diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 1163 |
1 files changed, 0 insertions, 1163 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index b03458d002..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null | |||
@@ -1,1163 +0,0 @@ | |||
1 | /* crypto/bn/bn_mul.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <stdio.h> | ||
65 | #include <assert.h> | ||
66 | #include "cryptlib.h" | ||
67 | #include "bn_lcl.h" | ||
68 | |||
69 | #if defined(OPENSSL_NO_ASM) || !(defined(__i386) || defined(__i386__)) || defined(__DJGPP__) /* Assembler implementation exists only for x86 */ | ||
70 | /* Here follows specialised variants of bn_add_words() and | ||
71 | bn_sub_words(). They have the property performing operations on | ||
72 | arrays of different sizes. The sizes of those arrays is expressed through | ||
73 | cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, | ||
74 | which is the delta between the two lengths, calculated as len(a)-len(b). | ||
75 | All lengths are the number of BN_ULONGs... For the operations that require | ||
76 | a result array as parameter, it must have the length cl+abs(dl). | ||
77 | These functions should probably end up in bn_asm.c as soon as there are | ||
78 | assembler counterparts for the systems that use assembler files. */ | ||
79 | |||
80 | BN_ULONG bn_sub_part_words(BN_ULONG *r, | ||
81 | const BN_ULONG *a, const BN_ULONG *b, | ||
82 | int cl, int dl) | ||
83 | { | ||
84 | BN_ULONG c, t; | ||
85 | |||
86 | assert(cl >= 0); | ||
87 | c = bn_sub_words(r, a, b, cl); | ||
88 | |||
89 | if (dl == 0) | ||
90 | return c; | ||
91 | |||
92 | r += cl; | ||
93 | a += cl; | ||
94 | b += cl; | ||
95 | |||
96 | if (dl < 0) | ||
97 | { | ||
98 | #ifdef BN_COUNT | ||
99 | fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
100 | #endif | ||
101 | for (;;) | ||
102 | { | ||
103 | t = b[0]; | ||
104 | r[0] = (0-t-c)&BN_MASK2; | ||
105 | if (t != 0) c=1; | ||
106 | if (++dl >= 0) break; | ||
107 | |||
108 | t = b[1]; | ||
109 | r[1] = (0-t-c)&BN_MASK2; | ||
110 | if (t != 0) c=1; | ||
111 | if (++dl >= 0) break; | ||
112 | |||
113 | t = b[2]; | ||
114 | r[2] = (0-t-c)&BN_MASK2; | ||
115 | if (t != 0) c=1; | ||
116 | if (++dl >= 0) break; | ||
117 | |||
118 | t = b[3]; | ||
119 | r[3] = (0-t-c)&BN_MASK2; | ||
120 | if (t != 0) c=1; | ||
121 | if (++dl >= 0) break; | ||
122 | |||
123 | b += 4; | ||
124 | r += 4; | ||
125 | } | ||
126 | } | ||
127 | else | ||
128 | { | ||
129 | int save_dl = dl; | ||
130 | #ifdef BN_COUNT | ||
131 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c); | ||
132 | #endif | ||
133 | while(c) | ||
134 | { | ||
135 | t = a[0]; | ||
136 | r[0] = (t-c)&BN_MASK2; | ||
137 | if (t != 0) c=0; | ||
138 | if (--dl <= 0) break; | ||
139 | |||
140 | t = a[1]; | ||
141 | r[1] = (t-c)&BN_MASK2; | ||
142 | if (t != 0) c=0; | ||
143 | if (--dl <= 0) break; | ||
144 | |||
145 | t = a[2]; | ||
146 | r[2] = (t-c)&BN_MASK2; | ||
147 | if (t != 0) c=0; | ||
148 | if (--dl <= 0) break; | ||
149 | |||
150 | t = a[3]; | ||
151 | r[3] = (t-c)&BN_MASK2; | ||
152 | if (t != 0) c=0; | ||
153 | if (--dl <= 0) break; | ||
154 | |||
155 | save_dl = dl; | ||
156 | a += 4; | ||
157 | r += 4; | ||
158 | } | ||
159 | if (dl > 0) | ||
160 | { | ||
161 | #ifdef BN_COUNT | ||
162 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
163 | #endif | ||
164 | if (save_dl > dl) | ||
165 | { | ||
166 | switch (save_dl - dl) | ||
167 | { | ||
168 | case 1: | ||
169 | r[1] = a[1]; | ||
170 | if (--dl <= 0) break; | ||
171 | case 2: | ||
172 | r[2] = a[2]; | ||
173 | if (--dl <= 0) break; | ||
174 | case 3: | ||
175 | r[3] = a[3]; | ||
176 | if (--dl <= 0) break; | ||
177 | } | ||
178 | a += 4; | ||
179 | r += 4; | ||
180 | } | ||
181 | } | ||
182 | if (dl > 0) | ||
183 | { | ||
184 | #ifdef BN_COUNT | ||
185 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
186 | #endif | ||
187 | for(;;) | ||
188 | { | ||
189 | r[0] = a[0]; | ||
190 | if (--dl <= 0) break; | ||
