summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/bn_mod_sqrt.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mod_sqrt.c')
-rw-r--r--src/lib/libcrypto/bn/bn_mod_sqrt.c726
1 files changed, 726 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_mod_sqrt.c b/src/lib/libcrypto/bn/bn_mod_sqrt.c
new file mode 100644
index 0000000000..acca540e25
--- /dev/null
+++ b/src/lib/libcrypto/bn/bn_mod_sqrt.c
@@ -0,0 +1,726 @@
1/* $OpenBSD: bn_mod_sqrt.c,v 1.1 2023/04/11 10:08:44 tb Exp $ */
2
3/*
4 * Copyright (c) 2022 Theo Buehler <tb@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <openssl/err.h>
20
21#include "bn_local.h"
22
23/*
24 * Tonelli-Shanks according to H. Cohen "A Course in Computational Algebraic
25 * Number Theory", Section 1.5.1, Springer GTM volume 138, Berlin, 1996.
26 *
27 * Under the assumption that p is prime and a is a quadratic residue, we know:
28 *
29 * a^[(p-1)/2] = 1 (mod p). (*)
30 *
31 * To find a square root of a (mod p), we handle three cases of increasing
32 * complexity. In the first two cases, we can compute a square root using an
33 * explicit formula, thus avoiding the probabilistic nature of Tonelli-Shanks.
34 *
35 * 1. p = 3 (mod 4).
36 *
37 * Set n = (p+1)/4. Then 2n = 1 + (p-1)/2 and (*) shows that x = a^n (mod p)
38 * is a square root of a: x^2 = a^(2n) = a * a^[(p-1)/2] = a (mod p).
39 *
40 * 2. p = 5 (mod 8).
41 *
42 * This uses a simplification due to Atkin. By Theorem 1.4.7 and 1.4.9, the
43 * Kronecker symbol (2/p) evaluates to (-1)^[(p^2-1)/8]. From p = 5 (mod 8)
44 * we get (p^2-1)/8 = 1 (mod 2), so (2/p) = -1, and thus
45 *
46 * 2^[(p-1)/2] = -1 (mod p). (**)
47 *
48 * Set b = (2a)^[(p-5)/8]. With (p-1)/2 = 2 + (p-5)/2, (*) and (**) show
49 *
50 * i = 2 a b^2 is a square root of -1 (mod p).
51 *
52 * Indeed, i^2 = 2^2 a^2 b^4 = 2^[(p-1)/2] a^[(p-1)/2] = -1 (mod p). Because
53 * of (i-1)^2 = -2i (mod p) and i (-i) = 1 (mod p), a square root of a is
54 *
55 * x = a b (i-1)
56 *
57 * as x^2 = a^2 b^2 (-2i) = a (2 a b^2) (-i) = a (mod p).
58 *
59 * 3. p = 1 (mod 8).
60 *
61 * This is the Tonelli-Shanks algorithm. For a prime p, the multiplicative
62 * group of GF(p) is cyclic of order p - 1 = 2^s q, with odd q. Denote its
63 * 2-Sylow subgroup by S. It is cyclic of order 2^s. The squares in S have
64 * order dividing 2^(s-1). They are the even powers of any generator z of S.
65 * If a is a quadratic residue, 1 = a^[(p-1)/2] = (a^q)^[2^(s-1)], so b = a^q
66 * is a square in S. Therefore there is an integer k such that b z^(2k) = 1.
67 * Set x = a^[(q+1)/2] z^k, and find x^2 = a (mod p).
68 *
69 * The problem is thus reduced to finding a generator z of the 2-Sylow
70 * subgroup S of GF(p)* and finding k. An iterative constructions avoids
71 * the need for an explicit k, a generator is found by a randomized search.
72 *
73 * While we do not actually know that p is a prime number, we can still apply
74 * the formulas in cases 1 and 2 and verify that we have indeed found a square
75 * root of p. Similarly, in case 3, we can try to find a quadratic non-residue,
76 * which will fail for example if p is a square. The iterative construction
77 * may or may not find a candidate square root which we can then validate.
78 */
79
80/*
81 * Handle the cases where p is 2, p isn't odd or p is one. Since BN_mod_sqrt()
82 * can run on untrusted data, a primality check is too expensive. Also treat
83 * the obvious cases where a is 0 or 1.
