab[b >> 4 & 0xF]; | ||
231 | l ^= s << 4; | ||
232 | h = s >> 60; | ||
233 | s = tab[b >> 8 & 0xF]; | ||
234 | l ^= s << 8; | ||
235 | h ^= s >> 56; | ||
236 | s = tab[b >> 12 & 0xF]; | ||
237 | l ^= s << 12; | ||
238 | h ^= s >> 52; | ||
239 | s = tab[b >> 16 & 0xF]; | ||
240 | l ^= s << 16; | ||
241 | h ^= s >> 48; | ||
242 | s = tab[b >> 20 & 0xF]; | ||
243 | l ^= s << 20; | ||
244 | h ^= s >> 44; | ||
245 | s = tab[b >> 24 & 0xF]; | ||
246 | l ^= s << 24; | ||
247 | h ^= s >> 40; | ||
248 | s = tab[b >> 28 & 0xF]; | ||
249 | l ^= s << 28; | ||
250 | h ^= s >> 36; | ||
251 | s = tab[b >> 32 & 0xF]; | ||
252 | l ^= s << 32; | ||
253 | h ^= s >> 32; | ||
254 | s = tab[b >> 36 & 0xF]; | ||
255 | l ^= s << 36; | ||
256 | h ^= s >> 28; | ||
257 | s = tab[b >> 40 & 0xF]; | ||
258 | l ^= s << 40; | ||
259 | h ^= s >> 24; | ||
260 | s = tab[b >> 44 & 0xF]; | ||
261 | l ^= s << 44; | ||
262 | h ^= s >> 20; | ||
263 | s = tab[b >> 48 & 0xF]; | ||
264 | l ^= s << 48; | ||
265 | h ^= s >> 16; | ||
266 | s = tab[b >> 52 & 0xF]; | ||
267 | l ^= s << 52; | ||
268 | h ^= s >> 12; | ||
269 | s = tab[b >> 56 & 0xF]; | ||
270 | l ^= s << 56; | ||
271 | h ^= s >> 8; | ||
272 | s = tab[b >> 60]; | ||
273 | l ^= s << 60; | ||
274 | h ^= s >> 4; | ||
275 | |||
276 | /* compensate for the top three bits of a */ | ||
277 | if (top3b & 01) { | ||
278 | l ^= b << 61; | ||
279 | h ^= b >> 3; | ||
280 | } | ||
281 | if (top3b & 02) { | ||
282 | l ^= b << 62; | ||
283 | h ^= b >> 2; | ||
284 | } | ||
285 | if (top3b & 04) { | ||
286 | l ^= b << 63; | ||
287 | h ^= b >> 1; | ||
288 | } | ||
289 | |||
290 | *r1 = h; | ||
291 | *r0 = l; | ||
292 | #endif | ||
293 | } | ||
294 | |||
295 | /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, | ||
296 | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 | ||
297 | * The caller MUST ensure that the variables have the right amount | ||
298 | * of space allocated. | ||
299 | */ | ||
300 | static void | ||
301 | bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, | ||
302 | const BN_ULONG b1, const BN_ULONG b0) | ||
303 | { | ||
304 | BN_ULONG m1, m0; | ||
305 | |||
306 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | ||
307 | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); | ||
308 | bn_GF2m_mul_1x1(r + 1, r, a0, b0); | ||
309 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | ||
310 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | ||
311 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ | ||
312 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | ||
313 | } | ||
314 | #else | ||
315 | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, | ||
316 | BN_ULONG b0); | ||
317 | #endif | ||
318 | |||
319 | /* Add polynomials a and b and store result in r; r could be a or b, a and b | ||
320 | * could be equal; r is the bitwise XOR of a and b. | ||
321 | */ | ||
322 | int | ||
323 | BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
324 | { | ||
325 | int i; | ||
326 | const BIGNUM *at, *bt; | ||
327 | |||
328 | bn_check_top(a); | ||
329 | bn_check_top(b); | ||
330 | |||
331 | if (a->top < b->top) { | ||
332 | at = b; | ||
333 | bt = a; | ||
334 | } else { | ||
335 | at = a; | ||
336 | bt = b; | ||
337 | } | ||
338 | |||
339 | if (bn_wexpand(r, at->top) == NULL) | ||
340 | return 0; | ||
341 | |||
342 | for (i = 0; i < bt->top; i++) { | ||
343 | r->d[i] = at->d[i] ^ bt->d[i]; | ||
344 | } | ||
345 | for (; i < at->top; i++) { | ||
346 | r->d[i] = at->d[i]; | ||
347 | } | ||
348 | |||
349 | r->top = at->top; | ||
350 | bn_correct_top(r); | ||
351 | |||
352 | return 1; | ||
353 | } | ||
354 | |||
355 | |||
356 | /* Some functions allow for representation of the irreducible polynomials | ||
357 | * as an int[], say p. The irreducible f(t) is then of the form: | ||
358 | * t^p[0] + t^p[1] + ... + t^p[k] | ||
359 | * where m = p[0] > p[1] > ... > p[k] = 0. | ||
360 | */ | ||
361 | |||
362 | |||
363 | /* Performs modular reduction of a and store result in r. r could be a. */ | ||
364 | int | ||
365 | BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) | ||