191 | r[1] = a[1]; | ||
192 | if (--dl <= 0) break; | ||
193 | r[2] = a[2]; | ||
194 | if (--dl <= 0) break; | ||
195 | r[3] = a[3]; | ||
196 | if (--dl <= 0) break; | ||
197 | |||
198 | a += 4; | ||
199 | r += 4; | ||
200 | } | ||
201 | } | ||
202 | } | ||
203 | return c; | ||
204 | } | ||
205 | #endif | ||
206 | |||
207 | BN_ULONG bn_add_part_words(BN_ULONG *r, | ||
208 | const BN_ULONG *a, const BN_ULONG *b, | ||
209 | int cl, int dl) | ||
210 | { | ||
211 | BN_ULONG c, l, t; | ||
212 | |||
213 | assert(cl >= 0); | ||
214 | c = bn_add_words(r, a, b, cl); | ||
215 | |||
216 | if (dl == 0) | ||
217 | return c; | ||
218 | |||
219 | r += cl; | ||
220 | a += cl; | ||
221 | b += cl; | ||
222 | |||
223 | if (dl < 0) | ||
224 | { | ||
225 | int save_dl = dl; | ||
226 | #ifdef BN_COUNT | ||
227 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
228 | #endif | ||
229 | while (c) | ||
230 | { | ||
231 | l=(c+b[0])&BN_MASK2; | ||
232 | c=(l < c); | ||
233 | r[0]=l; | ||
234 | if (++dl >= 0) break; | ||
235 | |||
236 | l=(c+b[1])&BN_MASK2; | ||
237 | c=(l < c); | ||
238 | r[1]=l; | ||
239 | if (++dl >= 0) break; | ||
240 | |||
241 | l=(c+b[2])&BN_MASK2; | ||
242 | c=(l < c); | ||
243 | r[2]=l; | ||
244 | if (++dl >= 0) break; | ||
245 | |||
246 | l=(c+b[3])&BN_MASK2; | ||
247 | c=(l < c); | ||
248 | r[3]=l; | ||
249 | if (++dl >= 0) break; | ||
250 | |||
251 | save_dl = dl; | ||
252 | b+=4; | ||
253 | r+=4; | ||
254 | } | ||
255 | if (dl < 0) | ||
256 | { | ||
257 | #ifdef BN_COUNT | ||
258 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl); | ||
259 | #endif | ||
260 | if (save_dl < dl) | ||
261 | { | ||
262 | switch (dl - save_dl) | ||
263 | { | ||
264 | case 1: | ||
265 | r[1] = b[1]; | ||
266 | if (++dl >= 0) break; | ||
267 | case 2: | ||
268 | r[2] = b[2]; | ||
269 | if (++dl >= 0) break; | ||
270 | case 3: | ||
271 | r[3] = b[3]; | ||
272 | if (++dl >= 0) break; | ||
273 | } | ||
274 | b += 4; | ||
275 | r += 4; | ||
276 | } | ||
277 | } | ||
278 | if (dl < 0) | ||
279 | { | ||
280 | #ifdef BN_COUNT | ||
281 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl); | ||
282 | #endif | ||
283 | for(;;) | ||
284 | { | ||
285 | r[0] = b[0]; | ||
286 | if (++dl >= 0) break; | ||
287 | r[1] = b[1]; | ||
288 | if (++dl >= 0) break; | ||
289 | r[2] = b[2]; | ||
290 | if (++dl >= 0) break; | ||
291 | r[3] = b[3]; | ||
292 | if (++dl >= 0) break; | ||
293 | |||
294 | b += 4; | ||
295 | r += 4; | ||
296 | } | ||
297 | } | ||
298 | } | ||
299 | else | ||
300 | { | ||
301 | int save_dl = dl; | ||
302 | #ifdef BN_COUNT | ||
303 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); | ||
304 | #endif | ||
305 | while (c) | ||
306 | { | ||
307 | t=(a[0]+c)&BN_MASK2; | ||
308 | c=(t < c); | ||
309 | r[0]=t; | ||
310 | if (--dl <= 0) break; | ||
311 | |||
312 | t=(a[1]+c)&BN_MASK2; | ||
313 | c=(t < c); | ||
314 | r[1]=t; | ||
315 | if (--dl <= 0) break; | ||
316 | |||
317 | t=(a[2]+c)&BN_MASK2; | ||
318 | c=(t < c); | ||
319 | r[2]=t; | ||
320 | if (--dl <= 0) break; | ||
321 | |||
322 | t=(a[3]+c)&BN_MASK2; | ||
323 | c=(t < c); | ||
324 | r[3]=t; | ||
325 | if (--dl <= 0) break; | ||
326 | |||
327 | save_dl = dl; | ||
328 | a+=4; | ||
329 | r+=4; | ||
330 | } | ||
331 | #ifdef BN_COUNT | ||
332 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
333 | #endif | ||
334 | if (dl > 0) | ||
335 | { | ||
336 | if (save_dl > dl) | ||
337 | { | ||
338 | switch (save_dl - dl) | ||
339 | { | ||
340 | case 1: | ||
341 | r[1] = a[1]; | ||
342 | if (--dl <= 0) break; | ||
343 | case 2: | ||
344 | r[2] = a[2]; | ||
345 | if (--dl <= 0) break; | ||
346 | case 3: | ||
347 | r[3] = a[3]; | ||
348 | if (--dl <= 0) break; | ||
349 | } | ||
350 | a += 4; | ||
351 | r += 4; | ||
352 | } | ||
353 | } | ||
354 | if (dl > 0) | ||
355 | { | ||
356 | #ifdef BN_COUNT | ||
357 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
358 | #endif | ||
359 | for(;;) | ||
360 | { | ||
361 | r[0] = a[0]; | ||
