diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 802 |
1 files changed, 0 insertions, 802 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index 3ae3822bc2..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null | |||
@@ -1,802 +0,0 @@ | |||
1 | /* crypto/bn/bn_mul.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | #ifdef BN_RECURSION | ||
64 | /* Karatsuba recursive multiplication algorithm | ||
65 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
66 | |||
67 | /* r is 2*n2 words in size, | ||
68 | * a and b are both n2 words in size. | ||
69 | * n2 must be a power of 2. | ||
70 | * We multiply and return the result. | ||
71 | * t must be 2*n2 words in size | ||
72 | * We calculate | ||
73 | * a[0]*b[0] | ||
74 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
75 | * a[1]*b[1] | ||
76 | */ | ||
77 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
78 | BN_ULONG *t) | ||
79 | { | ||
80 | int n=n2/2,c1,c2; | ||
81 | unsigned int neg,zero; | ||
82 | BN_ULONG ln,lo,*p; | ||
83 | |||
84 | # ifdef BN_COUNT | ||
85 | printf(" bn_mul_recursive %d * %d\n",n2,n2); | ||
86 | # endif | ||
87 | # ifdef BN_MUL_COMBA | ||
88 | # if 0 | ||
89 | if (n2 == 4) | ||
90 | { | ||
91 | bn_mul_comba4(r,a,b); | ||
92 | return; | ||
93 | } | ||
94 | # endif | ||
95 | if (n2 == 8) | ||
96 | { | ||
97 | bn_mul_comba8(r,a,b); | ||
98 | return; | ||
99 | } | ||
100 | # endif /* BN_MUL_COMBA */ | ||
101 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
102 | { | ||
103 | /* This should not happen */ | ||
104 | bn_mul_normal(r,a,n2,b,n2); | ||
105 | return; | ||
106 | } | ||
107 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
108 | c1=bn_cmp_words(a,&(a[n]),n); | ||
109 | c2=bn_cmp_words(&(b[n]),b,n); | ||
110 | zero=neg=0; | ||
111 | switch (c1*3+c2) | ||
112 | { | ||
113 | case -4: | ||
114 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
115 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
116 | break; | ||
117 | case -3: | ||
118 | zero=1; | ||
119 | break; | ||
120 | case -2: | ||
121 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
122 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | ||
123 | neg=1; | ||
124 | break; | ||
125 | case -1: | ||
126 | case 0: | ||
127 | case 1: | ||
128 | zero=1; | ||
129 | break; | ||
130 | case 2: | ||
131 | bn_sub_words(t, a, &(a[n]),n); /* + */ | ||
132 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
133 | neg=1; | ||
134 | break; | ||
135 | case 3: | ||
136 | zero=1; | ||
137 | break; | ||
138 | case 4: | ||
139 | bn_sub_words(t, a, &(a[n]),n); | ||
140 | bn_sub_words(&(t[n]),&(b[n]),b, n); | ||
141 | break; | ||
142 | } | ||
143 | |||
144 | # ifdef BN_MUL_COMBA | ||
145 | if (n == 4) | ||
146 | { | ||
147 | if (!zero) | ||
148 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
149 | else | ||
150 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); | ||
151 | |||
152 | bn_mul_comba4(r,a,b); | ||
153 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | ||
154 | } | ||
155 | else if (n == 8) | ||
156 | { | ||
157 | if (!zero) | ||
158 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
159 | else | ||
160 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | ||
161 | |||
162 | bn_mul_comba8(r,a,b); | ||
163 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | ||
164 | } | ||
165 | else | ||
166 | # endif /* BN_MUL_COMBA */ | ||
167 | { | ||
168 | p= &(t[n2*2]); | ||
169 | if (!zero) | ||
170 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | ||
171 | else | ||
172 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
173 | bn_mul_recursive(r,a,b,n,p); | ||