84 */
85
86static int
87bn_mod_sqrt_trivial_cases(int *done, BIGNUM *out_sqrt, const BIGNUM *a,
88 const BIGNUM *p, BN_CTX *ctx)
89{
90 *done = 1;
91
92 if (BN_abs_is_word(p, 2))
93 return BN_set_word(out_sqrt, BN_is_odd(a));
94
95 if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
96 BNerror(BN_R_P_IS_NOT_PRIME);
97 return 0;
98 }
99
100 if (BN_is_zero(a) || BN_is_one(a))
101 return BN_set_word(out_sqrt, BN_is_one(a));
102
103 *done = 0;
104
105 return 1;
106}
107
108/*
109 * Case 1. We know that (a/p) = 1 and that p = 3 (mod 4).
110 */
111
112static int
113bn_mod_sqrt_p_is_3_mod_4(BIGNUM *out_sqrt, const BIGNUM *a, const BIGNUM *p,
114 BN_CTX *ctx)
115{
116 BIGNUM *n;
117 int ret = 0;
118
119 BN_CTX_start(ctx);
120
121 if ((n = BN_CTX_get(ctx)) == NULL)
122 goto err;
123
124 /* Calculate n = (|p| + 1) / 4. */
125 if (!BN_uadd(n, p, BN_value_one()))
126 goto err;
127 if (!BN_rshift(n, n, 2))
128 goto err;
129
130 /* By case 1 above, out_sqrt = a^n is a square root of a (mod p). */
131 if (!BN_mod_exp_ct(out_sqrt, a, n, p, ctx))
132 goto err;
133
134 ret = 1;
135
136 err:
137 BN_CTX_end(ctx);
138
139 return ret;
140}
141
142/*
143 * Case 2. We know that (a/p) = 1 and that p = 5 (mod 8).
144 */
145
146static int
147bn_mod_sqrt_p_is_5_mod_8(BIGNUM *out_sqrt, const BIGNUM *a, const BIGNUM *p,
148 BN_CTX *ctx)
149{
150 BIGNUM *b, *i, *n, *tmp;
151 int ret = 0;
152
153 BN_CTX_start(ctx);
154
155 if ((b = BN_CTX_get(ctx)) == NULL)
156 goto err;
157 if ((i = BN_CTX_get(ctx)) == NULL)
158 goto err;
159 if ((n = BN_CTX_get(ctx)) == NULL)
160 goto err;
161 if ((tmp = BN_CTX_get(ctx)) == NULL)
162 goto err;
163
164 /* Calculate n = (|p| - 5) / 8. Since p = 5 (mod 8), simply shift. */
165 if (!BN_rshift(n, p, 3))
166 goto err;
167 BN_set_negative(n, 0);
168
169 /* Compute tmp = 2a (mod p) for later use. */
170 if (!BN_mod_lshift1(tmp, a, p, ctx))
171 goto err;
172
173 /* Calculate b = (2a)^n (mod p). */
174 if (!BN_mod_exp_ct(b, tmp, n, p, ctx))
175 goto err;
176
177 /* Calculate i = 2 a b^2 (mod p). */
178 if (!BN_mod_sqr(i, b, p, ctx))
179 goto err;
180 if (!BN_mod_mul(i, tmp, i, p, ctx))
181 goto err;
182
183 /* A square root is out_sqrt = a b (i-1) (mod p). */
184 if (!BN_sub_word(i, 1))
185 goto err;
186 if (!BN_mod_mul(out_sqrt, a, b, p, ctx))
187 goto err;
188 if (!BN_mod_mul(out_sqrt, out_sqrt, i, p, ctx))
189 goto err;
190
191 ret = 1;
192
193 err:
194 BN_CTX_end(ctx);
195
196 return ret;
197}
198
199/*
200 * Case 3. We know that (a/p) = 1 and that p = 1 (mod 8).
201 */
202
203/*
204 * Simple helper. To find a generator of the 2-Sylow subgroup of GF(p)*, we
205 * need to find a quadratic non-residue of p, i.e., n such that (n/p) = -1.