362 | if (--dl <= 0) break; | ||
363 | r[1] = a[1]; | ||
364 | if (--dl <= 0) break; | ||
365 | r[2] = a[2]; | ||
366 | if (--dl <= 0) break; | ||
367 | r[3] = a[3]; | ||
368 | if (--dl <= 0) break; | ||
369 | |||
370 | a += 4; | ||
371 | r += 4; | ||
372 | } | ||
373 | } | ||
374 | } | ||
375 | return c; | ||
376 | } | ||
377 | |||
378 | #ifdef BN_RECURSION | ||
379 | /* Karatsuba recursive multiplication algorithm | ||
380 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
381 | |||
382 | /* r is 2*n2 words in size, | ||
383 | * a and b are both n2 words in size. | ||
384 | * n2 must be a power of 2. | ||
385 | * We multiply and return the result. | ||
386 | * t must be 2*n2 words in size | ||
387 | * We calculate | ||
388 | * a[0]*b[0] | ||
389 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
390 | * a[1]*b[1] | ||
391 | */ | ||
392 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
393 | int dna, int dnb, BN_ULONG *t) | ||
394 | { | ||
395 | int n=n2/2,c1,c2; | ||
396 | int tna=n+dna, tnb=n+dnb; | ||
397 | unsigned int neg,zero; | ||
398 | BN_ULONG ln,lo,*p; | ||
399 | |||
400 | # ifdef BN_COUNT | ||
401 | fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2); | ||
402 | # endif | ||
403 | # ifdef BN_MUL_COMBA | ||
404 | # if 0 | ||
405 | if (n2 == 4) | ||
406 | { | ||
407 | bn_mul_comba4(r,a,b); | ||
408 | return; | ||
409 | } | ||
410 | # endif | ||
411 | /* Only call bn_mul_comba 8 if n2 == 8 and the | ||
412 | * two arrays are complete [steve] | ||
413 | */ | ||
414 | if (n2 == 8 && dna == 0 && dnb == 0) | ||
415 | { | ||
416 | bn_mul_comba8(r,a,b); | ||
417 | return; | ||
418 | } | ||
419 | # endif /* BN_MUL_COMBA */ | ||
420 | /* Else do normal multiply */ | ||
421 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
422 | { | ||
423 | bn_mul_normal(r,a,n2+dna,b,n2+dnb); | ||
424 | if ((dna + dnb) < 0) | ||
425 | memset(&r[2*n2 + dna + dnb], 0, | ||
426 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
427 | return; | ||
428 | } | ||
429 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
430 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); | ||
431 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); | ||
432 | zero=neg=0; | ||
433 | switch (c1*3+c2) | ||
434 | { | ||
435 | case -4: | ||
436 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
437 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
438 | break; | ||
439 | case -3: | ||
440 | zero=1; | ||
441 | break; | ||
442 | case -2: | ||
443 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
444 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ | ||
445 | neg=1; | ||
446 | break; | ||
447 | case -1: | ||
448 | case 0: | ||
449 | case 1: | ||
450 | zero=1; | ||
451 | break; | ||
452 | case 2: | ||
453 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ | ||
454 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
455 | neg=1; | ||
456 | break; | ||
457 | case 3: | ||
458 | zero=1; | ||
459 | break; | ||
460 | case 4: | ||
461 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); | ||
462 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); | ||
463 | break; | ||
464 | } | ||
465 | |||
466 | # ifdef BN_MUL_COMBA | ||
467 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take | ||
468 | extra args to do this well */ | ||
469 | { | ||
470 | if (!zero) | ||
471 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
472 | else | ||
473 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); | ||
474 | |||
475 | bn_mul_comba4(r,a,b); | ||
476 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | ||
477 | } | ||
478 | else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could | ||
479 | take extra args to do this | ||
480 | well */ | ||
481 | { | ||
482 | if (!zero) | ||
483 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
484 | else | ||
485 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | ||
486 | |||
487 | bn_mul_comba8(r,a,b); | ||
488 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | ||
