diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 1169 |
1 files changed, 0 insertions, 1169 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index b848c8cc60..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null | |||
@@ -1,1169 +0,0 @@ | |||
1 | /* crypto/bn/bn_mul.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <stdio.h> | ||
65 | #include <assert.h> | ||
66 | #include "cryptlib.h" | ||
67 | #include "bn_lcl.h" | ||
68 | |||
69 | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) | ||
70 | /* Here follows specialised variants of bn_add_words() and | ||
71 | bn_sub_words(). They have the property performing operations on | ||
72 | arrays of different sizes. The sizes of those arrays is expressed through | ||
73 | cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, | ||
74 | which is the delta between the two lengths, calculated as len(a)-len(b). | ||
75 | All lengths are the number of BN_ULONGs... For the operations that require | ||
76 | a result array as parameter, it must have the length cl+abs(dl). | ||
77 | These functions should probably end up in bn_asm.c as soon as there are | ||
78 | assembler counterparts for the systems that use assembler files. */ | ||
79 | |||
80 | BN_ULONG bn_sub_part_words(BN_ULONG *r, | ||
81 | const BN_ULONG *a, const BN_ULONG *b, | ||
82 | int cl, int dl) | ||
83 | { | ||
84 | BN_ULONG c, t; | ||
85 | |||
86 | assert(cl >= 0); | ||
87 | c = bn_sub_words(r, a, b, cl); | ||
88 | |||
89 | if (dl == 0) | ||
90 | return c; | ||
91 | |||
92 | r += cl; | ||
93 | a += cl; | ||
94 | b += cl; | ||
95 | |||
96 | if (dl < 0) | ||
97 | { | ||
98 | #ifdef BN_COUNT | ||
99 | fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
100 | #endif | ||
101 | for (;;) | ||
102 | { | ||
103 | t = b[0]; | ||
104 | r[0] = (0-t-c)&BN_MASK2; | ||
105 | if (t != 0) c=1; | ||
106 | if (++dl >= 0) break; | ||
107 | |||
108 | t = b[1]; | ||
109 | r[1] = (0-t-c)&BN_MASK2; | ||
110 | if (t != 0) c=1; | ||
111 | if (++dl >= 0) break; | ||
112 | |||
113 | t = b[2]; | ||
114 | r[2] = (0-t-c)&BN_MASK2; | ||
115 | if (t != 0) c=1; | ||
116 | if (++dl >= 0) break; | ||
117 | |||
118 | t = b[3]; | ||
119 | r[3] = (0-t-c)&BN_MASK2; | ||
120 | if (t != 0) c=1; | ||
121 | if (++dl >= 0) break; | ||
122 | |||
123 | b += 4; | ||
124 | r += 4; | ||
125 | } | ||
126 | } | ||
127 | else | ||
128 | { | ||
129 | int save_dl = dl; | ||
130 | #ifdef BN_COUNT | ||
131 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c); | ||
132 | #endif | ||
133 | while(c) | ||
134 | { | ||
135 | t = a[0]; | ||
136 | r[0] = (t-c)&BN_MASK2; | ||
137 | if (t != 0) c=0; | ||
138 | if (--dl <= 0) break; | ||
139 | |||
140 | t = a[1]; | ||
141 | r[1] = (t-c)&BN_MASK2; | ||
142 | if (t != 0) c=0; | ||
143 | if (--dl <= 0) break; | ||
144 | |||
145 | t = a[2]; | ||
146 | r[2] = (t-c)&BN_MASK2; | ||
147 | if (t != 0) c=0; | ||
148 | if (--dl <= 0) break; | ||
149 | |||
150 | t = a[3]; | ||
151 | r[3] = (t-c)&BN_MASK2; | ||
152 | if (t != 0) c=0; | ||
153 | if (--dl <= 0) break; | ||
154 | |||
155 | save_dl = dl; | ||
156 | a += 4; | ||
157 | r += 4; | ||
158 | } | ||
159 | if (dl > 0) | ||
160 | { | ||
161 | #ifdef BN_COUNT | ||
162 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
163 | #endif | ||
164 | if (save_dl > dl) | ||
165 | { | ||
166 | switch (save_dl - dl) | ||
167 | { | ||
168 | case 1: | ||
169 | r[1] = a[1]; | ||
170 | if (--dl <= 0) break; | ||
171 | case 2: | ||
172 | r[2] = a[2]; | ||
173 | if (--dl <= 0) break; | ||
174 | case 3: | ||
175 | r[3] = a[3]; | ||
176 | if (--dl <= 0) break; | ||
177 | } | ||
178 | a += 4; | ||
179 | r += 4; | ||
180 | } | ||
181 | } | ||
182 | if (dl > 0) | ||
183 | { | ||
184 | #ifdef BN_COUNT | ||
185 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
186 | #endif | ||
187 | for(;;) | ||
188 | { | ||
189 | r[0] = a[0]; | ||
190 | if (--dl <= 0) break; | ||
191 | r[1] = a[1]; | ||
192 | if (--dl <= 0) break; | ||
193 | r[2] = a[2]; | ||
194 | if (--dl <= 0) break; | ||