366 | { | ||
367 | int j, k; | ||
368 | int n, dN, d0, d1; | ||
369 | BN_ULONG zz, *z; | ||
370 | |||
371 | bn_check_top(a); | ||
372 | |||
373 | if (!p[0]) { | ||
374 | /* reduction mod 1 => return 0 */ | ||
375 | BN_zero(r); | ||
376 | return 1; | ||
377 | } | ||
378 | |||
379 | /* Since the algorithm does reduction in the r value, if a != r, copy | ||
380 | * the contents of a into r so we can do reduction in r. | ||
381 | */ | ||
382 | if (a != r) { | ||
383 | if (!bn_wexpand(r, a->top)) | ||
384 | return 0; | ||
385 | for (j = 0; j < a->top; j++) { | ||
386 | r->d[j] = a->d[j]; | ||
387 | } | ||
388 | r->top = a->top; | ||
389 | } | ||
390 | z = r->d; | ||
391 | |||
392 | /* start reduction */ | ||
393 | dN = p[0] / BN_BITS2; | ||
394 | for (j = r->top - 1; j > dN; ) { | ||
395 | zz = z[j]; | ||
396 | if (z[j] == 0) { | ||
397 | j--; | ||
398 | continue; | ||
399 | } | ||
400 | z[j] = 0; | ||
401 | |||
402 | for (k = 1; p[k] != 0; k++) { | ||
403 | /* reducing component t^p[k] */ | ||
404 | n = p[0] - p[k]; | ||
405 | d0 = n % BN_BITS2; | ||
406 | d1 = BN_BITS2 - d0; | ||
407 | n /= BN_BITS2; | ||
408 | z[j - n] ^= (zz >> d0); | ||
409 | if (d0) | ||
410 | z[j - n - 1] ^= (zz << d1); | ||
411 | } | ||
412 | |||
413 | /* reducing component t^0 */ | ||
414 | n = dN; | ||
415 | d0 = p[0] % BN_BITS2; | ||
416 | d1 = BN_BITS2 - d0; | ||
417 | z[j - n] ^= (zz >> d0); | ||
418 | if (d0) | ||
419 | z[j - n - 1] ^= (zz << d1); | ||
420 | } | ||
421 | |||
422 | /* final round of reduction */ | ||
423 | while (j == dN) { | ||
424 | |||
425 | d0 = p[0] % BN_BITS2; | ||
426 | zz = z[dN] >> d0; | ||
427 | if (zz == 0) | ||
428 | break; | ||
429 | d1 = BN_BITS2 - d0; | ||
430 | |||
431 | /* clear up the top d1 bits */ | ||
432 | if (d0) | ||
433 | z[dN] = (z[dN] << d1) >> d1; | ||
434 | else | ||
435 | z[dN] = 0; | ||
436 | z[0] ^= zz; /* reduction t^0 component */ | ||
437 | |||
438 | for (k = 1; p[k] != 0; k++) { | ||
439 | BN_ULONG tmp_ulong; | ||
440 | |||
441 | /* reducing component t^p[k]*/ | ||
442 | n = p[k] / BN_BITS2; | ||
443 | d0 = p[k] % BN_BITS2; | ||
444 | d1 = BN_BITS2 - d0; | ||
445 | z[n] ^= (zz << d0); | ||
446 | tmp_ulong = zz >> d1; | ||
447 | if (d0 && tmp_ulong) | ||
448 | z[n + 1] ^= tmp_ulong; | ||
449 | } | ||
450 | |||
451 | |||
452 | } | ||
453 | |||
454 | bn_correct_top(r); | ||
455 | return 1; | ||
456 | } | ||
457 | |||
458 | /* Performs modular reduction of a by p and store result in r. r could be a. | ||
459 | * | ||
460 | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper | ||
461 | * function is only provided for convenience; for best performance, use the | ||
462 | * BN_GF2m_mod_arr function. | ||
463 | */ | ||
464 | int | ||
465 | BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) | ||
466 | { | ||
467 | int ret = 0; | ||
468 | int arr[6]; | ||
469 | |||
470 | bn_check_top(a); | ||
471 | bn_check_top(p); | ||
472 | ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0])); | ||
473 | if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) { | ||
474 | BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH); | ||
475 | return 0; | ||
476 | } | ||
477 | ret = BN_GF2m_mod_arr(r, a, arr); | ||
478 | bn_check_top(r); | ||
479 | return ret; | ||
480 | } | ||
481 | |||
482 | |||
483 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
484 | * the result in r. r could be a or b; a could be b. | ||
485 | */ | ||
486 | int | ||
487 | BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], | ||
488 | BN_CTX *ctx) | ||
489 | { | ||
490 | int zlen, i, j, k, ret = 0; | ||
491 | BIGNUM *s; | ||
492 | BN_ULONG x1, x0, y1, y0, zz[4]; | ||
493 | |||
494 | bn_check_top(a); | ||
495 | bn_check_top(b); | ||
496 | |||
497 | if (a == b) { | ||
498 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); | ||
499 | } | ||
500 | |||
501 | BN_CTX_start(ctx); | ||
502 | if ((s = BN_CTX_get(ctx)) == NULL) | ||
503 | goto err; | ||
504 | |||
505 | zlen = a->top + b->top + 4; | ||
506 | if (!bn_wexpand(s, zlen)) | ||
507 | goto err; | ||
508 | s->top = zlen; | ||
