diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 1171 |
1 files changed, 0 insertions, 1171 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index 7794d59707..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null | |||
@@ -1,1171 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mul.c,v 1.20 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <assert.h> | ||
65 | #include <stdio.h> | ||
66 | #include <string.h> | ||
67 | |||
68 | #include <openssl/opensslconf.h> | ||
69 | |||
70 | #include "bn_lcl.h" | ||
71 | |||
72 | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) | ||
73 | /* Here follows specialised variants of bn_add_words() and | ||
74 | bn_sub_words(). They have the property performing operations on | ||
75 | arrays of different sizes. The sizes of those arrays is expressed through | ||
76 | cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, | ||
77 | which is the delta between the two lengths, calculated as len(a)-len(b). | ||
78 | All lengths are the number of BN_ULONGs... For the operations that require | ||
79 | a result array as parameter, it must have the length cl+abs(dl). | ||
80 | These functions should probably end up in bn_asm.c as soon as there are | ||
81 | assembler counterparts for the systems that use assembler files. */ | ||
82 | |||
83 | BN_ULONG | ||
84 | bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, | ||
85 | int dl) | ||
86 | { | ||
87 | BN_ULONG c, t; | ||
88 | |||
89 | assert(cl >= 0); | ||
90 | c = bn_sub_words(r, a, b, cl); | ||
91 | |||
92 | if (dl == 0) | ||
93 | return c; | ||
94 | |||
95 | r += cl; | ||
96 | a += cl; | ||
97 | b += cl; | ||
98 | |||
99 | if (dl < 0) { | ||
100 | #ifdef BN_COUNT | ||
101 | fprintf(stderr, | ||
102 | " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", | ||
103 | cl, dl, c); | ||
104 | #endif | ||
105 | for (;;) { | ||
106 | t = b[0]; | ||
107 | r[0] = (0 - t - c) & BN_MASK2; | ||
108 | if (t != 0) | ||
109 | c = 1; | ||
110 | if (++dl >= 0) | ||
111 | break; | ||
112 | |||
113 | t = b[1]; | ||
114 | r[1] = (0 - t - c) & BN_MASK2; | ||
115 | if (t != 0) | ||
116 | c = 1; | ||
117 | if (++dl >= 0) | ||
118 | break; | ||
119 | |||
120 | t = b[2]; | ||
121 | r[2] = (0 - t - c) & BN_MASK2; | ||
122 | if (t != 0) | ||
123 | c = 1; | ||
124 | if (++dl >= 0) | ||
125 | break; | ||
126 | |||
127 | t = b[3]; | ||
128 | r[3] = (0 - t - c) & BN_MASK2; | ||
129 | if (t != 0) | ||
130 | c = 1; | ||
131 | if (++dl >= 0) | ||
132 | break; | ||
133 | |||
134 | b += 4; | ||
135 | r += 4; | ||
136 | } | ||
137 | } else { | ||
138 | int save_dl = dl; | ||
139 | #ifdef BN_COUNT | ||
140 | fprintf(stderr, | ||
141 | " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", | ||
142 | cl, dl, c); | ||
143 | #endif | ||
144 | while (c) { | ||
145 | t = a[0]; | ||
146 | r[0] = (t - c) & BN_MASK2; | ||
147 | if (t != 0) | ||
148 | c = 0; | ||
149 | if (--dl <= 0) | ||
150 | break; | ||
151 | |||
152 | t = a[1]; | ||
153 | r[1] = (t - c) & BN_MASK2; | ||
154 | if (t != 0) | ||
155 | c = 0; | ||
156 | if (--dl <= 0) | ||
157 | break; | ||
158 | |||
159 | t = a[2]; | ||
160 | r[2] = (t - c) & BN_MASK2; | ||
161 | if (t != 0) | ||
162 | c = 0; | ||
163 | if (--dl <= 0) | ||
164 | break; | ||
165 | |||
166 | t = a[3]; | ||
167 | r[3] = (t - c) & BN_MASK2; | ||
168 | if (t != 0) | ||
169 | c = 0; | ||
170 | if (--dl <= 0) | ||
171 | break; | ||
172 | |||
173 | save_dl = dl; | ||
174 | a += 4; | ||
175 | r += 4; | ||
176 | } | ||
177 | if (dl > 0) { | ||
178 | #ifdef BN_COUNT | ||
179 | fprintf(stderr, | ||
180 | " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", | ||
181 | cl, dl); | ||
182 | #endif | ||
183 | if (save_dl > dl) { | ||
184 | switch (save_dl - dl) { | ||
185 | case 1: | ||
186 | r[1] = a[1]; | ||
187 | if (--dl <= 0) | ||
188 | break; | ||
189 | case 2: | ||
190 | r[2] = a[2]; | ||
191 | if (--dl <= 0) | ||
192 | break; | ||
193 | case 3: | ||
194 | r[3] = a[3]; | ||
195 | if (--dl <= 0) | ||
196 | break; | ||
197 | } | ||
198 | a += 4; | ||
199 | r += 4; | ||
200 | } | ||
201 | } | ||
202 | if (dl > 0) { | ||
203 | #ifdef BN_COUNT | ||
204 | fprintf(stderr, | ||