195 | r[3] = a[3]; | ||
196 | if (--dl <= 0) break; | ||
197 | |||
198 | a += 4; | ||
199 | r += 4; | ||
200 | } | ||
201 | } | ||
202 | } | ||
203 | return c; | ||
204 | } | ||
205 | #endif | ||
206 | |||
207 | BN_ULONG bn_add_part_words(BN_ULONG *r, | ||
208 | const BN_ULONG *a, const BN_ULONG *b, | ||
209 | int cl, int dl) | ||
210 | { | ||
211 | BN_ULONG c, l, t; | ||
212 | |||
213 | assert(cl >= 0); | ||
214 | c = bn_add_words(r, a, b, cl); | ||
215 | |||
216 | if (dl == 0) | ||
217 | return c; | ||
218 | |||
219 | r += cl; | ||
220 | a += cl; | ||
221 | b += cl; | ||
222 | |||
223 | if (dl < 0) | ||
224 | { | ||
225 | int save_dl = dl; | ||
226 | #ifdef BN_COUNT | ||
227 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
228 | #endif | ||
229 | while (c) | ||
230 | { | ||
231 | l=(c+b[0])&BN_MASK2; | ||
232 | c=(l < c); | ||
233 | r[0]=l; | ||
234 | if (++dl >= 0) break; | ||
235 | |||
236 | l=(c+b[1])&BN_MASK2; | ||
237 | c=(l < c); | ||
238 | r[1]=l; | ||
239 | if (++dl >= 0) break; | ||
240 | |||
241 | l=(c+b[2])&BN_MASK2; | ||
242 | c=(l < c); | ||
243 | r[2]=l; | ||
244 | if (++dl >= 0) break; | ||
245 | |||
246 | l=(c+b[3])&BN_MASK2; | ||
247 | c=(l < c); | ||
248 | r[3]=l; | ||
249 | if (++dl >= 0) break; | ||
250 | |||
251 | save_dl = dl; | ||
252 | b+=4; | ||
253 | r+=4; | ||
254 | } | ||
255 | if (dl < 0) | ||
256 | { | ||
257 | #ifdef BN_COUNT | ||
258 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl); | ||
259 | #endif | ||
260 | if (save_dl < dl) | ||
261 | { | ||
262 | switch (dl - save_dl) | ||
263 | { | ||
264 | case 1: | ||
265 | r[1] = b[1]; | ||
266 | if (++dl >= 0) break; | ||
267 | case 2: | ||
268 | r[2] = b[2]; | ||
269 | if (++dl >= 0) break; | ||
270 | case 3: | ||
271 | r[3] = b[3]; | ||
272 | if (++dl >= 0) break; | ||
273 | } | ||
274 | b += 4; | ||
275 | r += 4; | ||
276 | } | ||
277 | } | ||
278 | if (dl < 0) | ||
279 | { | ||
280 | #ifdef BN_COUNT | ||
281 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl); | ||
282 | #endif | ||
283 | for(;;) | ||
284 | { | ||
285 | r[0] = b[0]; | ||
286 | if (++dl >= 0) break; | ||
287 | r[1] = b[1]; | ||
288 | if (++dl >= 0) break; | ||
289 | r[2] = b[2]; | ||
290 | if (++dl >= 0) break; | ||
291 | r[3] = b[3]; | ||
292 | if (++dl >= 0) break; | ||
293 | |||
294 | b += 4; | ||
295 | r += 4; | ||
296 | } | ||
297 | } | ||
298 | } | ||
299 | else | ||
300 | { | ||
301 | int save_dl = dl; | ||
302 | #ifdef BN_COUNT | ||
303 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); | ||
304 | #endif | ||
305 | while (c) | ||
306 | { | ||
307 | t=(a[0]+c)&BN_MASK2; | ||
308 | c=(t < c); | ||
309 | r[0]=t; | ||
310 | if (--dl <= 0) break; | ||
311 | |||
312 | t=(a[1]+c)&BN_MASK2; | ||
313 | c=(t < c); | ||
314 | r[1]=t; | ||
315 | if (--dl <= 0) break; | ||
316 | |||
317 | t=(a[2]+c)&BN_MASK2; | ||
318 | c=(t < c); | ||
319 | r[2]=t; | ||
320 | if (--dl <= 0) break; | ||
321 | |||
322 | t=(a[3]+c)&BN_MASK2; | ||
323 | c=(t < c); | ||
324 | r[3]=t; | ||
325 | if (--dl <= 0) break; | ||
326 | |||
327 | save_dl = dl; | ||
328 | a+=4; | ||
329 | r+=4; | ||
330 | } | ||
331 | #ifdef BN_COUNT | ||
332 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
333 | #endif | ||
334 | if (dl > 0) | ||
335 | { | ||
336 | if (save_dl > dl) | ||
337 | { | ||
338 | switch (save_dl - dl) | ||
339 | { | ||
340 | case 1: | ||
341 | r[1] = a[1]; | ||
342 | if (--dl <= 0) break; | ||
343 | case 2: | ||
344 | r[2] = a[2]; | ||
345 | if (--dl <= 0) break; | ||
346 | case 3: | ||
347 | r[3] = a[3]; | ||
348 | if (--dl <= 0) break; | ||
349 | } | ||
350 | a += 4; | ||
351 | r += 4; | ||
352 | } | ||
353 | } | ||
354 | if (dl > 0) | ||
355 | { | ||
356 | #ifdef BN_COUNT | ||
357 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
358 | #endif | ||
359 | for(;;) | ||
360 | { | ||
361 | r[0] = a[0]; | ||
362 | if (--dl <= 0) break; | ||
363 | r[1] = a[1]; | ||
364 | if (--dl <= 0) break; | ||
365 | r[2] = a[2]; | ||
366 | if (--dl <= 0) break; | ||