206 */
207
208static int
209bn_mod_sqrt_n_is_non_residue(int *is_non_residue, const BIGNUM *n,
210 const BIGNUM *p, BN_CTX *ctx)
211{
212 switch (BN_kronecker(n, p, ctx)) {
213 case -1:
214 *is_non_residue = 1;
215 return 1;
216 case 1:
217 *is_non_residue = 0;
218 return 1;
219 case 0:
220 /* n divides p, so ... */
221 BNerror(BN_R_P_IS_NOT_PRIME);
222 return 0;
223 default:
224 return 0;
225 }
226}
227
228/*
229 * The following is the only non-deterministic part preparing Tonelli-Shanks.
230 *
231 * If we find n such that (n/p) = -1, then n^q (mod p) is a generator of the
232 * 2-Sylow subgroup of GF(p)*. To find such n, first try some small numbers,
233 * then random ones.
234 */
235
236static int
237bn_mod_sqrt_find_sylow_generator(BIGNUM *out_generator, const BIGNUM *p,
238 const BIGNUM *q, BN_CTX *ctx)
239{
240 BIGNUM *n, *p_abs, *thirty_two;
241 int i, is_non_residue;
242 int ret = 0;
243
244 BN_CTX_start(ctx);
245
246 if ((n = BN_CTX_get(ctx)) == NULL)
247 goto err;
248 if ((thirty_two = BN_CTX_get(ctx)) == NULL)
249 goto err;
250 if ((p_abs = BN_CTX_get(ctx)) == NULL)
251 goto err;
252
253 for (i = 2; i < 32; i++) {
254 if (!BN_set_word(n, i))
255 goto err;
256 if (!bn_mod_sqrt_n_is_non_residue(&is_non_residue, n, p, ctx))
257 goto err;
258 if (is_non_residue)
259 goto found;
260 }
261
262 if (!BN_set_word(thirty_two, 32))
263 goto err;
264 if (!bn_copy(p_abs, p))
265 goto err;
266 BN_set_negative(p_abs, 0);
267
268 for (i = 0; i < 128; i++) {
269 if (!bn_rand_interval(n, thirty_two, p_abs))
270 goto err;
271 if (!bn_mod_sqrt_n_is_non_residue(&is_non_residue, n, p, ctx))
272 goto err;
273 if (is_non_residue)
274 goto found;
275 }
276
277 /*
278 * The probability to get here is < 2^(-128) for prime p. For squares
279 * it is easy: for p = 1369 = 37^2 this happens in ~3% of runs.
280 */
281
282 BNerror(BN_R_TOO_MANY_ITERATIONS);
283 goto err;
284
285 found:
286 /*
287 * If p is prime, n^q generates the 2-Sylow subgroup S of GF(p)*.
288 */
289
290 if (!BN_mod_exp_ct(out_generator, n, q, p, ctx))
291 goto err;
292
293 /* Sanity: p is not necessarily prime, so we could have found 0 or 1. */
294 if (BN_is_zero(out_generator) || BN_is_one(out_generator)) {
295 BNerror(BN_R_P_IS_NOT_PRIME);
296 goto err;
297 }
298
299 ret = 1;
300
301 err:
302 BN_CTX_end(ctx);
303
304 return ret;
305}
306
307/*
308 * Initialization step for Tonelli-Shanks.
309 *
310 * In the end, b = a^q (mod p) and x = a^[(q+1)/2] (mod p). Cohen optimizes this
311 * to minimize taking powers of a. This is a bit confusing and distracting, so
312 * factor this into a separate function.
313 */
314
315static int
316bn_mod_sqrt_tonelli_shanks_initialize(BIGNUM *b, BIGNUM *x, const BIGNUM *a,
317 const BIGNUM *p, const BIGNUM *q, BN_CTX *ctx)
318{
319 BIGNUM *k;
320 int ret = 0;
321
322 BN_CTX_start(ctx);
323
324 if ((k = BN_CTX_get(ctx)) == NULL)
325 goto err;
326
327 /* k = (q-1)/2. Since q is odd, we can shift. */
328 if (!BN_rshift1(k, q))
329 goto err;
330
331 /* x = a^[(q-1)/2] (mod p). */
332 if (!BN_mod_exp_ct(x, a, k, p, ctx))
333 goto err;
334
335 /* b = ax^2 = a^q (mod p). */
336 if (!BN_mod_sqr(b, x, p, ctx))
337 goto err;
338 if (!BN_mod_mul(b, a, b, p, ctx))
339 goto err;
340
341 /* x = ax = a^[(q+1)/2] (mod p). */
342 if (!BN_mod_mul(x, a, x, p, ctx))
343 goto err;
344
345 ret = 1;
346
347 err:
348 BN_CTX_end(ctx);
349
350 return ret;
351}
352
353/*
354 * Find smallest exponent m such that b^(2^m) = 1 (mod p). Assuming that a
355 * is a quadratic residue and p is a prime, we know that 1 <= m < r.
