diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 423 |
1 files changed, 1 insertions, 422 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c index fe3f29617f..118e8cddc5 100644 --- a/src/lib/libcrypto/bn/bn_mul.c +++ b/src/lib/libcrypto/bn/bn_mul.c | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: bn_mul.c,v 1.36 2023/03/30 14:28:56 tb Exp $ */ | 1 | /* $OpenBSD: bn_mul.c,v 1.37 2023/04/19 10:51:22 jsing Exp $ */ |
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | * All rights reserved. | 3 | * All rights reserved. |
4 | * | 4 | * |
@@ -313,323 +313,8 @@ bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | |||
313 | } | 313 | } |
314 | } | 314 | } |
315 | 315 | ||
316 | #ifdef BN_RECURSION | ||
317 | /* Karatsuba recursive multiplication algorithm | ||
318 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
319 | |||
320 | /* r is 2*n2 words in size, | ||
321 | * a and b are both n2 words in size. | ||
322 | * n2 must be a power of 2. | ||
323 | * We multiply and return the result. | ||
324 | * t must be 2*n2 words in size | ||
325 | * We calculate | ||
326 | * a[0]*b[0] | ||
327 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
328 | * a[1]*b[1] | ||
329 | */ | ||
330 | /* dnX may not be positive, but n2/2+dnX has to be */ | ||
331 | void | ||
332 | bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, | ||
333 | int dnb, BN_ULONG *t) | ||
334 | { | ||
335 | int n = n2 / 2, c1, c2; | ||
336 | int tna = n + dna, tnb = n + dnb; | ||
337 | unsigned int neg, zero; | ||
338 | BN_ULONG ln, lo, *p; | ||
339 | |||
340 | # ifdef BN_MUL_COMBA | ||
341 | # if 0 | ||
342 | if (n2 == 4) { | ||
343 | bn_mul_comba4(r, a, b); | ||
344 | return; | ||
345 | } | ||
346 | # endif | ||
347 | /* Only call bn_mul_comba 8 if n2 == 8 and the | ||
348 | * two arrays are complete [steve] | ||
349 | */ | ||
350 | if (n2 == 8 && dna == 0 && dnb == 0) { | ||
351 | bn_mul_comba8(r, a, b); | ||
352 | return; | ||
353 | } | ||
354 | # endif /* BN_MUL_COMBA */ | ||
355 | /* Else do normal multiply */ | ||
356 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { | ||
357 | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); | ||
358 | if ((dna + dnb) < 0) | ||
359 | memset(&r[2*n2 + dna + dnb], 0, | ||
360 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
361 | return; | ||
362 | } | ||
363 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
364 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | ||
365 | c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n); | ||
366 | zero = neg = 0; | ||
367 | switch (c1 * 3 + c2) { | ||
368 | case -4: | ||
369 | bn_sub(t, n, &a[n], tna, a, n); /* - */ | ||
370 | bn_sub(&t[n], n, b, n, &b[n], tnb); /* - */ | ||
371 | break; | ||
372 | case -3: | ||
373 | zero = 1; | ||
374 | break; | ||
375 | case -2: | ||
376 | bn_sub(t, n, &a[n], tna, a, n); /* - */ | ||
377 | bn_sub(&t[n], n, &b[n], tnb, b, n); /* + */ | ||
378 | neg = 1; | ||
379 | break; | ||
380 | case -1: | ||
381 | case 0: | ||
382 | case 1: | ||
383 | zero = 1; | ||
384 | break; | ||
385 | case 2: | ||
386 | bn_sub(t, n, a, n, &a[n], tna); /* + */ | ||
387 | bn_sub(&t[n], n, b, n, &b[n], tnb); /* - */ | ||
388 | neg = 1; | ||
389 | break; | ||
390 | case 3: | ||
391 | zero = 1; | ||
392 | break; | ||
393 | case 4: | ||
394 | bn_sub(t, n, a, n, &a[n], tna); | ||
395 | bn_sub(&t[n], n, &b[n], tnb, b, n); | ||
396 | break; | ||
397 | } | ||
398 | |||
399 | # ifdef BN_MUL_COMBA | ||
400 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take | ||
401 | extra args to do this well */ | ||
402 | { | ||
403 | if (!zero) | ||
404 | bn_mul_comba4(&(t[n2]), t, &(t[n])); | ||
405 | else | ||