509 | |||
510 | for (i = 0; i < zlen; i++) | ||
511 | s->d[i] = 0; | ||
512 | |||
513 | for (j = 0; j < b->top; j += 2) { | ||
514 | y0 = b->d[j]; | ||
515 | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; | ||
516 | for (i = 0; i < a->top; i += 2) { | ||
517 | x0 = a->d[i]; | ||
518 | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; | ||
519 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); | ||
520 | for (k = 0; k < 4; k++) | ||
521 | s->d[i + j + k] ^= zz[k]; | ||
522 | } | ||
523 | } | ||
524 | |||
525 | bn_correct_top(s); | ||
526 | if (BN_GF2m_mod_arr(r, s, p)) | ||
527 | ret = 1; | ||
528 | bn_check_top(r); | ||
529 | |||
530 | err: | ||
531 | BN_CTX_end(ctx); | ||
532 | return ret; | ||
533 | } | ||
534 | |||
535 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
536 | * the result in r. r could be a or b; a could equal b. | ||
537 | * | ||
538 | * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper | ||
539 | * function is only provided for convenience; for best performance, use the | ||
540 | * BN_GF2m_mod_mul_arr function. | ||
541 | */ | ||
542 | int | ||
543 | BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, | ||
544 | BN_CTX *ctx) | ||
545 | { | ||
546 | int ret = 0; | ||
547 | const int max = BN_num_bits(p) + 1; | ||
548 | int *arr = NULL; | ||
549 | |||
550 | bn_check_top(a); | ||
551 | bn_check_top(b); | ||
552 | bn_check_top(p); | ||
553 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
554 | goto err; | ||
555 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
556 | if (!ret || ret > max) { | ||
557 | BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH); | ||
558 | goto err; | ||
559 | } | ||
560 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); | ||
561 | bn_check_top(r); | ||
562 | |||
563 | err: | ||
564 | free(arr); | ||
565 | return ret; | ||
566 | } | ||
567 | |||
568 | |||
569 | /* Square a, reduce the result mod p, and store it in a. r could be a. */ | ||
570 | int | ||
571 | BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) | ||
572 | { | ||
573 | int i, ret = 0; | ||
574 | BIGNUM *s; | ||
575 | |||
576 | bn_check_top(a); | ||
577 | BN_CTX_start(ctx); | ||
578 | if ((s = BN_CTX_get(ctx)) == NULL) | ||
579 | goto err; | ||
580 | if (!bn_wexpand(s, 2 * a->top)) | ||
581 | goto err; | ||
582 | |||
583 | for (i = a->top - 1; i >= 0; i--) { | ||
584 | s->d[2 * i + 1] = SQR1(a->d[i]); | ||
585 | s->d[2 * i] = SQR0(a->d[i]); | ||
586 | } | ||
587 | |||
588 | s->top = 2 * a->top; | ||
589 | bn_correct_top(s); | ||
590 | if (!BN_GF2m_mod_arr(r, s, p)) | ||
591 | goto err; | ||
592 | bn_check_top(r); | ||
593 | ret = 1; | ||
594 | |||
595 | err: | ||
596 | BN_CTX_end(ctx); | ||
597 | return ret; | ||
598 | } | ||
599 | |||
600 | /* Square a, reduce the result mod p, and store it in a. r could be a. | ||
601 | * | ||
602 | * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper | ||
603 | * function is only provided for convenience; for best performance, use the | ||
604 | * BN_GF2m_mod_sqr_arr function. | ||
605 | */ | ||
606 | int | ||
607 | BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
608 | { | ||
609 | int ret = 0; | ||
610 | const int max = BN_num_bits(p) + 1; | ||
611 | int *arr = NULL; | ||
612 | |||
613 | bn_check_top(a); | ||
614 | bn_check_top(p); | ||
615 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
616 | goto err; | ||
617 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
618 | if (!ret || ret > max) { | ||
619 | BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH); | ||
620 | goto err; | ||
621 | } | ||
622 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); | ||
623 | bn_check_top(r); | ||
624 | |||
625 | err: | ||
626 | free(arr); | ||
627 | return ret; | ||
628 | } | ||
629 | |||
630 | |||
631 | /* Invert a, reduce modulo p, and store the result in r. r could be a. | ||
632 | * Uses Modified Almost Inverse Algorithm (Algorithm 10) from | ||
633 | * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation | ||
634 | * of Elliptic Curve Cryptography Over Binary Fields". | ||