174 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); | ||
175 | } | ||
176 | |||
177 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
178 | * r[10] holds (a[0]*b[0]) | ||
179 | * r[32] holds (b[1]*b[1]) | ||
180 | */ | ||
181 | |||
182 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
183 | |||
184 | if (neg) /* if t[32] is negative */ | ||
185 | { | ||
186 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
187 | } | ||
188 | else | ||
189 | { | ||
190 | /* Might have a carry */ | ||
191 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
192 | } | ||
193 | |||
194 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
195 | * r[10] holds (a[0]*b[0]) | ||
196 | * r[32] holds (b[1]*b[1]) | ||
197 | * c1 holds the carry bits | ||
198 | */ | ||
199 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
200 | if (c1) | ||
201 | { | ||
202 | p= &(r[n+n2]); | ||
203 | lo= *p; | ||
204 | ln=(lo+c1)&BN_MASK2; | ||
205 | *p=ln; | ||
206 | |||
207 | /* The overflow will stop before we over write | ||
208 | * words we should not overwrite */ | ||
209 | if (ln < (BN_ULONG)c1) | ||
210 | { | ||
211 | do { | ||
212 | p++; | ||
213 | lo= *p; | ||
214 | ln=(lo+1)&BN_MASK2; | ||
215 | *p=ln; | ||
216 | } while (ln == 0); | ||
217 | } | ||
218 | } | ||
219 | } | ||
220 | |||
221 | /* n+tn is the word length | ||
222 | * t needs to be n*4 is size, as does r */ | ||
223 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, | ||
224 | int n, BN_ULONG *t) | ||
225 | { | ||
226 | int i,j,n2=n*2; | ||
227 | int c1,c2,neg,zero; | ||
228 | BN_ULONG ln,lo,*p; | ||
229 | |||
230 | # ifdef BN_COUNT | ||
231 | printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); | ||
232 | # endif | ||
233 | if (n < 8) | ||
234 | { | ||
235 | i=tn+n; | ||
236 | bn_mul_normal(r,a,i,b,i); | ||
237 | return; | ||
238 | } | ||
239 | |||
240 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
241 | c1=bn_cmp_words(a,&(a[n]),n); | ||
242 | c2=bn_cmp_words(&(b[n]),b,n); | ||
243 | zero=neg=0; | ||
244 | switch (c1*3+c2) | ||
245 | { | ||
246 | case -4: | ||
247 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
248 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
249 | break; | ||
250 | case -3: | ||
251 | zero=1; | ||
252 | /* break; */ | ||
253 | case -2: | ||
254 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
255 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | ||
256 | neg=1; | ||
257 | break; | ||
258 | case -1: | ||
259 | case 0: | ||
260 | case 1: | ||
261 | zero=1; | ||
262 | /* break; */ | ||
263 | case 2: | ||
264 | bn_sub_words(t, a, &(a[n]),n); /* + */ | ||
265 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
266 | neg=1; | ||
267 | break; | ||
268 | case 3: | ||
269 | zero=1; | ||
270 | /* break; */ | ||
271 | case 4: | ||
272 | bn_sub_words(t, a, &(a[n]),n); | ||
273 | bn_sub_words(&(t[n]),&(b[n]),b, n); | ||
274 | break; | ||
275 | } | ||
276 | /* The zero case isn't yet implemented here. The speedup | ||
277 | would probably be negligible. */ | ||
278 | # if 0 | ||
279 | if (n == 4) | ||
280 | { | ||
281 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
282 | bn_mul_comba4(r,a,b); | ||
283 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
284 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
285 | } | ||
286 | else | ||
287 | # endif | ||
288 | if (n == 8) | ||
289 | { | ||
290 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
291 | bn_mul_comba8(r,a,b); | ||
292 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
293 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
294 | } | ||
295 | else | ||
296 | { | ||
297 | p= &(t[n2*2]); | ||