205 | " bn_sub_part_words %d + %d (dl > 0, copy)\n", | ||
206 | cl, dl); | ||
207 | #endif | ||
208 | for (;;) { | ||
209 | r[0] = a[0]; | ||
210 | if (--dl <= 0) | ||
211 | break; | ||
212 | r[1] = a[1]; | ||
213 | if (--dl <= 0) | ||
214 | break; | ||
215 | r[2] = a[2]; | ||
216 | if (--dl <= 0) | ||
217 | break; | ||
218 | r[3] = a[3]; | ||
219 | if (--dl <= 0) | ||
220 | break; | ||
221 | |||
222 | a += 4; | ||
223 | r += 4; | ||
224 | } | ||
225 | } | ||
226 | } | ||
227 | return c; | ||
228 | } | ||
229 | #endif | ||
230 | |||
231 | BN_ULONG | ||
232 | bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, | ||
233 | int dl) | ||
234 | { | ||
235 | BN_ULONG c, l, t; | ||
236 | |||
237 | assert(cl >= 0); | ||
238 | c = bn_add_words(r, a, b, cl); | ||
239 | |||
240 | if (dl == 0) | ||
241 | return c; | ||
242 | |||
243 | r += cl; | ||
244 | a += cl; | ||
245 | b += cl; | ||
246 | |||
247 | if (dl < 0) { | ||
248 | int save_dl = dl; | ||
249 | #ifdef BN_COUNT | ||
250 | fprintf(stderr, | ||
251 | " bn_add_part_words %d + %d (dl < 0, c = %d)\n", | ||
252 | cl, dl, c); | ||
253 | #endif | ||
254 | while (c) { | ||
255 | l = (c + b[0]) & BN_MASK2; | ||
256 | c = (l < c); | ||
257 | r[0] = l; | ||
258 | if (++dl >= 0) | ||
259 | break; | ||
260 | |||
261 | l = (c + b[1]) & BN_MASK2; | ||
262 | c = (l < c); | ||
263 | r[1] = l; | ||
264 | if (++dl >= 0) | ||
265 | break; | ||
266 | |||
267 | l = (c + b[2]) & BN_MASK2; | ||
268 | c = (l < c); | ||
269 | r[2] = l; | ||
270 | if (++dl >= 0) | ||
271 | break; | ||
272 | |||
273 | l = (c + b[3]) & BN_MASK2; | ||
274 | c = (l < c); | ||
275 | r[3] = l; | ||
276 | if (++dl >= 0) | ||
277 | break; | ||
278 | |||
279 | save_dl = dl; | ||
280 | b += 4; | ||
281 | r += 4; | ||
282 | } | ||
283 | if (dl < 0) { | ||
284 | #ifdef BN_COUNT | ||
285 | fprintf(stderr, | ||
286 | " bn_add_part_words %d + %d (dl < 0, c == 0)\n", | ||
287 | cl, dl); | ||
288 | #endif | ||
289 | if (save_dl < dl) { | ||
290 | switch (dl - save_dl) { | ||
291 | case 1: | ||
292 | r[1] = b[1]; | ||
293 | if (++dl >= 0) | ||
294 | break; | ||
295 | case 2: | ||
296 | r[2] = b[2]; | ||
297 | if (++dl >= 0) | ||
298 | break; | ||
299 | case 3: | ||
300 | r[3] = b[3]; | ||
301 | if (++dl >= 0) | ||
302 | break; | ||
303 | } | ||
304 | b += 4; | ||
305 | r += 4; | ||
306 | } | ||
307 | } | ||
308 | if (dl < 0) { | ||
309 | #ifdef BN_COUNT | ||
310 | fprintf(stderr, | ||
311 | " bn_add_part_words %d + %d (dl < 0, copy)\n", | ||
312 | cl, dl); | ||
313 | #endif | ||
314 | for (;;) { | ||
315 | r[0] = b[0]; | ||
316 | if (++dl >= 0) | ||
317 | break; | ||
318 | r[1] = b[1]; | ||
319 | if (++dl >= 0) | ||
320 | break; | ||
321 | r[2] = b[2]; | ||
322 | if (++dl >= 0) | ||
323 | break; | ||
324 | r[3] = b[3]; | ||
325 | if (++dl >= 0) | ||
326 | break; | ||
327 | |||
328 | b += 4; | ||
329 | r += 4; | ||
330 | } | ||
331 | } | ||
332 | } else { | ||
333 | int save_dl = dl; | ||
334 | #ifdef BN_COUNT | ||
335 | fprintf(stderr, | ||
336 | " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); | ||
337 | #endif | ||
338 | while (c) { | ||
339 | t = (a[0] + c) & BN_MASK2; | ||
340 | c = (t < c); | ||
341 | r[0] = t; | ||
342 | if (--dl <= 0) | ||
343 | break; | ||
344 | |||
345 | t = (a[1] + c) & BN_MASK2; | ||
346 | c = (t < c); | ||
347 | r[1] = t; | ||
348 | if (--dl <= 0) | ||
349 | break; | ||
350 | |||
351 | t = (a[2] + c) & BN_MASK2; | ||
352 | c = (t < c); | ||
353 | r[2] = t; | ||
354 | if (--dl <= 0) | ||
355 | break; | ||
356 | |||
357 | t = (a[3] + c) & BN_MASK2; | ||
358 | c = (t < c); | ||
359 | r[3] = t; | ||
360 | if (--dl <= 0) | ||
361 | break; | ||
362 | |||
363 | save_dl = dl; | ||
364 | a += 4; | ||
365 | r += 4; | ||
366 | } | ||
367 | #ifdef BN_COUNT | ||
368 | fprintf(stderr, | ||
369 | " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
370 | #endif | ||
371 | if (dl > 0) { | ||
372 | if (save_dl > dl) { | ||
373 | switch (save_dl - dl) { | ||
374 | case 1: | ||
375 | r[1] = a[1]; | ||
376 | if (--dl <= 0) | ||
377 | break; | ||
378 | case 2: | ||
379 | r[2] = a[2]; | ||
380 | if (--dl <= 0) | ||
381 | break; | ||
382 | case 3: | ||
383 | r[3] = a[3]; | ||