635 | */ | ||
636 | int | ||
637 | BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
638 | { | ||
639 | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; | ||
640 | int ret = 0; | ||
641 | |||
642 | bn_check_top(a); | ||
643 | bn_check_top(p); | ||
644 | |||
645 | BN_CTX_start(ctx); | ||
646 | |||
647 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
648 | goto err; | ||
649 | if ((c = BN_CTX_get(ctx)) == NULL) | ||
650 | goto err; | ||
651 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
652 | goto err; | ||
653 | if ((v = BN_CTX_get(ctx)) == NULL) | ||
654 | goto err; | ||
655 | |||
656 | if (!BN_GF2m_mod(u, a, p)) | ||
657 | goto err; | ||
658 | if (BN_is_zero(u)) | ||
659 | goto err; | ||
660 | |||
661 | if (!BN_copy(v, p)) | ||
662 | goto err; | ||
663 | #if 0 | ||
664 | if (!BN_one(b)) | ||
665 | goto err; | ||
666 | |||
667 | while (1) { | ||
668 | while (!BN_is_odd(u)) { | ||
669 | if (BN_is_zero(u)) | ||
670 | goto err; | ||
671 | if (!BN_rshift1(u, u)) | ||
672 | goto err; | ||
673 | if (BN_is_odd(b)) { | ||
674 | if (!BN_GF2m_add(b, b, p)) | ||
675 | goto err; | ||
676 | } | ||
677 | if (!BN_rshift1(b, b)) | ||
678 | goto err; | ||
679 | } | ||
680 | |||
681 | if (BN_abs_is_word(u, 1)) | ||
682 | break; | ||
683 | |||
684 | if (BN_num_bits(u) < BN_num_bits(v)) { | ||
685 | tmp = u; | ||
686 | u = v; | ||
687 | v = tmp; | ||
688 | tmp = b; | ||
689 | b = c; | ||
690 | c = tmp; | ||
691 | } | ||
692 | |||
693 | if (!BN_GF2m_add(u, u, v)) | ||
694 | goto err; | ||
695 | if (!BN_GF2m_add(b, b, c)) | ||
696 | goto err; | ||
697 | } | ||
698 | #else | ||
699 | { | ||
700 | int i, ubits = BN_num_bits(u), | ||
701 | vbits = BN_num_bits(v), /* v is copy of p */ | ||
702 | top = p->top; | ||
703 | BN_ULONG *udp, *bdp, *vdp, *cdp; | ||
704 | |||
705 | if (!bn_wexpand(u, top)) | ||
706 | goto err; | ||
707 | udp = u->d; | ||
708 | for (i = u->top; i < top; i++) | ||
709 | udp[i] = 0; | ||
710 | u->top = top; | ||
711 | if (!bn_wexpand(b, top)) | ||
712 | goto err; | ||
713 | bdp = b->d; | ||
714 | bdp[0] = 1; | ||
715 | for (i = 1; i < top; i++) | ||
716 | bdp[i] = 0; | ||
717 | b->top = top; | ||
718 | if (!bn_wexpand(c, top)) | ||
719 | goto err; | ||
720 | cdp = c->d; | ||
721 | for (i = 0; i < top; i++) | ||
722 | cdp[i] = 0; | ||
723 | c->top = top; | ||
724 | vdp = v->d; /* It pays off to "cache" *->d pointers, because | ||
725 | * it allows optimizer to be more aggressive. | ||
726 | * But we don't have to "cache" p->d, because *p | ||
727 | * is declared 'const'... */ | ||
728 | while (1) { | ||
729 | while (ubits && !(udp[0]&1)) { | ||
730 | BN_ULONG u0, u1, b0, b1, mask; | ||
731 | |||
732 | u0 = udp[0]; | ||
733 | b0 = bdp[0]; | ||
734 | mask = (BN_ULONG)0 - (b0 & 1); | ||
735 | b0 ^= p->d[0] & mask; | ||
736 | for (i = 0; i < top - 1; i++) { | ||
737 | u1 = udp[i + 1]; | ||
738 | udp[i] = ((u0 >> 1) | | ||
739 | (u1 << (BN_BITS2 - 1))) & BN_MASK2; | ||
740 | u0 = u1; | ||
741 | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); | ||
742 | bdp[i] = ((b0 >> 1) | | ||
743 | (b1 << (BN_BITS2 - 1))) & BN_MASK2; | ||
744 | b0 = b1; | ||
745 | } | ||
746 | udp[i] = u0 >> 1; | ||
747 | bdp[i] = b0 >> 1; | ||
748 | ubits--; | ||
749 | } | ||
750 | |||
751 | if (ubits <= BN_BITS2) { | ||
752 | /* See if poly was reducible. */ | ||
753 | if (udp[0] == 0) | ||
754 | goto err; | ||
755 | if (udp[0] == 1) | ||
756 | break; | ||
757 | } | ||
758 | |||
759 | if (ubits < vbits) { | ||
760 | i = ubits; | ||
761 | ubits = vbits; | ||
762 | vbits = i; | ||
763 | tmp = u; | ||
764 | u = v; | ||
765 | v = tmp; | ||
766 | tmp = b; | ||
767 | b = c; | ||
768 | c = tmp; | ||
769 | udp = vdp; | ||
770 | vdp = v->d; | ||
771 | bdp = cdp; | ||
772 | cdp = c->d; | ||
773 | } | ||
774 | for (i = 0; i < top; i++) { | ||
775 | udp[i] ^= vdp[i]; | ||
776 | bdp[i] ^= cdp[i]; | ||
777 | } | ||
778 | if (ubits == vbits) { | ||
779 | BN_ULONG ul; | ||
780 | int utop = (ubits - 1) / BN_BITS2; | ||
781 | |||
782 | while ((ul = udp[utop]) == 0 && utop) | ||
783 | utop--; | ||