406 | memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); | ||
407 | |||
408 | bn_mul_comba4(r, a, b); | ||
409 | bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); | ||
410 | } else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could | ||
411 | take extra args to do this | ||
412 | well */ | ||
413 | { | ||
414 | if (!zero) | ||
415 | bn_mul_comba8(&(t[n2]), t, &(t[n])); | ||
416 | else | ||
417 | memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); | ||
418 | |||
419 | bn_mul_comba8(r, a, b); | ||
420 | bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); | ||
421 | } else | ||
422 | # endif /* BN_MUL_COMBA */ | ||
423 | { | ||
424 | p = &(t[n2 * 2]); | ||
425 | if (!zero) | ||
426 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | ||
427 | else | ||
428 | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); | ||
429 | bn_mul_recursive(r, a, b, n, 0, 0, p); | ||
430 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); | ||
431 | } | ||
432 | |||
433 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
434 | * r[10] holds (a[0]*b[0]) | ||
435 | * r[32] holds (b[1]*b[1]) | ||
436 | */ | ||
437 | |||
438 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | ||
439 | |||
440 | if (neg) /* if t[32] is negative */ | ||
441 | { | ||
442 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | ||
443 | } else { | ||
444 | /* Might have a carry */ | ||
445 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | ||
446 | } | ||
447 | |||
448 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
449 | * r[10] holds (a[0]*b[0]) | ||
450 | * r[32] holds (b[1]*b[1]) | ||
451 | * c1 holds the carry bits | ||
452 | */ | ||
453 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
454 | if (c1) { | ||
455 | p = &(r[n + n2]); | ||
456 | lo= *p; | ||
457 | ln = (lo + c1) & BN_MASK2; | ||
458 | *p = ln; | ||
459 | |||
460 | /* The overflow will stop before we over write | ||
461 | * words we should not overwrite */ | ||
462 | if (ln < (BN_ULONG)c1) { | ||
463 | do { | ||
464 | p++; | ||
465 | lo= *p; | ||
466 | ln = (lo + 1) & BN_MASK2; | ||
467 | *p = ln; | ||
468 | } while (ln == 0); | ||
469 | } | ||
470 | } | ||
471 | } | ||
472 | |||
473 | /* n+tn is the word length | ||
474 | * t needs to be n*4 is size, as does r */ | ||
475 | /* tnX may not be negative but less than n */ | ||
476 | void | ||
477 | bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, | ||
478 | int tnb, BN_ULONG *t) | ||
479 | { | ||
480 | int i, j, n2 = n * 2; | ||
481 | int c1, c2, neg; | ||
482 | BN_ULONG ln, lo, *p; | ||
483 | |||
484 | if (n < 8) { | ||
485 | bn_mul_normal(r, a, n + tna, b, n + tnb); | ||
486 | return; | ||
487 | } | ||
488 | |||
489 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
490 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | ||
491 | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); | ||
492 | neg = 0; | ||
493 | switch (c1 * 3 + c2) { | ||
494 | case -4: | ||
495 | bn_sub(t, n, &a[n], tna, a, n); /* - */ | ||
496 | bn_sub(&t[n], n, b, n, &b[n], tnb); /* - */ | ||
497 | break; | ||
498 | case -3: | ||
499 | /* break; */ | ||
500 | case -2: | ||
501 | bn_sub(t, n, &a[n], tna, a, n); /* - */ | ||
502 | bn_sub(&t[n], n, &b[n], tnb, b, n); /* + */ | ||
503 | neg = 1; | ||
504 | break; | ||
505 | case -1: | ||
506 | case 0: | ||
507 | case 1: | ||
508 | /* break; */ | ||
509 | case 2: | ||
510 | bn_sub(t, n, a, n, &a[n], tna); /* + */ | ||
511 | bn_sub(&t[n], n, b, n, &b[n], tnb); /* - */ | ||
512 | neg = 1; | ||
513 | break; | ||
514 | case 3: | ||
515 | /* break; */ | ||
516 | case 4: | ||
517 | bn_sub(t, n, a, n, &a[n], tna); | ||
518 | bn_sub(&t[n], n, &b[n], tnb, b, n); | ||