489 | } | ||
490 | else | ||
491 | # endif /* BN_MUL_COMBA */ | ||
492 | { | ||
493 | p= &(t[n2*2]); | ||
494 | if (!zero) | ||
495 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); | ||
496 | else | ||
497 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
498 | bn_mul_recursive(r,a,b,n,0,0,p); | ||
499 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); | ||
500 | } | ||
501 | |||
502 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
503 | * r[10] holds (a[0]*b[0]) | ||
504 | * r[32] holds (b[1]*b[1]) | ||
505 | */ | ||
506 | |||
507 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
508 | |||
509 | if (neg) /* if t[32] is negative */ | ||
510 | { | ||
511 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
512 | } | ||
513 | else | ||
514 | { | ||
515 | /* Might have a carry */ | ||
516 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
517 | } | ||
518 | |||
519 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
520 | * r[10] holds (a[0]*b[0]) | ||
521 | * r[32] holds (b[1]*b[1]) | ||
522 | * c1 holds the carry bits | ||
523 | */ | ||
524 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
525 | if (c1) | ||
526 | { | ||
527 | p= &(r[n+n2]); | ||
528 | lo= *p; | ||
529 | ln=(lo+c1)&BN_MASK2; | ||
530 | *p=ln; | ||
531 | |||
532 | /* The overflow will stop before we over write | ||
533 | * words we should not overwrite */ | ||
534 | if (ln < (BN_ULONG)c1) | ||
535 | { | ||
536 | do { | ||
537 | p++; | ||
538 | lo= *p; | ||
539 | ln=(lo+1)&BN_MASK2; | ||
540 | *p=ln; | ||
541 | } while (ln == 0); | ||
542 | } | ||
543 | } | ||
544 | } | ||
545 | |||
546 | /* n+tn is the word length | ||
547 | * t needs to be n*4 is size, as does r */ | ||
548 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, | ||
549 | int tna, int tnb, BN_ULONG *t) | ||
550 | { | ||
551 | int i,j,n2=n*2; | ||
552 | unsigned int c1,c2,neg,zero; | ||
553 | BN_ULONG ln,lo,*p; | ||
554 | |||
555 | # ifdef BN_COUNT | ||
556 | fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n", | ||
557 | tna, n, tnb, n); | ||
558 | # endif | ||
559 | if (n < 8) | ||
560 | { | ||
561 | bn_mul_normal(r,a,n+tna,b,n+tnb); | ||
562 | return; | ||
563 | } | ||
564 | |||
565 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
566 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); | ||
567 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); | ||
568 | zero=neg=0; | ||
569 | switch (c1*3+c2) | ||
570 | { | ||
571 | case -4: | ||
572 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
573 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
574 | break; | ||
575 | case -3: | ||
576 | zero=1; | ||
577 | /* break; */ | ||
578 | case -2: | ||
579 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
580 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ | ||
581 | neg=1; | ||
582 | break; | ||
583 | case -1: | ||
584 | case 0: | ||
585 | case 1: | ||
586 | zero=1; | ||
587 | /* break; */ | ||
588 | case 2: | ||
589 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ | ||
590 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
591 | neg=1; | ||
592 | break; | ||
593 | case 3: | ||
594 | zero=1; | ||
595 | /* break; */ | ||
596 | case 4: | ||
597 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); | ||
598 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); | ||
599 | break; | ||
600 | } | ||
601 | /* The zero case isn't yet implemented here. The speedup | ||
602 | would probably be negligible. */ | ||
603 | # if 0 | ||
604 | if (n == 4) | ||
605 | { | ||
606 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
607 | bn_mul_comba4(r,a,b); | ||
608 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
609 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
610 | } | ||
611 | else | ||
612 | # endif | ||
613 | if (n == 8) | ||
614 | { | ||
615 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
616 | bn_mul_comba8(r,a,b); | ||