356 */
357
358static int
359bn_mod_sqrt_tonelli_shanks_find_exponent(int *out_exponent, const BIGNUM *b,
360 const BIGNUM *p, int r, BN_CTX *ctx)
361{
362 BIGNUM *x;
363 int m;
364 int ret = 0;
365
366 BN_CTX_start(ctx);
367
368 if ((x = BN_CTX_get(ctx)) == NULL)
369 goto err;
370
371 /*
372 * If r <= 1, the Tonelli-Shanks iteration should have terminated as
373 * r == 1 implies b == 1.
374 */
375 if (r <= 1) {
376 BNerror(BN_R_P_IS_NOT_PRIME);
377 goto err;
378 }
379
380 /*
381 * Sanity check to ensure taking squares actually does something:
382 * If b is 1, the Tonelli-Shanks iteration should have terminated.
383 * If b is 0, something's very wrong, in particular p can't be prime.
384 */
385 if (BN_is_zero(b) || BN_is_one(b)) {
386 BNerror(BN_R_P_IS_NOT_PRIME);
387 goto err;
388 }
389
390 if (!bn_copy(x, b))
391 goto err;
392
393 for (m = 1; m < r; m++) {
394 if (!BN_mod_sqr(x, x, p, ctx))
395 goto err;
396 if (BN_is_one(x))
397 break;
398 }
399
400 if (m >= r) {
401 /* This means a is not a quadratic residue. As (a/p) = 1, ... */
402 BNerror(BN_R_P_IS_NOT_PRIME);
403 goto err;
404 }
405
406 *out_exponent = m;
407
408 ret = 1;
409
410 err:
411 BN_CTX_end(ctx);
412
413 return ret;
414}
415
416/*
417 * The update step. With the minimal m such that b^(2^m) = 1 (mod m),
418 * set t = y^[2^(r-m-1)] (mod p) and update x = xt, y = t^2, b = by.
419 * This preserves the loop invariants a b = x^2, y^[2^(r-1)] = -1 and
420 * b^[2^(r-1)] = 1.
421 */
422
423static int
424bn_mod_sqrt_tonelli_shanks_update(BIGNUM *b, BIGNUM *x, BIGNUM *y,
425 const BIGNUM *p, int m, int r, BN_CTX *ctx)
426{
427 BIGNUM *t;
428 int ret = 0;
429
430 BN_CTX_start(ctx);
431
432 if ((t = BN_CTX_get(ctx)) == NULL)
433 goto err;
434
435 /* t = y^[2^(r-m-1)] (mod p). */
436 if (!BN_set_bit(t, r - m - 1))
437 goto err;
438 if (!BN_mod_exp_ct(t, y, t, p, ctx))
439 goto err;
440
441 /* x = xt (mod p). */
442 if (!BN_mod_mul(x, x, t, p, ctx))
443 goto err;
444
445 /* y = t^2 = y^[2^(r-m)] (mod p). */
446 if (!BN_mod_sqr(y, t, p, ctx))
447 goto err;
448
449 /* b = by (mod p). */
450 if (!BN_mod_mul(b, b, y, p, ctx))
451 goto err;
452
453 ret = 1;
454
455 err:
456 BN_CTX_end(ctx);
457
458 return ret;
459}
460
461static int
462bn_mod_sqrt_p_is_1_mod_8(BIGNUM *out_sqrt, const BIGNUM *a, const BIGNUM *p,
463 BN_CTX *ctx)
464{
465 BIGNUM *b, *q, *x, *y;
466 int e, m, r;
467 int ret = 0;
468
469 BN_CTX_start(ctx);
470
471 if ((b = BN_CTX_get(ctx)) == NULL)
472 goto err;
473 if ((q = BN_CTX_get(ctx)) == NULL)
474 goto err;
475 if ((x = BN_CTX_get(ctx)) == NULL)
476 goto err;
477 if ((y = BN_CTX_get(ctx)) == NULL)
478 goto err;
479
480 /*
481 * Factor p - 1 = 2^e q with odd q. Since p = 1 (mod 8), we know e >= 3.