784 | ubits = utop*BN_BITS2 + BN_num_bits_word(ul); | ||
785 | } | ||
786 | } | ||
787 | bn_correct_top(b); | ||
788 | } | ||
789 | #endif | ||
790 | |||
791 | if (!BN_copy(r, b)) | ||
792 | goto err; | ||
793 | bn_check_top(r); | ||
794 | ret = 1; | ||
795 | |||
796 | err: | ||
797 | #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */ | ||
798 | bn_correct_top(c); | ||
799 | bn_correct_top(u); | ||
800 | bn_correct_top(v); | ||
801 | #endif | ||
802 | BN_CTX_end(ctx); | ||
803 | return ret; | ||
804 | } | ||
805 | |||
806 | /* Invert xx, reduce modulo p, and store the result in r. r could be xx. | ||
807 | * | ||
808 | * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper | ||
809 | * function is only provided for convenience; for best performance, use the | ||
810 | * BN_GF2m_mod_inv function. | ||
811 | */ | ||
812 | int | ||
813 | BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) | ||
814 | { | ||
815 | BIGNUM *field; | ||
816 | int ret = 0; | ||
817 | |||
818 | bn_check_top(xx); | ||
819 | BN_CTX_start(ctx); | ||
820 | if ((field = BN_CTX_get(ctx)) == NULL) | ||
821 | goto err; | ||
822 | if (!BN_GF2m_arr2poly(p, field)) | ||
823 | goto err; | ||
824 | |||
825 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); | ||
826 | bn_check_top(r); | ||
827 | |||
828 | err: | ||
829 | BN_CTX_end(ctx); | ||
830 | return ret; | ||
831 | } | ||
832 | |||
833 | |||
834 | #ifndef OPENSSL_SUN_GF2M_DIV | ||
835 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
836 | * or y, x could equal y. | ||
837 | */ | ||
838 | int | ||
839 | BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, | ||
840 | BN_CTX *ctx) | ||
841 | { | ||
842 | BIGNUM *xinv = NULL; | ||
843 | int ret = 0; | ||
844 | |||
845 | bn_check_top(y); | ||
846 | bn_check_top(x); | ||
847 | bn_check_top(p); | ||
848 | |||
849 | BN_CTX_start(ctx); | ||
850 | if ((xinv = BN_CTX_get(ctx)) == NULL) | ||
851 | goto err; | ||
852 | |||
853 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) | ||
854 | goto err; | ||
855 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) | ||
856 | goto err; | ||
857 | bn_check_top(r); | ||
858 | ret = 1; | ||
859 | |||
860 | err: | ||
861 | BN_CTX_end(ctx); | ||
862 | return ret; | ||
863 | } | ||
864 | #else | ||
865 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
866 | * or y, x could equal y. | ||
867 | * Uses algorithm Modular_Division_GF(2^m) from | ||
868 | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to | ||
869 | * the Great Divide". | ||
870 | */ | ||
871 | int | ||
872 | BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, | ||
873 | BN_CTX *ctx) | ||
874 | { | ||
875 | BIGNUM *a, *b, *u, *v; | ||
876 | int ret = 0; | ||
877 | |||
878 | bn_check_top(y); | ||
879 | bn_check_top(x); | ||
880 | bn_check_top(p); | ||
881 | |||
882 | BN_CTX_start(ctx); | ||
883 | |||
884 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
885 | goto err; | ||
886 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
887 | goto err; | ||
888 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
889 | goto err; | ||
890 | if ((v = BN_CTX_get(ctx)) == NULL) | ||
891 | goto err; | ||
892 | |||
893 | /* reduce x and y mod p */ | ||
894 | if (!BN_GF2m_mod(u, y, p)) | ||
895 | goto err; | ||
896 | if (!BN_GF2m_mod(a, x, p)) | ||
897 | goto err; | ||
898 | if (!BN_copy(b, p)) | ||
899 | goto err; | ||
900 | |||
901 | while (!BN_is_odd(a)) { | ||
902 | if (!BN_rshift1(a, a)) | ||
903 | goto err; | ||
904 | if (BN_is_odd(u)) | ||
905 | if (!BN_GF2m_add(u, u, p)) | ||
906 | goto err; | ||
907 | if (!BN_rshift1(u, u)) | ||
908 | goto err; | ||
909 | } | ||
910 | |||
911 | do { | ||
912 | if (BN_GF2m_cmp(b, a) > 0) { | ||
913 | if (!BN_GF2m_add(b, b, a)) | ||
914 | goto err; | ||
915 | if (!BN_GF2m_add(v, v, u)) | ||
916 | goto err; | ||
917 | do { | ||
918 | if (!BN_rshift1(b, b)) | ||
919 | goto err; | ||
920 | if (BN_is_odd(v)) | ||
921 | if (!BN_GF2m_add(v, v, p)) | ||
922 | goto err; | ||
923 | if (!BN_rshift1(v, v)) | ||
924 | goto err; | ||
925 | } while (!BN_is_odd(b)); | ||
926 | } else if (BN_abs_is_word(a, 1)) | ||