617 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); | ||
618 | memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb)); | ||
619 | } | ||
620 | else | ||
621 | { | ||
622 | p= &(t[n2*2]); | ||
623 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); | ||
624 | bn_mul_recursive(r,a,b,n,0,0,p); | ||
625 | i=n/2; | ||
626 | /* If there is only a bottom half to the number, | ||
627 | * just do it */ | ||
628 | if (tna > tnb) | ||
629 | j = tna - i; | ||
630 | else | ||
631 | j = tnb - i; | ||
632 | if (j == 0) | ||
633 | { | ||
634 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
635 | i,tna-i,tnb-i,p); | ||
636 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | ||
637 | } | ||
638 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
639 | { | ||
640 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
641 | i,tna-i,tnb-i,p); | ||
642 | memset(&(r[n2+tna+tnb]),0, | ||
643 | sizeof(BN_ULONG)*(n2-tna-tnb)); | ||
644 | } | ||
645 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
646 | { | ||
647 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | ||
648 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL | ||
649 | && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
650 | { | ||
651 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); | ||
652 | } | ||
653 | else | ||
654 | { | ||
655 | for (;;) | ||
656 | { | ||
657 | i/=2; | ||
658 | if (i < tna && i < tnb) | ||
659 | { | ||
660 | bn_mul_part_recursive(&(r[n2]), | ||
661 | &(a[n]),&(b[n]), | ||
662 | i,tna-i,tnb-i,p); | ||
663 | break; | ||
664 | } | ||
665 | else if (i <= tna && i <= tnb) | ||
666 | { | ||
667 | bn_mul_recursive(&(r[n2]), | ||
668 | &(a[n]),&(b[n]), | ||
669 | i,tna-i,tnb-i,p); | ||
670 | break; | ||
671 | } | ||
672 | } | ||
673 | } | ||
674 | } | ||
675 | } | ||
676 | |||
677 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
678 | * r[10] holds (a[0]*b[0]) | ||
679 | * r[32] holds (b[1]*b[1]) | ||
680 | */ | ||
681 | |||
682 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
683 | |||
684 | if (neg) /* if t[32] is negative */ | ||
685 | { | ||
686 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
687 | } | ||
688 | else | ||
689 | { | ||
690 | /* Might have a carry */ | ||
691 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
692 | } | ||
693 | |||
694 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
695 | * r[10] holds (a[0]*b[0]) | ||
696 | * r[32] holds (b[1]*b[1]) | ||
697 | * c1 holds the carry bits | ||
698 | */ | ||
699 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
700 | if (c1) | ||
701 | { | ||
702 | p= &(r[n+n2]); | ||
703 | lo= *p; | ||
704 | ln=(lo+c1)&BN_MASK2; | ||
705 | *p=ln; | ||
706 | |||
707 | /* The overflow will stop before we over write | ||
708 | * words we should not overwrite */ | ||
709 | if (ln < c1) | ||
710 | { | ||
711 | do { | ||
712 | p++; | ||
713 | lo= *p; | ||
714 | ln=(lo+1)&BN_MASK2; | ||
715 | *p=ln; | ||
716 | } while (ln == 0); | ||
717 | } | ||
718 | } | ||
719 | } | ||
720 | |||
721 | /* a and b must be the same size, which is n2. | ||
722 | * r needs to be n2 words and t needs to be n2*2 | ||
723 | */ | ||
724 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
725 | BN_ULONG *t) | ||
726 | { | ||
727 | int n=n2/2; | ||
728 | |||
729 | # ifdef BN_COUNT | ||
730 | fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2); | ||
731 | # endif | ||
732 | |||
733 | bn_mul_recursive(r,a,b,n,0,0,&(t[0])); | ||
734 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | ||
735 | { | ||
736 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | ||
737 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
738 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | ||
739 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
740 | } | ||
741 | else | ||
742 | { | ||
743 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | ||
744 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | ||
745 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