384 | if (--dl <= 0) | ||
385 | break; | ||
386 | } | ||
387 | a += 4; | ||
388 | r += 4; | ||
389 | } | ||
390 | } | ||
391 | if (dl > 0) { | ||
392 | #ifdef BN_COUNT | ||
393 | fprintf(stderr, | ||
394 | " bn_add_part_words %d + %d (dl > 0, copy)\n", | ||
395 | cl, dl); | ||
396 | #endif | ||
397 | for (;;) { | ||
398 | r[0] = a[0]; | ||
399 | if (--dl <= 0) | ||
400 | break; | ||
401 | r[1] = a[1]; | ||
402 | if (--dl <= 0) | ||
403 | break; | ||
404 | r[2] = a[2]; | ||
405 | if (--dl <= 0) | ||
406 | break; | ||
407 | r[3] = a[3]; | ||
408 | if (--dl <= 0) | ||
409 | break; | ||
410 | |||
411 | a += 4; | ||
412 | r += 4; | ||
413 | } | ||
414 | } | ||
415 | } | ||
416 | return c; | ||
417 | } | ||
418 | |||
419 | #ifdef BN_RECURSION | ||
420 | /* Karatsuba recursive multiplication algorithm | ||
421 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
422 | |||
423 | /* r is 2*n2 words in size, | ||
424 | * a and b are both n2 words in size. | ||
425 | * n2 must be a power of 2. | ||
426 | * We multiply and return the result. | ||
427 | * t must be 2*n2 words in size | ||
428 | * We calculate | ||
429 | * a[0]*b[0] | ||
430 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
431 | * a[1]*b[1] | ||
432 | */ | ||
433 | /* dnX may not be positive, but n2/2+dnX has to be */ | ||
434 | void | ||
435 | bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, | ||
436 | int dnb, BN_ULONG *t) | ||
437 | { | ||
438 | int n = n2 / 2, c1, c2; | ||
439 | int tna = n + dna, tnb = n + dnb; | ||
440 | unsigned int neg, zero; | ||
441 | BN_ULONG ln, lo, *p; | ||
442 | |||
443 | # ifdef BN_COUNT | ||
444 | fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); | ||
445 | # endif | ||
446 | # ifdef BN_MUL_COMBA | ||
447 | # if 0 | ||
448 | if (n2 == 4) { | ||
449 | bn_mul_comba4(r, a, b); | ||
450 | return; | ||
451 | } | ||
452 | # endif | ||
453 | /* Only call bn_mul_comba 8 if n2 == 8 and the | ||
454 | * two arrays are complete [steve] | ||
455 | */ | ||
456 | if (n2 == 8 && dna == 0 && dnb == 0) { | ||
457 | bn_mul_comba8(r, a, b); | ||
458 | return; | ||
459 | } | ||
460 | # endif /* BN_MUL_COMBA */ | ||
461 | /* Else do normal multiply */ | ||
462 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { | ||
463 | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); | ||
464 | if ((dna + dnb) < 0) | ||
465 | memset(&r[2*n2 + dna + dnb], 0, | ||
466 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
467 | return; | ||
468 | } | ||
469 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
470 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | ||
471 | c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n); | ||
472 | zero = neg = 0; | ||
473 | switch (c1 * 3 + c2) { | ||
474 | case -4: | ||
475 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | ||
476 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | ||
477 | break; | ||
478 | case -3: | ||
479 | zero = 1; | ||
480 | break; | ||
481 | case -2: | ||
482 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | ||
483 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ | ||
484 | neg = 1; | ||
485 | break; | ||
486 | case -1: | ||
487 | case 0: | ||
488 | case 1: | ||
489 | zero = 1; | ||
490 | break; | ||
491 | case 2: | ||
492 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ | ||
493 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | ||
494 | neg = 1; | ||
495 | break; | ||
496 | case 3: | ||
497 | zero = 1; | ||
498 | break; | ||
499 | case 4: | ||
500 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); | ||
501 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); | ||
502 | break; | ||
503 | } | ||
504 | |||
505 | # ifdef BN_MUL_COMBA | ||
506 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take | ||
507 | extra args to do this well */ | ||
508 | { | ||
509 | if (!zero) | ||
510 | bn_mul_comba4(&(t[n2]), t, &(t[n])); | ||
511 | else | ||
512 | memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); | ||
513 | |||
514 | bn_mul_comba4(r, a, b); | ||
515 | bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); | ||
516 | } else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could | ||