367 | r[3] = a[3]; | ||
368 | if (--dl <= 0) break; | ||
369 | |||
370 | a += 4; | ||
371 | r += 4; | ||
372 | } | ||
373 | } | ||
374 | } | ||
375 | return c; | ||
376 | } | ||
377 | |||
378 | #ifdef BN_RECURSION | ||
379 | /* Karatsuba recursive multiplication algorithm | ||
380 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
381 | |||
382 | /* r is 2*n2 words in size, | ||
383 | * a and b are both n2 words in size. | ||
384 | * n2 must be a power of 2. | ||
385 | * We multiply and return the result. | ||
386 | * t must be 2*n2 words in size | ||
387 | * We calculate | ||
388 | * a[0]*b[0] | ||
389 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
390 | * a[1]*b[1] | ||
391 | */ | ||
392 | /* dnX may not be positive, but n2/2+dnX has to be */ | ||
393 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
394 | int dna, int dnb, BN_ULONG *t) | ||
395 | { | ||
396 | int n=n2/2,c1,c2; | ||
397 | int tna=n+dna, tnb=n+dnb; | ||
398 | unsigned int neg,zero; | ||
399 | BN_ULONG ln,lo,*p; | ||
400 | |||
401 | # ifdef BN_COUNT | ||
402 | fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); | ||
403 | # endif | ||
404 | # ifdef BN_MUL_COMBA | ||
405 | # if 0 | ||
406 | if (n2 == 4) | ||
407 | { | ||
408 | bn_mul_comba4(r,a,b); | ||
409 | return; | ||
410 | } | ||
411 | # endif | ||
412 | /* Only call bn_mul_comba 8 if n2 == 8 and the | ||
413 | * two arrays are complete [steve] | ||
414 | */ | ||
415 | if (n2 == 8 && dna == 0 && dnb == 0) | ||
416 | { | ||
417 | bn_mul_comba8(r,a,b); | ||
418 | return; | ||
419 | } | ||
420 | # endif /* BN_MUL_COMBA */ | ||
421 | /* Else do normal multiply */ | ||
422 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
423 | { | ||
424 | bn_mul_normal(r,a,n2+dna,b,n2+dnb); | ||
425 | if ((dna + dnb) < 0) | ||
426 | memset(&r[2*n2 + dna + dnb], 0, | ||
427 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
428 | return; | ||
429 | } | ||
430 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
431 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); | ||
432 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); | ||
433 | zero=neg=0; | ||
434 | switch (c1*3+c2) | ||
435 | { | ||
436 | case -4: | ||
437 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
438 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
439 | break; | ||
440 | case -3: | ||
441 | zero=1; | ||
442 | break; | ||
443 | case -2: | ||
444 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
445 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ | ||
446 | neg=1; | ||
447 | break; | ||
448 | case -1: | ||
449 | case 0: | ||
450 | case 1: | ||
451 | zero=1; | ||
452 | break; | ||
453 | case 2: | ||
454 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ | ||
455 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
456 | neg=1; | ||
457 | break; | ||
458 | case 3: | ||
459 | zero=1; | ||
460 | break; | ||
461 | case 4: | ||
462 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); | ||
463 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); | ||
464 | break; | ||
465 | } | ||
466 | |||
467 | # ifdef BN_MUL_COMBA | ||
468 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take | ||
469 | extra args to do this well */ | ||
470 | { | ||
471 | if (!zero) | ||
472 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
473 | else | ||
474 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); | ||
475 | |||
476 | bn_mul_comba4(r,a,b); | ||
477 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | ||
478 | } | ||
479 | else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could | ||
480 | take extra args to do this | ||
481 | well */ | ||
482 | { | ||
483 | if (!zero) | ||
484 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
485 | else | ||
486 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | ||
487 | |||
488 | bn_mul_comba8(r,a,b); | ||
489 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | ||
490 | } | ||
491 | else | ||
492 | # endif /* BN_MUL_COMBA */ | ||