746 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | ||
747 | } | ||
748 | } | ||
749 | |||
750 | /* a and b must be the same size, which is n2. | ||
751 | * r needs to be n2 words and t needs to be n2*2 | ||
752 | * l is the low words of the output. | ||
753 | * t needs to be n2*3 | ||
754 | */ | ||
755 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
756 | BN_ULONG *t) | ||
757 | { | ||
758 | int i,n; | ||
759 | int c1,c2; | ||
760 | int neg,oneg,zero; | ||
761 | BN_ULONG ll,lc,*lp,*mp; | ||
762 | |||
763 | # ifdef BN_COUNT | ||
764 | fprintf(stderr," bn_mul_high %d * %d\n",n2,n2); | ||
765 | # endif | ||
766 | n=n2/2; | ||
767 | |||
768 | /* Calculate (al-ah)*(bh-bl) */ | ||
769 | neg=zero=0; | ||
770 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | ||
771 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | ||
772 | switch (c1*3+c2) | ||
773 | { | ||
774 | case -4: | ||
775 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
776 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
777 | break; | ||
778 | case -3: | ||
779 | zero=1; | ||
780 | break; | ||
781 | case -2: | ||
782 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
783 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
784 | neg=1; | ||
785 | break; | ||
786 | case -1: | ||
787 | case 0: | ||
788 | case 1: | ||
789 | zero=1; | ||
790 | break; | ||
791 | case 2: | ||
792 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
793 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
794 | neg=1; | ||
795 | break; | ||
796 | case 3: | ||
797 | zero=1; | ||
798 | break; | ||
799 | case 4: | ||
800 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
801 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
802 | break; | ||
803 | } | ||
804 | |||
805 | oneg=neg; | ||
806 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
807 | /* r[10] = (a[1]*b[1]) */ | ||
808 | # ifdef BN_MUL_COMBA | ||
809 | if (n == 8) | ||
810 | { | ||
811 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | ||
812 | bn_mul_comba8(r,&(a[n]),&(b[n])); | ||
813 | } | ||
814 | else | ||
815 | # endif | ||
816 | { | ||
817 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2])); | ||
818 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2])); | ||
819 | } | ||
820 | |||
821 | /* s0 == low(al*bl) | ||
822 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
823 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
824 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
825 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
826 | */ | ||
827 | if (l != NULL) | ||
828 | { | ||
829 | lp= &(t[n2+n]); | ||
830 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | ||
831 | } | ||
832 | else | ||
833 | { | ||
834 | c1=0; | ||
835 | lp= &(r[0]); | ||
836 | } | ||
837 | |||
838 | if (neg) | ||
839 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | ||
840 | else | ||
841 | { | ||
842 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | ||
843 | neg=0; | ||
844 | } | ||
845 | |||
846 | if (l != NULL) | ||
847 | { | ||
848 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | ||
849 | } | ||
850 | else | ||
851 | { | ||
852 | lp= &(t[n2+n]); | ||
853 | mp= &(t[n2]); | ||
854 | for (i=0; i<n; i++) | ||
855 | lp[i]=((~mp[i])+1)&BN_MASK2; | ||
856 | } | ||
857 | |||
858 | /* s[0] = low(al*bl) | ||
859 | * t[3] = high(al*bl) | ||
860 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
861 | * r[10] = (a[1]*b[1]) | ||
862 | */ | ||
863 | /* R[10] = al*bl | ||
864 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
865 | * R[32] = ah*bh | ||
866 | */ | ||
867 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
868 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
869 | * R[3]=r[1]+(carry/borrow) | ||
870 | */ | ||
871 | if (l != NULL) | ||
872 | { | ||
873 | lp= &(t[n2]); | ||
874 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | ||
875 | } | ||
876 | else | ||
877 | { | ||
878 | lp= &(t[n2+n]); | ||