519 | break; | ||
520 | } | ||
521 | /* The zero case isn't yet implemented here. The speedup | ||
522 | would probably be negligible. */ | ||
523 | # if 0 | ||
524 | if (n == 4) { | ||
525 | bn_mul_comba4(&(t[n2]), t, &(t[n])); | ||
526 | bn_mul_comba4(r, a, b); | ||
527 | bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); | ||
528 | memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); | ||
529 | } else | ||
530 | # endif | ||
531 | if (n == 8) { | ||
532 | bn_mul_comba8(&(t[n2]), t, &(t[n])); | ||
533 | bn_mul_comba8(r, a, b); | ||
534 | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); | ||
535 | memset(&(r[n2 + tna + tnb]), 0, | ||
536 | sizeof(BN_ULONG) * (n2 - tna - tnb)); | ||
537 | } else { | ||
538 | p = &(t[n2*2]); | ||
539 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | ||
540 | bn_mul_recursive(r, a, b, n, 0, 0, p); | ||
541 | i = n / 2; | ||
542 | /* If there is only a bottom half to the number, | ||
543 | * just do it */ | ||
544 | if (tna > tnb) | ||
545 | j = tna - i; | ||
546 | else | ||
547 | j = tnb - i; | ||
548 | if (j == 0) { | ||
549 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), | ||
550 | i, tna - i, tnb - i, p); | ||
551 | memset(&(r[n2 + i * 2]), 0, | ||
552 | sizeof(BN_ULONG) * (n2 - i * 2)); | ||
553 | } | ||
554 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
555 | { | ||
556 | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), | ||
557 | i, tna - i, tnb - i, p); | ||
558 | memset(&(r[n2 + tna + tnb]), 0, | ||
559 | sizeof(BN_ULONG) * (n2 - tna - tnb)); | ||
560 | } | ||
561 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
562 | { | ||
563 | memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); | ||
564 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && | ||
565 | tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { | ||
566 | bn_mul_normal(&(r[n2]), &(a[n]), tna, | ||
567 | &(b[n]), tnb); | ||
568 | } else { | ||
569 | for (;;) { | ||
570 | i /= 2; | ||
571 | /* these simplified conditions work | ||
572 | * exclusively because difference | ||
573 | * between tna and tnb is 1 or 0 */ | ||
574 | if (i < tna || i < tnb) { | ||
575 | bn_mul_part_recursive(&(r[n2]), | ||
576 | &(a[n]), &(b[n]), i, | ||
577 | tna - i, tnb - i, p); | ||
578 | break; | ||
579 | } else if (i == tna || i == tnb) { | ||
580 | bn_mul_recursive(&(r[n2]), | ||
581 | &(a[n]), &(b[n]), i, | ||
582 | tna - i, tnb - i, p); | ||
583 | break; | ||
584 | } | ||
585 | } | ||
586 | } | ||
587 | } | ||
588 | } | ||
589 | |||
590 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
591 | * r[10] holds (a[0]*b[0]) | ||
592 | * r[32] holds (b[1]*b[1]) | ||
593 | */ | ||
594 | |||
595 | c1 = (int)(bn_add_words(t, r,&(r[n2]), n2)); | ||
596 | |||
597 | if (neg) /* if t[32] is negative */ | ||
598 | { | ||
599 | c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2)); | ||
600 | } else { | ||
601 | /* Might have a carry */ | ||
602 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | ||
603 | } | ||
604 | |||
605 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
606 | * r[10] holds (a[0]*b[0]) | ||
607 | * r[32] holds (b[1]*b[1]) | ||
608 | * c1 holds the carry bits | ||
609 | */ | ||
610 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
611 | if (c1) { | ||
612 | p = &(r[n + n2]); | ||
613 | lo= *p; | ||
614 | ln = (lo + c1)&BN_MASK2; | ||
615 | *p = ln; | ||
616 | |||
617 | /* The overflow will stop before we over write | ||
618 | * words we should not overwrite */ | ||
619 | if (ln < (BN_ULONG)c1) { | ||
620 | do { | ||
621 | p++; | ||
622 | lo= *p; | ||
623 | ln = (lo + 1) & BN_MASK2; | ||
624 | *p = ln; | ||
625 | } while (ln == 0); | ||