517 | take extra args to do this | ||
518 | well */ | ||
519 | { | ||
520 | if (!zero) | ||
521 | bn_mul_comba8(&(t[n2]), t, &(t[n])); | ||
522 | else | ||
523 | memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); | ||
524 | |||
525 | bn_mul_comba8(r, a, b); | ||
526 | bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); | ||
527 | } else | ||
528 | # endif /* BN_MUL_COMBA */ | ||
529 | { | ||
530 | p = &(t[n2 * 2]); | ||
531 | if (!zero) | ||
532 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | ||
533 | else | ||
534 | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); | ||
535 | bn_mul_recursive(r, a, b, n, 0, 0, p); | ||
536 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); | ||
537 | } | ||
538 | |||
539 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
540 | * r[10] holds (a[0]*b[0]) | ||
541 | * r[32] holds (b[1]*b[1]) | ||
542 | */ | ||
543 | |||
544 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | ||
545 | |||
546 | if (neg) /* if t[32] is negative */ | ||
547 | { | ||
548 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | ||
549 | } else { | ||
550 | /* Might have a carry */ | ||
551 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | ||
552 | } | ||
553 | |||
554 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
555 | * r[10] holds (a[0]*b[0]) | ||
556 | * r[32] holds (b[1]*b[1]) | ||
557 | * c1 holds the carry bits | ||
558 | */ | ||
559 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
560 | if (c1) { | ||
561 | p = &(r[n + n2]); | ||
562 | lo= *p; | ||
563 | ln = (lo + c1) & BN_MASK2; | ||
564 | *p = ln; | ||
565 | |||
566 | /* The overflow will stop before we over write | ||
567 | * words we should not overwrite */ | ||
568 | if (ln < (BN_ULONG)c1) { | ||
569 | do { | ||
570 | p++; | ||
571 | lo= *p; | ||
572 | ln = (lo + 1) & BN_MASK2; | ||
573 | *p = ln; | ||
574 | } while (ln == 0); | ||
575 | } | ||
576 | } | ||
577 | } | ||
578 | |||
579 | /* n+tn is the word length | ||
580 | * t needs to be n*4 is size, as does r */ | ||
581 | /* tnX may not be negative but less than n */ | ||
582 | void | ||
583 | bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, | ||
584 | int tnb, BN_ULONG *t) | ||
585 | { | ||
586 | int i, j, n2 = n * 2; | ||
587 | int c1, c2, neg; | ||
588 | BN_ULONG ln, lo, *p; | ||
589 | |||
590 | # ifdef BN_COUNT | ||
591 | fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n", | ||
592 | n, tna, n, tnb); | ||
593 | # endif | ||
594 | if (n < 8) { | ||
595 | bn_mul_normal(r, a, n + tna, b, n + tnb); | ||
596 | return; | ||
597 | } | ||
598 | |||
599 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
600 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | ||
601 | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); | ||
602 | neg = 0; | ||
603 | switch (c1 * 3 + c2) { | ||
604 | case -4: | ||
605 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | ||
606 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | ||
607 | break; | ||
608 | case -3: | ||
609 | /* break; */ | ||
610 | case -2: | ||
611 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | ||
612 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ | ||
613 | neg = 1; | ||
614 | break; | ||
615 | case -1: | ||
616 | case 0: | ||
617 | case 1: | ||
618 | /* break; */ | ||
619 | case 2: | ||
620 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ | ||
621 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | ||
622 | neg = 1; | ||
623 | break; | ||
624 | case 3: | ||
625 | /* break; */ | ||
626 | case 4: | ||
627 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); | ||
628 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); | ||
629 | break; | ||
630 | } | ||
631 | /* The zero case isn't yet implemented here. The speedup | ||
632 | would probably be negligible. */ | ||
633 | # if 0 | ||
634 | if (n == 4) { | ||
635 | bn_mul_comba4(&(t[n2]), t, &(t[n])); | ||
636 | bn_mul_comba4(r, a, b); | ||
637 | bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); | ||
638 | memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); | ||
639 | } else | ||
640 | # endif | ||
641 | if (n == 8) { | ||