879 | c1=0; | ||
880 | } | ||
881 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | ||
882 | if (oneg) | ||
883 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
884 | else | ||
885 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
886 | |||
887 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); | ||
888 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | ||
889 | if (oneg) | ||
890 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
891 | else | ||
892 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
893 | |||
894 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
895 | { | ||
896 | i=0; | ||
897 | if (c1 > 0) | ||
898 | { | ||
899 | lc=c1; | ||
900 | do { | ||
901 | ll=(r[i]+lc)&BN_MASK2; | ||
902 | r[i++]=ll; | ||
903 | lc=(lc > ll); | ||
904 | } while (lc); | ||
905 | } | ||
906 | else | ||
907 | { | ||
908 | lc= -c1; | ||
909 | do { | ||
910 | ll=r[i]; | ||
911 | r[i++]=(ll-lc)&BN_MASK2; | ||
912 | lc=(lc > ll); | ||
913 | } while (lc); | ||
914 | } | ||
915 | } | ||
916 | if (c2 != 0) /* Add starting at r[1] */ | ||
917 | { | ||
918 | i=n; | ||
919 | if (c2 > 0) | ||
920 | { | ||
921 | lc=c2; | ||
922 | do { | ||
923 | ll=(r[i]+lc)&BN_MASK2; | ||
924 | r[i++]=ll; | ||
925 | lc=(lc > ll); | ||
926 | } while (lc); | ||
927 | } | ||
928 | else | ||
929 | { | ||
930 | lc= -c2; | ||
931 | do { | ||
932 | ll=r[i]; | ||
933 | r[i++]=(ll-lc)&BN_MASK2; | ||
934 | lc=(lc > ll); | ||
935 | } while (lc); | ||
936 | } | ||
937 | } | ||
938 | } | ||
939 | #endif /* BN_RECURSION */ | ||
940 | |||
941 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
942 | { | ||
943 | int ret=0; | ||
944 | int top,al,bl; | ||
945 | BIGNUM *rr; | ||
946 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
947 | int i; | ||
948 | #endif | ||
949 | #ifdef BN_RECURSION | ||
950 | BIGNUM *t=NULL; | ||
951 | int j=0,k; | ||
952 | #endif | ||
953 | |||
954 | #ifdef BN_COUNT | ||
955 | fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top); | ||
956 | #endif | ||
957 | |||
958 | bn_check_top(a); | ||
959 | bn_check_top(b); | ||
960 | bn_check_top(r); | ||
961 | |||
962 | al=a->top; | ||
963 | bl=b->top; | ||
964 | |||
965 | if ((al == 0) || (bl == 0)) | ||
966 | { | ||
967 | if (!BN_zero(r)) goto err; | ||
968 | return(1); | ||
969 | } | ||
970 | top=al+bl; | ||
971 | |||
972 | BN_CTX_start(ctx); | ||
973 | if ((r == a) || (r == b)) | ||
974 | { | ||
975 | if ((rr = BN_CTX_get(ctx)) == NULL) goto err; | ||
976 | } | ||
977 | else | ||
978 | rr = r; | ||
979 | rr->neg=a->neg^b->neg; | ||
980 | |||
981 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
982 | i = al-bl; | ||
983 | #endif | ||
984 | #ifdef BN_MUL_COMBA | ||
985 | if (i == 0) | ||
986 | { | ||
987 | # if 0 | ||
988 | if (al == 4) | ||
989 | { | ||
990 | if (bn_wexpand(rr,8) == NULL) goto err; | ||
991 | rr->top=8; | ||
992 | bn_mul_comba4(rr->d,a->d,b->d); | ||
993 | goto end; | ||
994 | } | ||
995 | # endif | ||
996 | if (al == 8) | ||
997 | { | ||
998 | if (bn_wexpand(rr,16) == NULL) goto err; | ||
999 | rr->top=16; | ||
1000 | bn_mul_comba8(rr->d,a->d,b->d); | ||
1001 | goto end; | ||
1002 | } | ||
1003 | } | ||
1004 | #endif /* BN_MUL_COMBA */ | ||
1005 | #ifdef BN_RECURSION | ||
1006 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) | ||
1007 | { | ||
1008 | if (i >= -1 && i <= 1) | ||
1009 | { | ||
1010 | int sav_j =0; | ||
1011 | /* Find out the power of two lower or equal | ||
1012 | to the longest of the two numbers */ | ||
1013 | if (i >= 0) | ||
1014 | { | ||
1015 | j = BN_num_bits_word((BN_ULONG)al); | ||
1016 | } | ||
1017 | if (i == -1) | ||
1018 | { | ||
1019 | j = BN_num_bits_word((BN_ULONG)bl); | ||
1020 | } | ||
1021 | sav_j = j; | ||
1022 | j = 1<<(j-1); | ||
1023 | assert(j <= al || j <= bl); | ||
1024 | k = j+j; | ||
1025 | t = BN_CTX_get(ctx); | ||
1026 | if (al > j || bl > j) | ||
1027 | { | ||
1028 | bn_wexpand(t,k*4); | ||
1029 | bn_wexpand(rr,k*4); | ||
1030 | bn_mul_part_recursive(rr->d,a->d,b->d, | ||