482 */
483
484 e = 1;
485 while (!BN_is_bit_set(p, e))
486 e++;
487 if (!BN_rshift(q, p, e))
488 goto err;
489
490 if (!bn_mod_sqrt_find_sylow_generator(y, p, q, ctx))
491 goto err;
492
493 /*
494 * Set b = a^q (mod p) and x = a^[(q+1)/2] (mod p).
495 */
496 if (!bn_mod_sqrt_tonelli_shanks_initialize(b, x, a, p, q, ctx))
497 goto err;
498
499 /*
500 * The Tonelli-Shanks iteration. Starting with r = e, the following loop
501 * invariants hold at the start of the loop.
502 *
503 * a b = x^2 (mod p)
504 * y^[2^(r-1)] = -1 (mod p)
505 * b^[2^(r-1)] = 1 (mod p)
506 *
507 * In particular, if b = 1 (mod p), x is a square root of a.
508 *
509 * Since p - 1 = 2^e q, we have 2^(e-1) q = (p - 1) / 2, so in the first
510 * iteration this follows from (a/p) = 1, (n/p) = -1, y = n^q, b = a^q.
511 *
512 * In subsequent iterations, t = y^[2^(r-m-1)], where m is the smallest
513 * m such that b^(2^m) = 1. With x = xt (mod p) and b = bt^2 (mod p) the
514 * first invariant is preserved, the second and third follow from
515 * y = t^2 (mod p) and r = m as well as the choice of m.
516 *
517 * Finally, r is strictly decreasing in each iteration. If p is prime,
518 * let S be the 2-Sylow subgroup of GF(p)*. We can prove the algorithm
519 * stops: Let S_r be the subgroup of S consisting of elements of order
520 * dividing 2^r. Then S_r = <y> and b is in S_(r-1). The S_r form a
521 * descending filtration of S and when r = 1, then b = 1.
522 */
523
524 for (r = e; r >= 1; r = m) {
525 /*
526 * Termination condition. If b == 1 then x is a square root.
527 */
528 if (BN_is_one(b))
529 goto done;
530
531 /* Find smallest exponent 1 <= m < r such that b^(2^m) == 1. */
532 if (!bn_mod_sqrt_tonelli_shanks_find_exponent(&m, b, p, r, ctx))
533 goto err;
534
535 /*
536 * With t = y^[2^(r-m-1)], update x = xt, y = t^2, b = by.
537 */
538 if (!bn_mod_sqrt_tonelli_shanks_update(b, x, y, p, m, r, ctx))
539 goto err;
540
541 /*
542 * Sanity check to make sure we don't loop indefinitely.
543 * bn_mod_sqrt_tonelli_shanks_find_exponent() ensures m < r.
544 */
545 if (r <= m)
546 goto err;
547 }
548
549 /*
550 * If p is prime, we should not get here.
551 */
552
553 BNerror(BN_R_NOT_A_SQUARE);
554 goto err;
555
556 done:
557 if (!bn_copy(out_sqrt, x))
558 goto err;
559
560 ret = 1;
561
562 err:
563 BN_CTX_end(ctx);
564
565 return ret;
566}
567
568/*
569 * Choose the smaller of sqrt and |p| - sqrt.
570 */
571
572static int
573bn_mod_sqrt_normalize(BIGNUM *sqrt, const BIGNUM *p, BN_CTX *ctx)
574{
575 BIGNUM *x;
576 int ret = 0;
577
578 BN_CTX_start(ctx);
579
580 if ((x = BN_CTX_get(ctx)) == NULL)
581 goto err;
582
583 if (!BN_lshift1(x, sqrt))
584 goto err;
585
586 if (BN_ucmp(x, p) > 0) {
587 if (!BN_usub(sqrt, p, sqrt))
588 goto err;
589 }
590
591 ret = 1;
592
593 err:
594 BN_CTX_end(ctx);
595
596 return ret;
597}
598
599/*
600 * Verify that a = (sqrt_a)^2 (mod p). Requires that a is reduced (mod p).