642 | bn_mul_comba8(&(t[n2]), t, &(t[n])); | ||
643 | bn_mul_comba8(r, a, b); | ||
644 | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); | ||
645 | memset(&(r[n2 + tna + tnb]), 0, | ||
646 | sizeof(BN_ULONG) * (n2 - tna - tnb)); | ||
647 | } else { | ||
648 | p = &(t[n2*2]); | ||
649 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | ||
650 | bn_mul_recursive(r, a, b, n, 0, 0, p); | ||
651 | i = n / 2; | ||
652 | /* If there is only a bottom half to the number, | ||
653 | * just do it */ | ||
654 | if (tna > tnb) | ||
655 | j = tna - i; | ||
656 | else | ||
657 | j = tnb - i; | ||
658 | if (j == 0) { | ||
659 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), | ||
660 | i, tna - i, tnb - i, p); | ||
661 | memset(&(r[n2 + i * 2]), 0, | ||
662 | sizeof(BN_ULONG) * (n2 - i * 2)); | ||
663 | } | ||
664 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
665 | { | ||
666 | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), | ||
667 | i, tna - i, tnb - i, p); | ||
668 | memset(&(r[n2 + tna + tnb]), 0, | ||
669 | sizeof(BN_ULONG) * (n2 - tna - tnb)); | ||
670 | } | ||
671 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
672 | { | ||
673 | memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); | ||
674 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && | ||
675 | tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { | ||
676 | bn_mul_normal(&(r[n2]), &(a[n]), tna, | ||
677 | &(b[n]), tnb); | ||
678 | } else { | ||
679 | for (;;) { | ||
680 | i /= 2; | ||
681 | /* these simplified conditions work | ||
682 | * exclusively because difference | ||
683 | * between tna and tnb is 1 or 0 */ | ||
684 | if (i < tna || i < tnb) { | ||
685 | bn_mul_part_recursive(&(r[n2]), | ||
686 | &(a[n]), &(b[n]), i, | ||
687 | tna - i, tnb - i, p); | ||
688 | break; | ||
689 | } else if (i == tna || i == tnb) { | ||
690 | bn_mul_recursive(&(r[n2]), | ||
691 | &(a[n]), &(b[n]), i, | ||
692 | tna - i, tnb - i, p); | ||
693 | break; | ||
694 | } | ||
695 | } | ||
696 | } | ||
697 | } | ||
698 | } | ||
699 | |||
700 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
701 | * r[10] holds (a[0]*b[0]) | ||
702 | * r[32] holds (b[1]*b[1]) | ||
703 | */ | ||
704 | |||
705 | c1 = (int)(bn_add_words(t, r,&(r[n2]), n2)); | ||
706 | |||
707 | if (neg) /* if t[32] is negative */ | ||
708 | { | ||
709 | c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2)); | ||
710 | } else { | ||
711 | /* Might have a carry */ | ||
712 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | ||
713 | } | ||
714 | |||
715 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
716 | * r[10] holds (a[0]*b[0]) | ||
717 | * r[32] holds (b[1]*b[1]) | ||
718 | * c1 holds the carry bits | ||
719 | */ | ||
720 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
721 | if (c1) { | ||
722 | p = &(r[n + n2]); | ||
723 | lo= *p; | ||
724 | ln = (lo + c1)&BN_MASK2; | ||
725 | *p = ln; | ||
726 | |||
727 | /* The overflow will stop before we over write | ||
728 | * words we should not overwrite */ | ||
729 | if (ln < (BN_ULONG)c1) { | ||
730 | do { | ||
731 | p++; | ||
732 | lo= *p; | ||
733 | ln = (lo + 1) & BN_MASK2; | ||
734 | *p = ln; | ||
735 | } while (ln == 0); | ||
736 | } | ||
737 | } | ||
738 | } | ||
739 | |||
740 | /* a and b must be the same size, which is n2. | ||
741 | * r needs to be n2 words and t needs to be n2*2 | ||
742 | */ | ||
743 | void | ||
744 | bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t) | ||
745 | { | ||
746 | int n = n2 / 2; | ||
747 | |||
748 | # ifdef BN_COUNT | ||
749 | fprintf(stderr, " bn_mul_low_recursive %d * %d\n",n2,n2); | ||
750 | # endif | ||
751 | |||
752 | bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); | ||
753 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { | ||
754 | bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); | ||
755 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | ||
756 | bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); | ||
757 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | ||
758 | } else { | ||
759 | bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); | ||
760 | bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); | ||