298 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | ||
299 | bn_mul_recursive(r,a,b,n,p); | ||
300 | i=n/2; | ||
301 | /* If there is only a bottom half to the number, | ||
302 | * just do it */ | ||
303 | j=tn-i; | ||
304 | if (j == 0) | ||
305 | { | ||
306 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); | ||
307 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | ||
308 | } | ||
309 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
310 | { | ||
311 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
312 | j,i,p); | ||
313 | memset(&(r[n2+tn*2]),0, | ||
314 | sizeof(BN_ULONG)*(n2-tn*2)); | ||
315 | } | ||
316 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
317 | { | ||
318 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | ||
319 | if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
320 | { | ||
321 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
322 | } | ||
323 | else | ||
324 | { | ||
325 | for (;;) | ||
326 | { | ||
327 | i/=2; | ||
328 | if (i < tn) | ||
329 | { | ||
330 | bn_mul_part_recursive(&(r[n2]), | ||
331 | &(a[n]),&(b[n]), | ||
332 | tn-i,i,p); | ||
333 | break; | ||
334 | } | ||
335 | else if (i == tn) | ||
336 | { | ||
337 | bn_mul_recursive(&(r[n2]), | ||
338 | &(a[n]),&(b[n]), | ||
339 | i,p); | ||
340 | break; | ||
341 | } | ||
342 | } | ||
343 | } | ||
344 | } | ||
345 | } | ||
346 | |||
347 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
348 | * r[10] holds (a[0]*b[0]) | ||
349 | * r[32] holds (b[1]*b[1]) | ||
350 | */ | ||
351 | |||
352 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
353 | |||
354 | if (neg) /* if t[32] is negative */ | ||
355 | { | ||
356 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
357 | } | ||
358 | else | ||
359 | { | ||
360 | /* Might have a carry */ | ||
361 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
362 | } | ||
363 | |||
364 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
365 | * r[10] holds (a[0]*b[0]) | ||
366 | * r[32] holds (b[1]*b[1]) | ||
367 | * c1 holds the carry bits | ||
368 | */ | ||
369 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
370 | if (c1) | ||
371 | { | ||
372 | p= &(r[n+n2]); | ||
373 | lo= *p; | ||
374 | ln=(lo+c1)&BN_MASK2; | ||
375 | *p=ln; | ||
376 | |||
377 | /* The overflow will stop before we over write | ||
378 | * words we should not overwrite */ | ||
379 | if (ln < (BN_ULONG)c1) | ||
380 | { | ||
381 | do { | ||
382 | p++; | ||
383 | lo= *p; | ||
384 | ln=(lo+1)&BN_MASK2; | ||
385 | *p=ln; | ||
386 | } while (ln == 0); | ||
387 | } | ||
388 | } | ||
389 | } | ||
390 | |||
391 | /* a and b must be the same size, which is n2. | ||
392 | * r needs to be n2 words and t needs to be n2*2 | ||
393 | */ | ||
394 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
395 | BN_ULONG *t) | ||
396 | { | ||
397 | int n=n2/2; | ||
398 | |||
399 | # ifdef BN_COUNT | ||
400 | printf(" bn_mul_low_recursive %d * %d\n",n2,n2); | ||
401 | # endif | ||
402 | |||
403 | bn_mul_recursive(r,a,b,n,&(t[0])); | ||
404 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | ||
405 | { | ||
406 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | ||
407 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
408 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | ||
409 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
410 | } | ||
411 | else | ||
412 | { | ||
413 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | ||
414 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | ||
415 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
416 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | ||
417 | } | ||
418 | } | ||
419 | |||