1031 | j,al-j,bl-j,t->d); | ||
1032 | } | ||
1033 | else /* al <= j || bl <= j */ | ||
1034 | { | ||
1035 | bn_wexpand(t,k*2); | ||
1036 | bn_wexpand(rr,k*2); | ||
1037 | bn_mul_recursive(rr->d,a->d,b->d, | ||
1038 | j,al-j,bl-j,t->d); | ||
1039 | } | ||
1040 | rr->top=top; | ||
1041 | goto end; | ||
1042 | } | ||
1043 | #if 0 | ||
1044 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) | ||
1045 | { | ||
1046 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
1047 | if (bn_wexpand(tmp_bn,al) == NULL) goto err; | ||
1048 | tmp_bn->d[bl]=0; | ||
1049 | bl++; | ||
1050 | i--; | ||
1051 | } | ||
1052 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) | ||
1053 | { | ||
1054 | BIGNUM *tmp_bn = (BIGNUM *)a; | ||
1055 | if (bn_wexpand(tmp_bn,bl) == NULL) goto err; | ||
1056 | tmp_bn->d[al]=0; | ||
1057 | al++; | ||
1058 | i++; | ||
1059 | } | ||
1060 | if (i == 0) | ||
1061 | { | ||
1062 | /* symmetric and > 4 */ | ||
1063 | /* 16 or larger */ | ||
1064 | j=BN_num_bits_word((BN_ULONG)al); | ||
1065 | j=1<<(j-1); | ||
1066 | k=j+j; | ||
1067 | t = BN_CTX_get(ctx); | ||
1068 | if (al == j) /* exact multiple */ | ||
1069 | { | ||
1070 | if (bn_wexpand(t,k*2) == NULL) goto err; | ||
1071 | if (bn_wexpand(rr,k*2) == NULL) goto err; | ||
1072 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | ||
1073 | } | ||
1074 | else | ||
1075 | { | ||
1076 | if (bn_wexpand(t,k*4) == NULL) goto err; | ||
1077 | if (bn_wexpand(rr,k*4) == NULL) goto err; | ||
1078 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | ||
1079 | } | ||
1080 | rr->top=top; | ||
1081 | goto end; | ||
1082 | } | ||
1083 | #endif | ||
1084 | } | ||
1085 | #endif /* BN_RECURSION */ | ||
1086 | if (bn_wexpand(rr,top) == NULL) goto err; | ||
1087 | rr->top=top; | ||
1088 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
1089 | |||
1090 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
1091 | end: | ||
1092 | #endif | ||
1093 | bn_fix_top(rr); | ||
1094 | if (r != rr) BN_copy(r,rr); | ||
1095 | ret=1; | ||
1096 | err: | ||
1097 | BN_CTX_end(ctx); | ||
1098 | return(ret); | ||
1099 | } | ||
1100 | |||
1101 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
1102 | { | ||
1103 | BN_ULONG *rr; | ||
1104 | |||
1105 | #ifdef BN_COUNT | ||
1106 | fprintf(stderr," bn_mul_normal %d * %d\n",na,nb); | ||
1107 | #endif | ||
1108 | |||
1109 | if (na < nb) | ||
1110 | { | ||
1111 | int itmp; | ||
1112 | BN_ULONG *ltmp; | ||
1113 | |||
1114 | itmp=na; na=nb; nb=itmp; | ||
1115 | ltmp=a; a=b; b=ltmp; | ||
1116 | |||
1117 | } | ||
1118 | rr= &(r[na]); | ||
1119 | if (nb <= 0) | ||
1120 | { | ||
1121 | (void)bn_mul_words(r,a,na,0); | ||
1122 | return; | ||
1123 | } | ||
1124 | else | ||
1125 | rr[0]=bn_mul_words(r,a,na,b[0]); | ||
1126 | |||
1127 | for (;;) | ||
1128 | { | ||
1129 | if (--nb <= 0) return; | ||
1130 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); | ||
1131 | if (--nb <= 0) return; | ||
1132 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | ||
1133 | if (--nb <= 0) return; | ||
1134 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | ||
1135 | if (--nb <= 0) return; | ||
1136 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | ||
1137 | rr+=4; | ||
1138 | r+=4; | ||
1139 | b+=4; | ||
1140 | } | ||
1141 | } | ||
1142 | |||
1143 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1144 | { | ||
1145 | #ifdef BN_COUNT | ||
1146 | fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n); | ||
1147 | #endif | ||
1148 | bn_mul_words(r,a,n,b[0]); | ||
1149 | |||
1150 | for (;;) | ||
1151 | { | ||
1152 | if (--n <= 0) return; | ||
1153 | bn_mul_add_words(&(r[1]),a,n,b[1]); | ||
1154 | if (--n <= 0) return; | ||
1155 | bn_mul_add_words(&(r[2]),a,n,b[2]); | ||
1156 | if (--n <= 0) return; | ||
1157 | bn_mul_add_words(&(r[3]),a,n,b[3]); | ||
1158 | if (--n <= 0) return; | ||
1159 | bn_mul_add_words(&(r[4]),a,n,b[4]); | ||
1160 | r+=4; | ||
1161 | b+=4; | ||
1162 | } | ||
1163 | } | ||