761 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | ||
762 | bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); | ||
763 | } | ||
764 | } | ||
765 | |||
766 | /* a and b must be the same size, which is n2. | ||
767 | * r needs to be n2 words and t needs to be n2*2 | ||
768 | * l is the low words of the output. | ||
769 | * t needs to be n2*3 | ||
770 | */ | ||
771 | void | ||
772 | bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
773 | BN_ULONG *t) | ||
774 | { | ||
775 | int i, n; | ||
776 | int c1, c2; | ||
777 | int neg, oneg, zero; | ||
778 | BN_ULONG ll, lc, *lp, *mp; | ||
779 | |||
780 | # ifdef BN_COUNT | ||
781 | fprintf(stderr, " bn_mul_high %d * %d\n",n2,n2); | ||
782 | # endif | ||
783 | n = n2 / 2; | ||
784 | |||
785 | /* Calculate (al-ah)*(bh-bl) */ | ||
786 | neg = zero = 0; | ||
787 | c1 = bn_cmp_words(&(a[0]), &(a[n]), n); | ||
788 | c2 = bn_cmp_words(&(b[n]), &(b[0]), n); | ||
789 | switch (c1 * 3 + c2) { | ||
790 | case -4: | ||
791 | bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); | ||
792 | bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); | ||
793 | break; | ||
794 | case -3: | ||
795 | zero = 1; | ||
796 | break; | ||
797 | case -2: | ||
798 | bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); | ||
799 | bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); | ||
800 | neg = 1; | ||
801 | break; | ||
802 | case -1: | ||
803 | case 0: | ||
804 | case 1: | ||
805 | zero = 1; | ||
806 | break; | ||
807 | case 2: | ||
808 | bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); | ||
809 | bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); | ||
810 | neg = 1; | ||
811 | break; | ||
812 | case 3: | ||
813 | zero = 1; | ||
814 | break; | ||
815 | case 4: | ||
816 | bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); | ||
817 | bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); | ||
818 | break; | ||
819 | } | ||
820 | |||
821 | oneg = neg; | ||
822 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
823 | /* r[10] = (a[1]*b[1]) */ | ||
824 | # ifdef BN_MUL_COMBA | ||
825 | if (n == 8) { | ||
826 | bn_mul_comba8(&(t[0]), &(r[0]), &(r[n])); | ||
827 | bn_mul_comba8(r, &(a[n]), &(b[n])); | ||
828 | } else | ||
829 | # endif | ||
830 | { | ||
831 | bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2])); | ||
832 | bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2])); | ||
833 | } | ||
834 | |||
835 | /* s0 == low(al*bl) | ||
836 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
837 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
838 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
839 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
840 | */ | ||
841 | if (l != NULL) { | ||
842 | lp = &(t[n2 + n]); | ||
843 | c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n)); | ||
844 | } else { | ||
845 | c1 = 0; | ||
846 | lp = &(r[0]); | ||
847 | } | ||
848 | |||
849 | if (neg) | ||
850 | neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n)); | ||
851 | else { | ||
852 | bn_add_words(&(t[n2]), lp, &(t[0]), n); | ||
853 | neg = 0; | ||
854 | } | ||
855 | |||
856 | if (l != NULL) { | ||
857 | bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n); | ||
858 | } else { | ||
859 | lp = &(t[n2 + n]); | ||
860 | mp = &(t[n2]); | ||
861 | for (i = 0; i < n; i++) | ||
862 | lp[i] = ((~mp[i]) + 1) & BN_MASK2; | ||
863 | } | ||
864 | |||
865 | /* s[0] = low(al*bl) | ||
866 | * t[3] = high(al*bl) | ||
867 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
868 | * r[10] = (a[1]*b[1]) | ||
869 | */ | ||
870 | /* R[10] = al*bl | ||
871 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
872 | * R[32] = ah*bh | ||
873 | */ | ||
874 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
875 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
876 | * R[3]=r[1]+(carry/borrow) | ||
877 | */ | ||
878 | if (l != NULL) { | ||
879 | lp = &(t[n2]); | ||
880 | c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n)); | ||
881 | } else { | ||
882 | lp = &(t[n2 + n]); | ||
883 | c1 = 0; | ||
884 | } | ||
885 | c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n)); | ||