927 | break; | ||
928 | else { | ||
929 | if (!BN_GF2m_add(a, a, b)) | ||
930 | goto err; | ||
931 | if (!BN_GF2m_add(u, u, v)) | ||
932 | goto err; | ||
933 | do { | ||
934 | if (!BN_rshift1(a, a)) | ||
935 | goto err; | ||
936 | if (BN_is_odd(u)) | ||
937 | if (!BN_GF2m_add(u, u, p)) | ||
938 | goto err; | ||
939 | if (!BN_rshift1(u, u)) | ||
940 | goto err; | ||
941 | } while (!BN_is_odd(a)); | ||
942 | } | ||
943 | } while (1); | ||
944 | |||
945 | if (!BN_copy(r, u)) | ||
946 | goto err; | ||
947 | bn_check_top(r); | ||
948 | ret = 1; | ||
949 | |||
950 | err: | ||
951 | BN_CTX_end(ctx); | ||
952 | return ret; | ||
953 | } | ||
954 | #endif | ||
955 | |||
956 | /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx | ||
957 | * or yy, xx could equal yy. | ||
958 | * | ||
959 | * This function calls down to the BN_GF2m_mod_div implementation; this wrapper | ||
960 | * function is only provided for convenience; for best performance, use the | ||
961 | * BN_GF2m_mod_div function. | ||
962 | */ | ||
963 | int | ||
964 | BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, | ||
965 | const int p[], BN_CTX *ctx) | ||
966 | { | ||
967 | BIGNUM *field; | ||
968 | int ret = 0; | ||
969 | |||
970 | bn_check_top(yy); | ||
971 | bn_check_top(xx); | ||
972 | |||
973 | BN_CTX_start(ctx); | ||
974 | if ((field = BN_CTX_get(ctx)) == NULL) | ||
975 | goto err; | ||
976 | if (!BN_GF2m_arr2poly(p, field)) | ||
977 | goto err; | ||
978 | |||
979 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); | ||
980 | bn_check_top(r); | ||
981 | |||
982 | err: | ||
983 | BN_CTX_end(ctx); | ||
984 | return ret; | ||
985 | } | ||
986 | |||
987 | |||
988 | /* Compute the bth power of a, reduce modulo p, and store | ||
989 | * the result in r. r could be a. | ||
990 | * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. | ||
991 | */ | ||
992 | int | ||
993 | BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], | ||
994 | BN_CTX *ctx) | ||
995 | { | ||
996 | int ret = 0, i, n; | ||
997 | BIGNUM *u; | ||
998 | |||
999 | bn_check_top(a); | ||
1000 | bn_check_top(b); | ||
1001 | |||
1002 | if (BN_is_zero(b)) | ||
1003 | return (BN_one(r)); | ||
1004 | |||
1005 | if (BN_abs_is_word(b, 1)) | ||
1006 | return (BN_copy(r, a) != NULL); | ||
1007 | |||
1008 | BN_CTX_start(ctx); | ||
1009 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
1010 | goto err; | ||
1011 | |||
1012 | if (!BN_GF2m_mod_arr(u, a, p)) | ||
1013 | goto err; | ||
1014 | |||
1015 | n = BN_num_bits(b) - 1; | ||
1016 | for (i = n - 1; i >= 0; i--) { | ||
1017 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) | ||
1018 | goto err; | ||
1019 | if (BN_is_bit_set(b, i)) { | ||
1020 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) | ||
1021 | goto err; | ||
1022 | } | ||
1023 | } | ||
1024 | if (!BN_copy(r, u)) | ||
1025 | goto err; | ||
1026 | bn_check_top(r); | ||
1027 | ret = 1; | ||
1028 | |||
1029 | err: | ||
1030 | BN_CTX_end(ctx); | ||
1031 | return ret; | ||
1032 | } | ||
1033 | |||
1034 | /* Compute the bth power of a, reduce modulo p, and store | ||
1035 | * the result in r. r could be a. | ||
1036 | * | ||
1037 | * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper | ||
1038 | * function is only provided for convenience; for best performance, use the | ||
1039 | * BN_GF2m_mod_exp_arr function. | ||
1040 | */ | ||
1041 | int | ||
1042 | BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, | ||
1043 | BN_CTX *ctx) | ||
1044 | { | ||
1045 | int ret = 0; | ||
1046 | const int max = BN_num_bits(p) + 1; | ||
1047 | int *arr = NULL; | ||
1048 | |||
1049 | bn_check_top(a); | ||
1050 | bn_check_top(b); | ||
1051 | bn_check_top(p); | ||
1052 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
1053 | goto err; | ||
1054 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
1055 | if (!ret || ret > max) { | ||
1056 | BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH); | ||
1057 | goto err; | ||
1058 | } | ||
1059 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); | ||
1060 | bn_check_top(r); | ||