493 | { | ||
494 | p= &(t[n2*2]); | ||
495 | if (!zero) | ||
496 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); | ||
497 | else | ||
498 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
499 | bn_mul_recursive(r,a,b,n,0,0,p); | ||
500 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); | ||
501 | } | ||
502 | |||
503 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
504 | * r[10] holds (a[0]*b[0]) | ||
505 | * r[32] holds (b[1]*b[1]) | ||
506 | */ | ||
507 | |||
508 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
509 | |||
510 | if (neg) /* if t[32] is negative */ | ||
511 | { | ||
512 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
513 | } | ||
514 | else | ||
515 | { | ||
516 | /* Might have a carry */ | ||
517 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
518 | } | ||
519 | |||
520 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
521 | * r[10] holds (a[0]*b[0]) | ||
522 | * r[32] holds (b[1]*b[1]) | ||
523 | * c1 holds the carry bits | ||
524 | */ | ||
525 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
526 | if (c1) | ||
527 | { | ||
528 | p= &(r[n+n2]); | ||
529 | lo= *p; | ||
530 | ln=(lo+c1)&BN_MASK2; | ||
531 | *p=ln; | ||
532 | |||
533 | /* The overflow will stop before we over write | ||
534 | * words we should not overwrite */ | ||
535 | if (ln < (BN_ULONG)c1) | ||
536 | { | ||
537 | do { | ||
538 | p++; | ||
539 | lo= *p; | ||
540 | ln=(lo+1)&BN_MASK2; | ||
541 | *p=ln; | ||
542 | } while (ln == 0); | ||
543 | } | ||
544 | } | ||
545 | } | ||
546 | |||
547 | /* n+tn is the word length | ||
548 | * t needs to be n*4 is size, as does r */ | ||
549 | /* tnX may not be negative but less than n */ | ||
550 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, | ||
551 | int tna, int tnb, BN_ULONG *t) | ||
552 | { | ||
553 | int i,j,n2=n*2; | ||
554 | int c1,c2,neg,zero; | ||
555 | BN_ULONG ln,lo,*p; | ||
556 | |||
557 | # ifdef BN_COUNT | ||
558 | fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n", | ||
559 | n, tna, n, tnb); | ||
560 | # endif | ||
561 | if (n < 8) | ||
562 | { | ||
563 | bn_mul_normal(r,a,n+tna,b,n+tnb); | ||
564 | return; | ||
565 | } | ||
566 | |||
567 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
568 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); | ||
569 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); | ||
570 | zero=neg=0; | ||
571 | switch (c1*3+c2) | ||
572 | { | ||
573 | case -4: | ||
574 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
575 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
576 | break; | ||
577 | case -3: | ||
578 | zero=1; | ||
579 | /* break; */ | ||
580 | case -2: | ||
581 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
582 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ | ||
583 | neg=1; | ||
584 | break; | ||
585 | case -1: | ||
586 | case 0: | ||
587 | case 1: | ||
588 | zero=1; | ||
589 | /* break; */ | ||
590 | case 2: | ||
591 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ | ||
592 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
593 | neg=1; | ||
594 | break; | ||
595 | case 3: | ||
596 | zero=1; | ||
597 | /* break; */ | ||
598 | case 4: | ||
599 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); | ||
600 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); | ||
601 | break; | ||
602 | } | ||
603 | /* The zero case isn't yet implemented here. The speedup | ||
604 | would probably be negligible. */ | ||
605 | # if 0 | ||
606 | if (n == 4) | ||
607 | { | ||
608 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
609 | bn_mul_comba4(r,a,b); | ||
610 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
611 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
612 | } | ||
613 | else | ||
614 | # endif | ||
615 | if (n == 8) | ||
616 | { | ||
617 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
618 | bn_mul_comba8(r,a,b); | ||
619 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); | ||