886 | if (oneg) | ||
887 | c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n)); | ||
888 | else | ||
889 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n)); | ||
890 | |||
891 | c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n)); | ||
892 | c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n)); | ||
893 | if (oneg) | ||
894 | c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n)); | ||
895 | else | ||
896 | c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n)); | ||
897 | |||
898 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
899 | { | ||
900 | i = 0; | ||
901 | if (c1 > 0) { | ||
902 | lc = c1; | ||
903 | do { | ||
904 | ll = (r[i] + lc) & BN_MASK2; | ||
905 | r[i++] = ll; | ||
906 | lc = (lc > ll); | ||
907 | } while (lc); | ||
908 | } else { | ||
909 | lc = -c1; | ||
910 | do { | ||
911 | ll = r[i]; | ||
912 | r[i++] = (ll - lc) & BN_MASK2; | ||
913 | lc = (lc > ll); | ||
914 | } while (lc); | ||
915 | } | ||
916 | } | ||
917 | if (c2 != 0) /* Add starting at r[1] */ | ||
918 | { | ||
919 | i = n; | ||
920 | if (c2 > 0) { | ||
921 | lc = c2; | ||
922 | do { | ||
923 | ll = (r[i] + lc) & BN_MASK2; | ||
924 | r[i++] = ll; | ||
925 | lc = (lc > ll); | ||
926 | } while (lc); | ||
927 | } else { | ||
928 | lc = -c2; | ||
929 | do { | ||
930 | ll = r[i]; | ||
931 | r[i++] = (ll - lc) & BN_MASK2; | ||
932 | lc = (lc > ll); | ||
933 | } while (lc); | ||
934 | } | ||
935 | } | ||
936 | } | ||
937 | #endif /* BN_RECURSION */ | ||
938 | |||
939 | int | ||
940 | BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
941 | { | ||
942 | int ret = 0; | ||
943 | int top, al, bl; | ||
944 | BIGNUM *rr; | ||
945 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
946 | int i; | ||
947 | #endif | ||
948 | #ifdef BN_RECURSION | ||
949 | BIGNUM *t = NULL; | ||
950 | int j = 0, k; | ||
951 | #endif | ||
952 | |||
953 | #ifdef BN_COUNT | ||
954 | fprintf(stderr, "BN_mul %d * %d\n",a->top,b->top); | ||
955 | #endif | ||
956 | |||
957 | bn_check_top(a); | ||
958 | bn_check_top(b); | ||
959 | bn_check_top(r); | ||
960 | |||
961 | al = a->top; | ||
962 | bl = b->top; | ||
963 | |||
964 | if ((al == 0) || (bl == 0)) { | ||
965 | BN_zero(r); | ||
966 | return (1); | ||
967 | } | ||
968 | top = al + bl; | ||
969 | |||
970 | BN_CTX_start(ctx); | ||
971 | if ((r == a) || (r == b)) { | ||
972 | if ((rr = BN_CTX_get(ctx)) == NULL) | ||
973 | goto err; | ||
974 | } else | ||
975 | rr = r; | ||
976 | rr->neg = a->neg ^ b->neg; | ||
977 | |||
978 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
979 | i = al - bl; | ||
980 | #endif | ||
981 | #ifdef BN_MUL_COMBA | ||
982 | if (i == 0) { | ||
983 | # if 0 | ||
984 | if (al == 4) { | ||
985 | if (bn_wexpand(rr, 8) == NULL) | ||
986 | goto err; | ||
987 | rr->top = 8; | ||
988 | bn_mul_comba4(rr->d, a->d, b->d); | ||
989 | goto end; | ||
990 | } | ||
991 | # endif | ||
992 | if (al == 8) { | ||
993 | if (bn_wexpand(rr, 16) == NULL) | ||
994 | goto err; | ||
995 | rr->top = 16; | ||
996 | bn_mul_comba8(rr->d, a->d, b->d); | ||
997 | goto end; | ||
998 | } | ||
999 | } | ||
1000 | #endif /* BN_MUL_COMBA */ | ||
1001 | #ifdef BN_RECURSION | ||
1002 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { | ||
1003 | if (i >= -1 && i <= 1) { | ||
1004 | /* Find out the power of two lower or equal | ||
1005 | to the longest of the two numbers */ | ||
1006 | if (i >= 0) { | ||
1007 | j = BN_num_bits_word((BN_ULONG)al); | ||
1008 | } | ||
1009 | if (i == -1) { | ||
1010 | j = BN_num_bits_word((BN_ULONG)bl); | ||
1011 | } | ||
1012 | j = 1 << (j - 1); | ||
1013 | assert(j <= al || j <= bl); | ||
1014 | k = j + j; | ||
1015 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
1016 | goto err; | ||
1017 | if (al > j || bl > j) { | ||
1018 | if (bn_wexpand(t, k * 4) == NULL) | ||
1019 | goto err; | ||
1020 | if (bn_wexpand(rr, k * 4) == NULL) | ||
1021 | goto err; | ||
1022 | bn_mul_part_recursive(rr->d, a->d, b->d, | ||
1023 | j, al - j, bl - j, t->d); | ||
1024 | } | ||
1025 | else /* al <= j || bl <= j */ | ||
1026 | { | ||
1027 | if (bn_wexpand(t, k * 2) == NULL) | ||
1028 | goto err; | ||
1029 | if (bn_wexpand(rr, k * 2) == NULL) | ||