601 */
602
603static int
604bn_mod_sqrt_verify(const BIGNUM *a, const BIGNUM *sqrt_a, const BIGNUM *p,
605 BN_CTX *ctx)
606{
607 BIGNUM *x;
608 int ret = 0;
609
610 BN_CTX_start(ctx);
611
612 if ((x = BN_CTX_get(ctx)) == NULL)
613 goto err;
614
615 if (!BN_mod_sqr(x, sqrt_a, p, ctx))
616 goto err;
617
618 if (BN_cmp(x, a) != 0) {
619 BNerror(BN_R_NOT_A_SQUARE);
620 goto err;
621 }
622
623 ret = 1;
624
625 err:
626 BN_CTX_end(ctx);
627
628 return ret;
629}
630
631static int
632bn_mod_sqrt_internal(BIGNUM *out_sqrt, const BIGNUM *a, const BIGNUM *p,
633 BN_CTX *ctx)
634{
635 BIGNUM *a_mod_p, *sqrt;
636 BN_ULONG lsw;
637 int done;
638 int kronecker;
639 int ret = 0;
640
641 BN_CTX_start(ctx);
642
643 if ((a_mod_p = BN_CTX_get(ctx)) == NULL)
644 goto err;
645 if ((sqrt = BN_CTX_get(ctx)) == NULL)
646 goto err;
647
648 if (!BN_nnmod(a_mod_p, a, p, ctx))
649 goto err;
650
651 if (!bn_mod_sqrt_trivial_cases(&done, sqrt, a_mod_p, p, ctx))
652 goto err;
653 if (done)
654 goto verify;
655
656 /*
657 * Make sure that the Kronecker symbol (a/p) == 1. In case p is prime
658 * this is equivalent to a having a square root (mod p). The cost of
659 * BN_kronecker() is O(log^2(n)). This is small compared to the cost
660 * O(log^4(n)) of Tonelli-Shanks.
661 */
662
663 if ((kronecker = BN_kronecker(a_mod_p, p, ctx)) == -2)
664 goto err;
665 if (kronecker <= 0) {
666 /* This error is only accurate if p is known to be a prime. */
667 BNerror(BN_R_NOT_A_SQUARE);
668 goto err;
669 }
670
671 lsw = BN_lsw(p);
672
673 if (lsw % 4 == 3) {
674 if (!bn_mod_sqrt_p_is_3_mod_4(sqrt, a_mod_p, p, ctx))
675 goto err;
676 } else if (lsw % 8 == 5) {
677 if (!bn_mod_sqrt_p_is_5_mod_8(sqrt, a_mod_p, p, ctx))
678 goto err;
679 } else if (lsw % 8 == 1) {
680 if (!bn_mod_sqrt_p_is_1_mod_8(sqrt, a_mod_p, p, ctx))
681 goto err;
682 } else {
683 /* Impossible to hit since the trivial cases ensure p is odd. */
684 BNerror(BN_R_P_IS_NOT_PRIME);
685 goto err;
686 }
687
688 if (!bn_mod_sqrt_normalize(sqrt, p, ctx))
689 goto err;
690
691 verify:
692 if (!bn_mod_sqrt_verify(a_mod_p, sqrt, p, ctx))
693 goto err;
694
695 if (!bn_copy(out_sqrt, sqrt))
696 goto err;
697
698 ret = 1;
699
700 err:
701 BN_CTX_end(ctx);
702
703 return ret;
704}
705
706BIGNUM *
707BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
708{
709 BIGNUM *out_sqrt;
710
711 if ((out_sqrt = in) == NULL)
712 out_sqrt = BN_new();
713 if (out_sqrt == NULL)
714 goto err;
715
716 if (!bn_mod_sqrt_internal(out_sqrt, a, p, ctx))
717 goto err;
718
719 return out_sqrt;
720
721 err:
722 if (out_sqrt != in)
723 BN_free(out_sqrt);
724
725 return NULL;
726}