420 | /* a and b must be the same size, which is n2. | ||
421 | * r needs to be n2 words and t needs to be n2*2 | ||
422 | * l is the low words of the output. | ||
423 | * t needs to be n2*3 | ||
424 | */ | ||
425 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
426 | BN_ULONG *t) | ||
427 | { | ||
428 | int i,n; | ||
429 | int c1,c2; | ||
430 | int neg,oneg,zero; | ||
431 | BN_ULONG ll,lc,*lp,*mp; | ||
432 | |||
433 | # ifdef BN_COUNT | ||
434 | printf(" bn_mul_high %d * %d\n",n2,n2); | ||
435 | # endif | ||
436 | n=n2/2; | ||
437 | |||
438 | /* Calculate (al-ah)*(bh-bl) */ | ||
439 | neg=zero=0; | ||
440 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | ||
441 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | ||
442 | switch (c1*3+c2) | ||
443 | { | ||
444 | case -4: | ||
445 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
446 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
447 | break; | ||
448 | case -3: | ||
449 | zero=1; | ||
450 | break; | ||
451 | case -2: | ||
452 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
453 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
454 | neg=1; | ||
455 | break; | ||
456 | case -1: | ||
457 | case 0: | ||
458 | case 1: | ||
459 | zero=1; | ||
460 | break; | ||
461 | case 2: | ||
462 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
463 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
464 | neg=1; | ||
465 | break; | ||
466 | case 3: | ||
467 | zero=1; | ||
468 | break; | ||
469 | case 4: | ||
470 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
471 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
472 | break; | ||
473 | } | ||
474 | |||
475 | oneg=neg; | ||
476 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
477 | /* r[10] = (a[1]*b[1]) */ | ||
478 | # ifdef BN_MUL_COMBA | ||
479 | if (n == 8) | ||
480 | { | ||
481 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | ||
482 | bn_mul_comba8(r,&(a[n]),&(b[n])); | ||
483 | } | ||
484 | else | ||
485 | # endif | ||
486 | { | ||
487 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); | ||
488 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); | ||
489 | } | ||
490 | |||
491 | /* s0 == low(al*bl) | ||
492 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
493 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
494 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
495 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
496 | */ | ||
497 | if (l != NULL) | ||
498 | { | ||
499 | lp= &(t[n2+n]); | ||
500 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | ||
501 | } | ||
502 | else | ||
503 | { | ||
504 | c1=0; | ||
505 | lp= &(r[0]); | ||
506 | } | ||
507 | |||
508 | if (neg) | ||
509 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | ||
510 | else | ||
511 | { | ||
512 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | ||
513 | neg=0; | ||
514 | } | ||
515 | |||
516 | if (l != NULL) | ||
517 | { | ||
518 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | ||
519 | } | ||
520 | else | ||
521 | { | ||
522 | lp= &(t[n2+n]); | ||
523 | mp= &(t[n2]); | ||
524 | for (i=0; i<n; i++) | ||
525 | lp[i]=((~mp[i])+1)&BN_MASK2; | ||
526 | } | ||
527 | |||
528 | /* s[0] = low(al*bl) | ||
529 | * t[3] = high(al*bl) | ||
530 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
531 | * r[10] = (a[1]*b[1]) | ||
532 | */ | ||
533 | /* R[10] = al*bl | ||
534 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
535 | * R[32] = ah*bh | ||
536 | */ | ||
537 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
538 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
539 | * R[3]=r[1]+(carry/borrow) | ||