1030 | goto err; | ||
1031 | bn_mul_recursive(rr->d, a->d, b->d, | ||
1032 | j, al - j, bl - j, t->d); | ||
1033 | } | ||
1034 | rr->top = top; | ||
1035 | goto end; | ||
1036 | } | ||
1037 | #if 0 | ||
1038 | if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { | ||
1039 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
1040 | if (bn_wexpand(tmp_bn, al) == NULL) | ||
1041 | goto err; | ||
1042 | tmp_bn->d[bl] = 0; | ||
1043 | bl++; | ||
1044 | i--; | ||
1045 | } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { | ||
1046 | BIGNUM *tmp_bn = (BIGNUM *)a; | ||
1047 | if (bn_wexpand(tmp_bn, bl) == NULL) | ||
1048 | goto err; | ||
1049 | tmp_bn->d[al] = 0; | ||
1050 | al++; | ||
1051 | i++; | ||
1052 | } | ||
1053 | if (i == 0) { | ||
1054 | /* symmetric and > 4 */ | ||
1055 | /* 16 or larger */ | ||
1056 | j = BN_num_bits_word((BN_ULONG)al); | ||
1057 | j = 1 << (j - 1); | ||
1058 | k = j + j; | ||
1059 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
1060 | goto err; | ||
1061 | if (al == j) /* exact multiple */ | ||
1062 | { | ||
1063 | if (bn_wexpand(t, k * 2) == NULL) | ||
1064 | goto err; | ||
1065 | if (bn_wexpand(rr, k * 2) == NULL) | ||
1066 | goto err; | ||
1067 | bn_mul_recursive(rr->d, a->d, b->d, al, t->d); | ||
1068 | } else { | ||
1069 | if (bn_wexpand(t, k * 4) == NULL) | ||
1070 | goto err; | ||
1071 | if (bn_wexpand(rr, k * 4) == NULL) | ||
1072 | goto err; | ||
1073 | bn_mul_part_recursive(rr->d, a->d, b->d, | ||
1074 | al - j, j, t->d); | ||
1075 | } | ||
1076 | rr->top = top; | ||
1077 | goto end; | ||
1078 | } | ||
1079 | #endif | ||
1080 | } | ||
1081 | #endif /* BN_RECURSION */ | ||
1082 | if (bn_wexpand(rr, top) == NULL) | ||
1083 | goto err; | ||
1084 | rr->top = top; | ||
1085 | bn_mul_normal(rr->d, a->d, al, b->d, bl); | ||
1086 | |||
1087 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
1088 | end: | ||
1089 | #endif | ||
1090 | bn_correct_top(rr); | ||
1091 | if (r != rr) | ||
1092 | BN_copy(r, rr); | ||
1093 | ret = 1; | ||
1094 | err: | ||
1095 | bn_check_top(r); | ||
1096 | BN_CTX_end(ctx); | ||
1097 | return (ret); | ||
1098 | } | ||
1099 | |||
1100 | void | ||
1101 | bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
1102 | { | ||
1103 | BN_ULONG *rr; | ||
1104 | |||
1105 | #ifdef BN_COUNT | ||
1106 | fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb); | ||
1107 | #endif | ||
1108 | |||
1109 | if (na < nb) { | ||
1110 | int itmp; | ||
1111 | BN_ULONG *ltmp; | ||
1112 | |||
1113 | itmp = na; | ||
1114 | na = nb; | ||
1115 | nb = itmp; | ||
1116 | ltmp = a; | ||
1117 | a = b; | ||
1118 | b = ltmp; | ||
1119 | |||
1120 | } | ||
1121 | rr = &(r[na]); | ||
1122 | if (nb <= 0) { | ||
1123 | (void)bn_mul_words(r, a, na, 0); | ||
1124 | return; | ||
1125 | } else | ||
1126 | rr[0] = bn_mul_words(r, a, na, b[0]); | ||
1127 | |||
1128 | for (;;) { | ||
1129 | if (--nb <= 0) | ||
1130 | return; | ||
1131 | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); | ||
1132 | if (--nb <= 0) | ||
1133 | return; | ||
1134 | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); | ||
1135 | if (--nb <= 0) | ||
1136 | return; | ||
1137 | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); | ||
1138 | if (--nb <= 0) | ||
1139 | return; | ||
1140 | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); | ||
1141 | rr += 4; | ||
1142 | r += 4; | ||
1143 | b += 4; | ||
1144 | } | ||
1145 | } | ||
1146 | |||
1147 | void | ||
1148 | bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1149 | { | ||
1150 | #ifdef BN_COUNT | ||
1151 | fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n); | ||
1152 | #endif | ||
1153 | bn_mul_words(r, a, n, b[0]); | ||
1154 | |||
1155 | for (;;) { | ||
1156 | if (--n <= 0) | ||
1157 | return; | ||
1158 | bn_mul_add_words(&(r[1]), a, n, b[1]); | ||
1159 | if (--n <= 0) | ||
1160 | return; | ||
1161 | bn_mul_add_words(&(r[2]), a, n, b[2]); | ||
1162 | if (--n <= 0) | ||
1163 | return; | ||
1164 | bn_mul_add_words(&(r[3]), a, n, b[3]); | ||
1165 | if (--n <= 0) | ||
1166 | return; | ||
1167 | bn_mul_add_words(&(r[4]), a, n, b[4]); | ||
1168 | r += 4; | ||
1169 | b += 4; | ||
1170 | } | ||
1171 | } | ||