626 | } | ||
627 | } | ||
628 | } | ||
629 | #endif /* BN_RECURSION */ | ||
630 | 316 | ||
631 | #ifndef HAVE_BN_MUL | 317 | #ifndef HAVE_BN_MUL |
632 | #ifndef BN_RECURSION | ||
633 | int | 318 | int |
634 | bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) | 319 | bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) |
635 | { | 320 | { |
@@ -638,112 +323,6 @@ bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) | |||
638 | return 1; | 323 | return 1; |
639 | } | 324 | } |
640 | 325 | ||
641 | #else /* BN_RECURSION */ | ||
642 | int | ||
643 | bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) | ||
644 | { | ||
645 | BIGNUM *t = NULL; | ||
646 | int al, bl, i, k; | ||
647 | int j = 0; | ||
648 | int ret = 0; | ||
649 | |||
650 | BN_CTX_start(ctx); | ||
651 | |||
652 | al = a->top; | ||
653 | bl = b->top; | ||
654 | |||
655 | i = al - bl; | ||
656 | |||
657 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { | ||
658 | if (i >= -1 && i <= 1) { | ||
659 | /* Find out the power of two lower or equal | ||
660 | to the longest of the two numbers */ | ||
661 | if (i >= 0) { | ||
662 | j = BN_num_bits_word((BN_ULONG)al); | ||
663 | } | ||
664 | if (i == -1) { | ||
665 | j = BN_num_bits_word((BN_ULONG)bl); | ||
666 | } | ||
667 | j = 1 << (j - 1); | ||
668 | assert(j <= al || j <= bl); | ||
669 | k = j + j; | ||
670 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
671 | goto err; | ||
672 | if (al > j || bl > j) { | ||
673 | if (!bn_wexpand(t, k * 4)) | ||
674 | goto err; | ||
675 | if (!bn_wexpand(r, k * 4)) | ||
676 | goto err; | ||
677 | bn_mul_part_recursive(r->d, a->d, b->d, | ||
678 | j, al - j, bl - j, t->d); | ||
679 | } | ||
680 | else /* al <= j || bl <= j */ | ||
681 | { | ||
682 | if (!bn_wexpand(t, k * 2)) | ||
683 | goto err; | ||
684 | if (!bn_wexpand(r, k * 2)) | ||
685 | goto err; | ||
686 | bn_mul_recursive(r->d, a->d, b->d, | ||
687 | j, al - j, bl - j, t->d); | ||
688 | } | ||
689 | r->top = rn; | ||
690 | goto end; | ||
691 | } | ||
692 | #if 0 | ||
693 | if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { | ||
694 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
695 | if (!bn_wexpand(tmp_bn, al)) | ||
696 | goto err; | ||
697 | tmp_bn->d[bl] = 0; | ||
698 | bl++; | ||
699 | i--; | ||
700 | } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { | ||
701 | BIGNUM *tmp_bn = (BIGNUM *)a; | ||
702 | if (!bn_wexpand(tmp_bn, bl)) | ||
703 | goto err; | ||
704 | tmp_bn->d[al] = 0; | ||
705 | al++; | ||
706 | i++; | ||
707 | } | ||
708 | if (i == 0) { | ||
709 | /* symmetric and > 4 */ | ||
710 | /* 16 or larger */ | ||
711 | j = BN_num_bits_word((BN_ULONG)al); | ||
712 | j = 1 << (j - 1); | ||
713 | k = j + j; | ||
714 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
715 | goto err; | ||
716 | if (al == j) /* exact multiple */ | ||
717 | { | ||
718 | if (!bn_wexpand(t, k * 2)) | ||
719 | goto err; | ||
720 | if (!bn_wexpand(r, k * 2)) | ||
721 | goto err; | ||
722 | bn_mul_recursive(r->d, a->d, b->d, al, t->d); | ||
723 | } else { | ||
724 | if (!bn_wexpand(t, k * 4)) | ||
725 | goto err; | ||
726 | if (!bn_wexpand(r, k * 4)) | ||
727 | goto err; | ||
728 | bn_mul_part_recursive(r->d, a->d, b->d, | ||
729 | al - j, j, t->d); | ||
730 | } | ||
731 | r->top = top; | ||
732 | goto end; | ||
733 | } | ||
734 | #endif | ||
735 | } | ||
736 | |||
737 | bn_mul_normal(r->d, a->d, al, b->d, bl); | ||
738 | |||
739 | end: | ||
740 | ret = 1; | ||
741 | err: | ||
742 | BN_CTX_end(ctx); | ||
743 | |||
744 | return ret; | ||
745 | } | ||
746 | #endif /* BN_RECURSION */ | ||
747 | #endif /* HAVE_BN_MUL */ | 326 | #endif /* HAVE_BN_MUL */ |
748 | 327 | ||
749 | int | 328 | int |