620 | memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb)); | ||
621 | } | ||
622 | else | ||
623 | { | ||
624 | p= &(t[n2*2]); | ||
625 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); | ||
626 | bn_mul_recursive(r,a,b,n,0,0,p); | ||
627 | i=n/2; | ||
628 | /* If there is only a bottom half to the number, | ||
629 | * just do it */ | ||
630 | if (tna > tnb) | ||
631 | j = tna - i; | ||
632 | else | ||
633 | j = tnb - i; | ||
634 | if (j == 0) | ||
635 | { | ||
636 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
637 | i,tna-i,tnb-i,p); | ||
638 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | ||
639 | } | ||
640 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
641 | { | ||
642 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
643 | i,tna-i,tnb-i,p); | ||
644 | memset(&(r[n2+tna+tnb]),0, | ||
645 | sizeof(BN_ULONG)*(n2-tna-tnb)); | ||
646 | } | ||
647 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
648 | { | ||
649 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | ||
650 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL | ||
651 | && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
652 | { | ||
653 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); | ||
654 | } | ||
655 | else | ||
656 | { | ||
657 | for (;;) | ||
658 | { | ||
659 | i/=2; | ||
660 | /* these simplified conditions work | ||
661 | * exclusively because difference | ||
662 | * between tna and tnb is 1 or 0 */ | ||
663 | if (i < tna || i < tnb) | ||
664 | { | ||
665 | bn_mul_part_recursive(&(r[n2]), | ||
666 | &(a[n]),&(b[n]), | ||
667 | i,tna-i,tnb-i,p); | ||
668 | break; | ||
669 | } | ||
670 | else if (i == tna || i == tnb) | ||
671 | { | ||
672 | bn_mul_recursive(&(r[n2]), | ||
673 | &(a[n]),&(b[n]), | ||
674 | i,tna-i,tnb-i,p); | ||
675 | break; | ||
676 | } | ||
677 | } | ||
678 | } | ||
679 | } | ||
680 | } | ||
681 | |||
682 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
683 | * r[10] holds (a[0]*b[0]) | ||
684 | * r[32] holds (b[1]*b[1]) | ||
685 | */ | ||
686 | |||
687 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
688 | |||
689 | if (neg) /* if t[32] is negative */ | ||
690 | { | ||
691 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
692 | } | ||
693 | else | ||
694 | { | ||
695 | /* Might have a carry */ | ||
696 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
697 | } | ||
698 | |||
699 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
700 | * r[10] holds (a[0]*b[0]) | ||
701 | * r[32] holds (b[1]*b[1]) | ||
702 | * c1 holds the carry bits | ||
703 | */ | ||
704 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
705 | if (c1) | ||
706 | { | ||
707 | p= &(r[n+n2]); | ||
708 | lo= *p; | ||
709 | ln=(lo+c1)&BN_MASK2; | ||
710 | *p=ln; | ||
711 | |||
712 | /* The overflow will stop before we over write | ||
713 | * words we should not overwrite */ | ||
714 | if (ln < (BN_ULONG)c1) | ||
715 | { | ||
716 | do { | ||
717 | p++; | ||
718 | lo= *p; | ||
719 | ln=(lo+1)&BN_MASK2; | ||
720 | *p=ln; | ||
721 | } while (ln == 0); | ||
722 | } | ||
723 | } | ||
724 | } | ||
725 | |||
726 | /* a and b must be the same size, which is n2. | ||
727 | * r needs to be n2 words and t needs to be n2*2 | ||
728 | */ | ||
729 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
730 | BN_ULONG *t) | ||
731 | { | ||
732 | int n=n2/2; | ||
733 | |||
734 | # ifdef BN_COUNT | ||
735 | fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2); | ||
736 | # endif | ||
737 | |||
738 | bn_mul_recursive(r,a,b,n,0,0,&(t[0])); | ||
739 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | ||
740 | { | ||
741 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | ||
742 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
743 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | ||
744 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
745 | } | ||
746 | else | ||
747 | { | ||
748 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | ||
749 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | ||