540 | */ | ||
541 | if (l != NULL) | ||
542 | { | ||
543 | lp= &(t[n2]); | ||
544 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | ||
545 | } | ||
546 | else | ||
547 | { | ||
548 | lp= &(t[n2+n]); | ||
549 | c1=0; | ||
550 | } | ||
551 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | ||
552 | if (oneg) | ||
553 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
554 | else | ||
555 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
556 | |||
557 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); | ||
558 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | ||
559 | if (oneg) | ||
560 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
561 | else | ||
562 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
563 | |||
564 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
565 | { | ||
566 | i=0; | ||
567 | if (c1 > 0) | ||
568 | { | ||
569 | lc=c1; | ||
570 | do { | ||
571 | ll=(r[i]+lc)&BN_MASK2; | ||
572 | r[i++]=ll; | ||
573 | lc=(lc > ll); | ||
574 | } while (lc); | ||
575 | } | ||
576 | else | ||
577 | { | ||
578 | lc= -c1; | ||
579 | do { | ||
580 | ll=r[i]; | ||
581 | r[i++]=(ll-lc)&BN_MASK2; | ||
582 | lc=(lc > ll); | ||
583 | } while (lc); | ||
584 | } | ||
585 | } | ||
586 | if (c2 != 0) /* Add starting at r[1] */ | ||
587 | { | ||
588 | i=n; | ||
589 | if (c2 > 0) | ||
590 | { | ||
591 | lc=c2; | ||
592 | do { | ||
593 | ll=(r[i]+lc)&BN_MASK2; | ||
594 | r[i++]=ll; | ||
595 | lc=(lc > ll); | ||
596 | } while (lc); | ||
597 | } | ||
598 | else | ||
599 | { | ||
600 | lc= -c2; | ||
601 | do { | ||
602 | ll=r[i]; | ||
603 | r[i++]=(ll-lc)&BN_MASK2; | ||
604 | lc=(lc > ll); | ||
605 | } while (lc); | ||
606 | } | ||
607 | } | ||
608 | } | ||
609 | #endif /* BN_RECURSION */ | ||
610 | |||
611 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
612 | { | ||
613 | int top,al,bl; | ||
614 | BIGNUM *rr; | ||
615 | int ret = 0; | ||
616 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
617 | int i; | ||
618 | #endif | ||
619 | #ifdef BN_RECURSION | ||
620 | BIGNUM *t; | ||
621 | int j,k; | ||
622 | #endif | ||
623 | |||
624 | #ifdef BN_COUNT | ||
625 | printf("BN_mul %d * %d\n",a->top,b->top); | ||
626 | #endif | ||
627 | |||
628 | bn_check_top(a); | ||
629 | bn_check_top(b); | ||
630 | bn_check_top(r); | ||
631 | |||
632 | al=a->top; | ||
633 | bl=b->top; | ||
634 | |||
635 | if ((al == 0) || (bl == 0)) | ||
636 | { | ||
637 | if (!BN_zero(r)) goto err; | ||
638 | return(1); | ||
639 | } | ||
640 | top=al+bl; | ||
641 | |||
642 | BN_CTX_start(ctx); | ||
643 | if ((r == a) || (r == b)) | ||
644 | { | ||
645 | if ((rr = BN_CTX_get(ctx)) == NULL) goto err; | ||
646 | } | ||
647 | else | ||
648 | rr = r; | ||
649 | rr->neg=a->neg^b->neg; | ||
650 | |||
651 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
652 | i = al-bl; | ||
653 | #endif | ||
654 | #ifdef BN_MUL_COMBA | ||
655 | if (i == 0) | ||
656 | { | ||
657 | # if 0 | ||
658 | if (al == 4) | ||
659 | { | ||
660 | if (bn_wexpand(rr,8) == NULL) goto err; | ||
661 | rr->top=8; | ||
662 | bn_mul_comba4(rr->d,a->d,b->d); | ||
663 | goto end; | ||
664 | } | ||
665 | # endif | ||
666 | if (al == 8) | ||
667 | { | ||
668 | if (bn_wexpand(rr,16) == NULL) goto err; | ||
669 | rr->top=16; | ||
670 | bn_mul_comba8(rr->d,a->d,b->d); | ||
671 | goto end; | ||
672 | } | ||
673 | } | ||
674 | #endif /* BN_MUL_COMBA */ | ||
675 | #ifdef BN_RECURSION | ||
676 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) | ||
677 | { | ||
678 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA) && bl<b->dmax) | ||
679 | { | ||
680 | #if 0 /* tribute to const-ification, bl<b->dmax above covers for this */ | ||