1061 | |||
1062 | err: | ||
1063 | free(arr); | ||
1064 | return ret; | ||
1065 | } | ||
1066 | |||
1067 | /* Compute the square root of a, reduce modulo p, and store | ||
1068 | * the result in r. r could be a. | ||
1069 | * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. | ||
1070 | */ | ||
1071 | int | ||
1072 | BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) | ||
1073 | { | ||
1074 | int ret = 0; | ||
1075 | BIGNUM *u; | ||
1076 | |||
1077 | bn_check_top(a); | ||
1078 | |||
1079 | if (!p[0]) { | ||
1080 | /* reduction mod 1 => return 0 */ | ||
1081 | BN_zero(r); | ||
1082 | return 1; | ||
1083 | } | ||
1084 | |||
1085 | BN_CTX_start(ctx); | ||
1086 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
1087 | goto err; | ||
1088 | |||
1089 | if (!BN_set_bit(u, p[0] - 1)) | ||
1090 | goto err; | ||
1091 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); | ||
1092 | bn_check_top(r); | ||
1093 | |||
1094 | err: | ||
1095 | BN_CTX_end(ctx); | ||
1096 | return ret; | ||
1097 | } | ||
1098 | |||
1099 | /* Compute the square root of a, reduce modulo p, and store | ||
1100 | * the result in r. r could be a. | ||
1101 | * | ||
1102 | * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper | ||
1103 | * function is only provided for convenience; for best performance, use the | ||
1104 | * BN_GF2m_mod_sqrt_arr function. | ||
1105 | */ | ||
1106 | int | ||
1107 | BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
1108 | { | ||
1109 | int ret = 0; | ||
1110 | const int max = BN_num_bits(p) + 1; | ||
1111 | int *arr = NULL; | ||
1112 | bn_check_top(a); | ||
1113 | bn_check_top(p); | ||
1114 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
1115 | goto err; | ||
1116 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
1117 | if (!ret || ret > max) { | ||
1118 | BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH); | ||
1119 | goto err; | ||
1120 | } | ||
1121 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); | ||
1122 | bn_check_top(r); | ||
1123 | |||
1124 | err: | ||
1125 | free(arr); | ||
1126 | return ret; | ||
1127 | } | ||
1128 | |||
1129 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
1130 | * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. | ||
1131 | */ | ||
1132 | int | ||
1133 | BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], | ||
1134 | BN_CTX *ctx) | ||
1135 | { | ||
1136 | int ret = 0, count = 0, j; | ||
1137 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; | ||
1138 | |||
1139 | bn_check_top(a_); | ||
1140 | |||
1141 | if (!p[0]) { | ||
1142 | /* reduction mod 1 => return 0 */ | ||
1143 | BN_zero(r); | ||
1144 | return 1; | ||
1145 | } | ||
1146 | |||
1147 | BN_CTX_start(ctx); | ||
1148 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
1149 | goto err; | ||
1150 | if ((z = BN_CTX_get(ctx)) == NULL) | ||
1151 | goto err; | ||
1152 | if ((w = BN_CTX_get(ctx)) == NULL) | ||
1153 | goto err; | ||
1154 | |||
1155 | if (!BN_GF2m_mod_arr(a, a_, p)) | ||
1156 | goto err; | ||
1157 | |||
1158 | if (BN_is_zero(a)) { | ||
1159 | BN_zero(r); | ||
1160 | ret = 1; | ||
1161 | goto err; | ||
1162 | } | ||
1163 | |||
1164 | if (p[0] & 0x1) /* m is odd */ | ||
1165 | { | ||
1166 | /* compute half-trace of a */ | ||
1167 | if (!BN_copy(z, a)) | ||
1168 | goto err; | ||
1169 | for (j = 1; j <= (p[0] - 1) / 2; j++) { | ||
1170 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | ||
1171 | goto err; | ||
1172 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | ||
1173 | goto err; | ||
1174 | if (!BN_GF2m_add(z, z, a)) | ||
1175 | goto err; | ||
1176 | } | ||
1177 | |||
1178 | } | ||
1179 | else /* m is even */ | ||
1180 | { | ||
1181 | if ((rho = BN_CTX_get(ctx)) == NULL) | ||
1182 | goto err; | ||
1183 | if ((w2 = BN_CTX_get(ctx)) == NULL) | ||
1184 | goto err; | ||
1185 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
1186 | goto err; | ||
1187 | do { | ||
1188 | if (!BN_rand(rho, p[0], 0, 0)) | ||
1189 | goto err; | ||
1190 | if (!BN_GF2m_mod_arr(rho, rho, p)) | ||
1191 | goto err; | ||
1192 | BN_zero(z); | ||