750 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
751 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | ||
752 | } | ||
753 | } | ||
754 | |||
755 | /* a and b must be the same size, which is n2. | ||
756 | * r needs to be n2 words and t needs to be n2*2 | ||
757 | * l is the low words of the output. | ||
758 | * t needs to be n2*3 | ||
759 | */ | ||
760 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
761 | BN_ULONG *t) | ||
762 | { | ||
763 | int i,n; | ||
764 | int c1,c2; | ||
765 | int neg,oneg,zero; | ||
766 | BN_ULONG ll,lc,*lp,*mp; | ||
767 | |||
768 | # ifdef BN_COUNT | ||
769 | fprintf(stderr," bn_mul_high %d * %d\n",n2,n2); | ||
770 | # endif | ||
771 | n=n2/2; | ||
772 | |||
773 | /* Calculate (al-ah)*(bh-bl) */ | ||
774 | neg=zero=0; | ||
775 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | ||
776 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | ||
777 | switch (c1*3+c2) | ||
778 | { | ||
779 | case -4: | ||
780 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
781 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
782 | break; | ||
783 | case -3: | ||
784 | zero=1; | ||
785 | break; | ||
786 | case -2: | ||
787 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
788 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
789 | neg=1; | ||
790 | break; | ||
791 | case -1: | ||
792 | case 0: | ||
793 | case 1: | ||
794 | zero=1; | ||
795 | break; | ||
796 | case 2: | ||
797 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
798 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
799 | neg=1; | ||
800 | break; | ||
801 | case 3: | ||
802 | zero=1; | ||
803 | break; | ||
804 | case 4: | ||
805 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
806 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
807 | break; | ||
808 | } | ||
809 | |||
810 | oneg=neg; | ||
811 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
812 | /* r[10] = (a[1]*b[1]) */ | ||
813 | # ifdef BN_MUL_COMBA | ||
814 | if (n == 8) | ||
815 | { | ||
816 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | ||
817 | bn_mul_comba8(r,&(a[n]),&(b[n])); | ||
818 | } | ||
819 | else | ||
820 | # endif | ||
821 | { | ||
822 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2])); | ||
823 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2])); | ||
824 | } | ||
825 | |||
826 | /* s0 == low(al*bl) | ||
827 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
828 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
829 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
830 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
831 | */ | ||
832 | if (l != NULL) | ||
833 | { | ||
834 | lp= &(t[n2+n]); | ||
835 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | ||
836 | } | ||
837 | else | ||
838 | { | ||
839 | c1=0; | ||
840 | lp= &(r[0]); | ||
841 | } | ||
842 | |||
843 | if (neg) | ||
844 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | ||
845 | else | ||
846 | { | ||
847 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | ||
848 | neg=0; | ||
849 | } | ||
850 | |||
851 | if (l != NULL) | ||
852 | { | ||
853 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | ||
854 | } | ||
855 | else | ||
856 | { | ||
857 | lp= &(t[n2+n]); | ||
858 | mp= &(t[n2]); | ||
859 | for (i=0; i<n; i++) | ||
860 | lp[i]=((~mp[i])+1)&BN_MASK2; | ||
861 | } | ||
862 | |||
863 | /* s[0] = low(al*bl) | ||
864 | * t[3] = high(al*bl) | ||
865 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
866 | * r[10] = (a[1]*b[1]) | ||
867 | */ | ||
868 | /* R[10] = al*bl | ||
869 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
870 | * R[32] = ah*bh | ||
871 | */ | ||
872 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
873 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
874 | * R[3]=r[1]+(carry/borrow) | ||
875 | */ | ||
876 | if (l != NULL) | ||
877 | { | ||
878 | lp= &(t[n2]); | ||
879 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | ||
880 | } | ||
881 | else | ||
882 | { | ||