681 | if (bn_wexpand(b,al) == NULL) goto err; | ||
682 | #endif | ||
683 | b->d[bl]=0; | ||
684 | bl++; | ||
685 | i--; | ||
686 | } | ||
687 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA) && al<a->dmax) | ||
688 | { | ||
689 | #if 0 /* tribute to const-ification, al<a->dmax above covers for this */ | ||
690 | if (bn_wexpand(a,bl) == NULL) goto err; | ||
691 | #endif | ||
692 | a->d[al]=0; | ||
693 | al++; | ||
694 | i++; | ||
695 | } | ||
696 | if (i == 0) | ||
697 | { | ||
698 | /* symmetric and > 4 */ | ||
699 | /* 16 or larger */ | ||
700 | j=BN_num_bits_word((BN_ULONG)al); | ||
701 | j=1<<(j-1); | ||
702 | k=j+j; | ||
703 | t = BN_CTX_get(ctx); | ||
704 | if (al == j) /* exact multiple */ | ||
705 | { | ||
706 | if (bn_wexpand(t,k*2) == NULL) goto err; | ||
707 | if (bn_wexpand(rr,k*2) == NULL) goto err; | ||
708 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | ||
709 | rr->top=top; | ||
710 | goto end; | ||
711 | } | ||
712 | #if 0 /* tribute to const-ification, rsa/dsa performance is not affected */ | ||
713 | else | ||
714 | { | ||
715 | if (bn_wexpand(a,k) == NULL ) goto err; | ||
716 | if (bn_wexpand(b,k) == NULL ) goto err; | ||
717 | if (bn_wexpand(t,k*4) == NULL ) goto err; | ||
718 | if (bn_wexpand(rr,k*4) == NULL ) goto err; | ||
719 | for (i=a->top; i<k; i++) | ||
720 | a->d[i]=0; | ||
721 | for (i=b->top; i<k; i++) | ||
722 | b->d[i]=0; | ||
723 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | ||
724 | } | ||
725 | rr->top=top; | ||
726 | goto end; | ||
727 | #endif | ||
728 | } | ||
729 | } | ||
730 | #endif /* BN_RECURSION */ | ||
731 | if (bn_wexpand(rr,top) == NULL) goto err; | ||
732 | rr->top=top; | ||
733 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
734 | |||
735 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
736 | end: | ||
737 | #endif | ||
738 | bn_fix_top(rr); | ||
739 | if (r != rr) BN_copy(r,rr); | ||
740 | ret=1; | ||
741 | err: | ||
742 | BN_CTX_end(ctx); | ||
743 | return(ret); | ||
744 | } | ||
745 | |||
746 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
747 | { | ||
748 | BN_ULONG *rr; | ||
749 | |||
750 | #ifdef BN_COUNT | ||
751 | printf(" bn_mul_normal %d * %d\n",na,nb); | ||
752 | #endif | ||
753 | |||
754 | if (na < nb) | ||
755 | { | ||
756 | int itmp; | ||
757 | BN_ULONG *ltmp; | ||
758 | |||
759 | itmp=na; na=nb; nb=itmp; | ||
760 | ltmp=a; a=b; b=ltmp; | ||
761 | |||
762 | } | ||
763 | rr= &(r[na]); | ||
764 | rr[0]=bn_mul_words(r,a,na,b[0]); | ||
765 | |||
766 | for (;;) | ||
767 | { | ||
768 | if (--nb <= 0) return; | ||
769 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); | ||
770 | if (--nb <= 0) return; | ||
771 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | ||
772 | if (--nb <= 0) return; | ||
773 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | ||
774 | if (--nb <= 0) return; | ||
775 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | ||
776 | rr+=4; | ||
777 | r+=4; | ||
778 | b+=4; | ||
779 | } | ||
780 | } | ||
781 | |||
782 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
783 | { | ||
784 | #ifdef BN_COUNT | ||
785 | printf(" bn_mul_low_normal %d * %d\n",n,n); | ||
786 | #endif | ||
787 | bn_mul_words(r,a,n,b[0]); | ||
788 | |||
789 | for (;;) | ||
790 | { | ||
791 | if (--n <= 0) return; | ||
792 | bn_mul_add_words(&(r[1]),a,n,b[1]); | ||
793 | if (--n <= 0) return; | ||
794 | bn_mul_add_words(&(r[2]),a,n,b[2]); | ||
795 | if (--n <= 0) return; | ||
796 | bn_mul_add_words(&(r[3]),a,n,b[3]); | ||
797 | if (--n <= 0) return; | ||
798 | bn_mul_add_words(&(r[4]),a,n,b[4]); | ||
799 | r+=4; | ||
800 | b+=4; | ||
801 | } | ||
802 | } | ||