1193 | if (!BN_copy(w, rho)) | ||
1194 | goto err; | ||
1195 | for (j = 1; j <= p[0] - 1; j++) { | ||
1196 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | ||
1197 | goto err; | ||
1198 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) | ||
1199 | goto err; | ||
1200 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) | ||
1201 | goto err; | ||
1202 | if (!BN_GF2m_add(z, z, tmp)) | ||
1203 | goto err; | ||
1204 | if (!BN_GF2m_add(w, w2, rho)) | ||
1205 | goto err; | ||
1206 | } | ||
1207 | count++; | ||
1208 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); | ||
1209 | if (BN_is_zero(w)) { | ||
1210 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, | ||
1211 | BN_R_TOO_MANY_ITERATIONS); | ||
1212 | goto err; | ||
1213 | } | ||
1214 | } | ||
1215 | |||
1216 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) | ||
1217 | goto err; | ||
1218 | if (!BN_GF2m_add(w, z, w)) | ||
1219 | goto err; | ||
1220 | if (BN_GF2m_cmp(w, a)) { | ||
1221 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); | ||
1222 | goto err; | ||
1223 | } | ||
1224 | |||
1225 | if (!BN_copy(r, z)) | ||
1226 | goto err; | ||
1227 | bn_check_top(r); | ||
1228 | |||
1229 | ret = 1; | ||
1230 | |||
1231 | err: | ||
1232 | BN_CTX_end(ctx); | ||
1233 | return ret; | ||
1234 | } | ||
1235 | |||
1236 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
1237 | * | ||
1238 | * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper | ||
1239 | * function is only provided for convenience; for best performance, use the | ||
1240 | * BN_GF2m_mod_solve_quad_arr function. | ||
1241 | */ | ||
1242 | int | ||
1243 | BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
1244 | { | ||
1245 | int ret = 0; | ||
1246 | const int max = BN_num_bits(p) + 1; | ||
1247 | int *arr = NULL; | ||
1248 | |||
1249 | bn_check_top(a); | ||
1250 | bn_check_top(p); | ||
1251 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
1252 | goto err; | ||
1253 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
1254 | if (!ret || ret > max) { | ||
1255 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH); | ||
1256 | goto err; | ||
1257 | } | ||
1258 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); | ||
1259 | bn_check_top(r); | ||
1260 | |||
1261 | err: | ||
1262 | free(arr); | ||
1263 | return ret; | ||
1264 | } | ||
1265 | |||
1266 | /* Convert the bit-string representation of a polynomial | ||
1267 | * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding | ||
1268 | * to the bits with non-zero coefficient. Array is terminated with -1. | ||
1269 | * Up to max elements of the array will be filled. Return value is total | ||
1270 | * number of array elements that would be filled if array was large enough. | ||
1271 | */ | ||
1272 | int | ||
1273 | BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) | ||
1274 | { | ||
1275 | int i, j, k = 0; | ||
1276 | BN_ULONG mask; | ||
1277 | |||
1278 | if (BN_is_zero(a)) | ||
1279 | return 0; | ||
1280 | |||
1281 | for (i = a->top - 1; i >= 0; i--) { | ||
1282 | if (!a->d[i]) | ||
1283 | /* skip word if a->d[i] == 0 */ | ||
1284 | continue; | ||
1285 | mask = BN_TBIT; | ||
1286 | for (j = BN_BITS2 - 1; j >= 0; j--) { | ||
1287 | if (a->d[i] & mask) { | ||
1288 | if (k < max) | ||
1289 | p[k] = BN_BITS2 * i + j; | ||
1290 | k++; | ||
1291 | } | ||
1292 | mask >>= 1; | ||
1293 | } | ||
1294 | } | ||
1295 | |||
1296 | if (k < max) { | ||
1297 | p[k] = -1; | ||
1298 | k++; | ||
1299 | } | ||
1300 | |||
1301 | return k; | ||
1302 | } | ||
1303 | |||
1304 | /* Convert the coefficient array representation of a polynomial to a | ||
1305 | * bit-string. The array must be terminated by -1. | ||
1306 | */ | ||
1307 | int | ||
1308 | BN_GF2m_arr2poly(const int p[], BIGNUM *a) | ||
1309 | { | ||
1310 | int i; | ||
1311 | |||
1312 | bn_check_top(a); | ||
1313 | BN_zero(a); | ||
1314 | for (i = 0; p[i] != -1; i++) { | ||
1315 | if (BN_set_bit(a, p[i]) == 0) | ||
1316 | return 0; | ||
1317 | } | ||
1318 | bn_check_top(a); | ||
1319 | |||
1320 | return 1; | ||
1321 | } | ||
1322 | |||
1323 | #endif | ||