883 | lp= &(t[n2+n]); | ||
884 | c1=0; | ||
885 | } | ||
886 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | ||
887 | if (oneg) | ||
888 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
889 | else | ||
890 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
891 | |||
892 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); | ||
893 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | ||
894 | if (oneg) | ||
895 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
896 | else | ||
897 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
898 | |||
899 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
900 | { | ||
901 | i=0; | ||
902 | if (c1 > 0) | ||
903 | { | ||
904 | lc=c1; | ||
905 | do { | ||
906 | ll=(r[i]+lc)&BN_MASK2; | ||
907 | r[i++]=ll; | ||
908 | lc=(lc > ll); | ||
909 | } while (lc); | ||
910 | } | ||
911 | else | ||
912 | { | ||
913 | lc= -c1; | ||
914 | do { | ||
915 | ll=r[i]; | ||
916 | r[i++]=(ll-lc)&BN_MASK2; | ||
917 | lc=(lc > ll); | ||
918 | } while (lc); | ||
919 | } | ||
920 | } | ||
921 | if (c2 != 0) /* Add starting at r[1] */ | ||
922 | { | ||
923 | i=n; | ||
924 | if (c2 > 0) | ||
925 | { | ||
926 | lc=c2; | ||
927 | do { | ||
928 | ll=(r[i]+lc)&BN_MASK2; | ||
929 | r[i++]=ll; | ||
930 | lc=(lc > ll); | ||
931 | } while (lc); | ||
932 | } | ||
933 | else | ||
934 | { | ||
935 | lc= -c2; | ||
936 | do { | ||
937 | ll=r[i]; | ||
938 | r[i++]=(ll-lc)&BN_MASK2; | ||
939 | lc=(lc > ll); | ||
940 | } while (lc); | ||
941 | } | ||
942 | } | ||
943 | } | ||
944 | #endif /* BN_RECURSION */ | ||
945 | |||
946 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
947 | { | ||
948 | int ret=0; | ||
949 | int top,al,bl; | ||
950 | BIGNUM *rr; | ||
951 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
952 | int i; | ||
953 | #endif | ||
954 | #ifdef BN_RECURSION | ||
955 | BIGNUM *t=NULL; | ||
956 | int j=0,k; | ||
957 | #endif | ||
958 | |||
959 | #ifdef BN_COUNT | ||
960 | fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top); | ||
961 | #endif | ||
962 | |||
963 | bn_check_top(a); | ||
964 | bn_check_top(b); | ||
965 | bn_check_top(r); | ||
966 | |||
967 | al=a->top; | ||
968 | bl=b->top; | ||
969 | |||
970 | if ((al == 0) || (bl == 0)) | ||
971 | { | ||
972 | BN_zero(r); | ||
973 | return(1); | ||
974 | } | ||
975 | top=al+bl; | ||
976 | |||
977 | BN_CTX_start(ctx); | ||
978 | if ((r == a) || (r == b)) | ||
979 | { | ||
980 | if ((rr = BN_CTX_get(ctx)) == NULL) goto err; | ||
981 | } | ||
982 | else | ||
983 | rr = r; | ||
984 | rr->neg=a->neg^b->neg; | ||
985 | |||
986 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
987 | i = al-bl; | ||
988 | #endif | ||
989 | #ifdef BN_MUL_COMBA | ||
990 | if (i == 0) | ||
991 | { | ||
992 | # if 0 | ||
993 | if (al == 4) | ||
994 | { | ||
995 | if (bn_wexpand(rr,8) == NULL) goto err; | ||
996 | rr->top=8; | ||
997 | bn_mul_comba4(rr->d,a->d,b->d); | ||
998 | goto end; | ||
999 | } | ||
1000 | # endif | ||
1001 | if (al == 8) | ||
1002 | { | ||
1003 | if (bn_wexpand(rr,16) == NULL) goto err; | ||
1004 | rr->top=16; | ||
1005 | bn_mul_comba8(rr->d,a->d,b->d); | ||
1006 | goto end; | ||
1007 | } | ||
1008 | } | ||
1009 | #endif /* BN_MUL_COMBA */ | ||
1010 | #ifdef BN_RECURSION | ||
1011 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) | ||
1012 | { | ||
1013 | if (i >= -1 && i <= 1) | ||
1014 | { | ||
1015 | int sav_j =0; | ||
1016 | /* Find out the power of two lower or equal | ||
1017 | to the longest of the two numbers */ | ||
1018 | if (i >= 0) | ||
1019 | { | ||
1020 | j = BN_num_bits_word((BN_ULONG)al); | ||
1021 | } | ||
1022 | if (i == -1) | ||
1023 | { | ||
1024 | j = BN_num_bits_word((BN_ULONG)bl); | ||
1025 | } | ||
1026 | sav_j = j; | ||
1027 | j = 1<<(j-1); | ||
1028 | assert(j <= al || j <= bl); | ||
1029 | k = j+j; | ||
1030 | t = BN_CTX_get(ctx); | ||
1031 | if (al > j || bl > j) | ||
1032 | { | ||
1033 | bn_wexpand(t,k*4); | ||
1034 | bn_wexpand(rr,k*4); | ||
1035 | bn_mul_part_recursive(rr->d,a->d,b->d, | ||
1036 | j,al-j,bl-j,t->d); | ||
1037 | } | ||
1038 | else /* al <= j || bl <= j */ | ||
1039 | { | ||
1040 | bn_wexpand(t,k*2); | ||
1041 | bn_wexpand(rr,k*2); | ||
1042 | bn_mul_recursive(rr->d,a->d,b->d, | ||
1043 | j,al-j,bl-j,t->d); | ||
1044 | } | ||
1045 | rr->top=top; | ||
1046 | goto end; | ||
1047 | } | ||
1048 | #if 0 | ||
1049 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) | ||
1050 | { | ||
1051 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
1052 | if (bn_wexpand(tmp_bn,al) == NULL) goto err; | ||
1053 | tmp_bn->d[bl]=0; | ||
1054 | bl++; | ||
1055 | i--; | ||
1056 | } | ||
1057 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) | ||
1058 | { | ||
1059 | BIGNUM *tmp_bn = (BIGNUM *)a; | ||
1060 | if (bn_wexpand(tmp_bn,bl) == NULL) goto err; | ||
1061 | tmp_bn->d[al]=0; | ||
1062 | al++; | ||
1063 | i++; | ||
1064 | } | ||
1065 | if (i == 0) | ||
1066 | { | ||
1067 | /* symmetric and > 4 */ | ||
1068 | /* 16 or larger */ | ||
1069 | j=BN_num_bits_word((BN_ULONG)al); | ||
1070 | j=1<<(j-1); | ||
1071 | k=j+j; | ||
1072 | t = BN_CTX_get(ctx); | ||
1073 | if (al == j) /* exact multiple */ | ||
1074 | { | ||
1075 | if (bn_wexpand(t,k*2) == NULL) goto err; | ||
1076 | if (bn_wexpand(rr,k*2) == NULL) goto err; | ||
1077 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | ||
1078 | } | ||
1079 | else | ||
1080 | { | ||
1081 | if (bn_wexpand(t,k*4) == NULL) goto err; | ||
1082 | if (bn_wexpand(rr,k*4) == NULL) goto err; | ||
1083 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | ||
1084 | } | ||
1085 | rr->top=top; | ||
1086 | goto end; | ||
1087 | } | ||
1088 | #endif | ||
1089 | } | ||
1090 | #endif /* BN_RECURSION */ | ||
1091 | if (bn_wexpand(rr,top) == NULL) goto err; | ||
1092 | rr->top=top; | ||
1093 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
1094 | |||
1095 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
1096 | end: | ||
1097 | #endif | ||
1098 | bn_correct_top(rr); | ||
1099 | if (r != rr) BN_copy(r,rr); | ||
1100 | ret=1; | ||
1101 | err: | ||
1102 | bn_check_top(r); | ||
1103 | BN_CTX_end(ctx); | ||
1104 | return(ret); | ||
1105 | } | ||
1106 | |||
1107 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
1108 | { | ||
1109 | BN_ULONG *rr; | ||
1110 | |||
1111 | #ifdef BN_COUNT | ||
1112 | fprintf(stderr," bn_mul_normal %d * %d\n",na,nb); | ||
1113 | #endif | ||
1114 | |||
1115 | if (na < nb) | ||
1116 | { | ||
1117 | int itmp; | ||
1118 | BN_ULONG *ltmp; | ||
1119 | |||
1120 | itmp=na; na=nb; nb=itmp; | ||
1121 | ltmp=a; a=b; b=ltmp; | ||
1122 | |||
1123 | } | ||
1124 | rr= &(r[na]); | ||
1125 | if (nb <= 0) | ||
1126 | { | ||
1127 | (void)bn_mul_words(r,a,na,0); | ||
1128 | return; | ||
1129 | } | ||
1130 | else | ||
1131 | rr[0]=bn_mul_words(r,a,na,b[0]); | ||
1132 | |||
1133 | for (;;) | ||
1134 | { | ||
1135 | if (--nb <= 0) return; | ||
1136 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); | ||
1137 | if (--nb <= 0) return; | ||
1138 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | ||
1139 | if (--nb <= 0) return; | ||
1140 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | ||
1141 | if (--nb <= 0) return; | ||
1142 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | ||
1143 | rr+=4; | ||
1144 | r+=4; | ||
1145 | b+=4; | ||
1146 | } | ||
1147 | } | ||
1148 | |||
1149 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1150 | { | ||
1151 | #ifdef BN_COUNT | ||
1152 | fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n); | ||
1153 | #endif | ||
1154 | bn_mul_words(r,a,n,b[0]); | ||
1155 | |||
1156 | for (;;) | ||
1157 | { | ||
1158 | if (--n <= 0) return; | ||
1159 | bn_mul_add_words(&(r[1]),a,n,b[1]); | ||
1160 | if (--n <= 0) return; | ||
1161 | bn_mul_add_words(&(r[2]),a,n,b[2]); | ||
1162 | if (--n <= 0) return; | ||
1163 | bn_mul_add_words(&(r[3]),a,n,b[3]); | ||
1164 | if (--n <= 0) return; | ||
1165 | bn_mul_add_words(&(r[4]),a,n,b[4]); | ||
1166 | r+=4; | ||
1167 | b+=4; | ||
1168 | } | ||
1169 | } | ||