diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 756 |
1 files changed, 0 insertions, 756 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index 38c47f3d1f..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null | |||
@@ -1,756 +0,0 @@ | |||
1 | /* crypto/bn/bn_mul.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | #ifdef BN_RECURSION | ||
64 | /* r is 2*n2 words in size, | ||
65 | * a and b are both n2 words in size. | ||
66 | * n2 must be a power of 2. | ||
67 | * We multiply and return the result. | ||
68 | * t must be 2*n2 words in size | ||
69 | * We calulate | ||
70 | * a[0]*b[0] | ||
71 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
72 | * a[1]*b[1] | ||
73 | */ | ||
74 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
75 | BN_ULONG *t) | ||
76 | { | ||
77 | int n=n2/2,c1,c2; | ||
78 | unsigned int neg,zero; | ||
79 | BN_ULONG ln,lo,*p; | ||
80 | |||
81 | #ifdef BN_COUNT | ||
82 | printf(" bn_mul_recursive %d * %d\n",n2,n2); | ||
83 | #endif | ||
84 | #ifdef BN_MUL_COMBA | ||
85 | /* if (n2 == 4) | ||
86 | { | ||
87 | bn_mul_comba4(r,a,b); | ||
88 | return; | ||
89 | } | ||
90 | else */ if (n2 == 8) | ||
91 | { | ||
92 | bn_mul_comba8(r,a,b); | ||
93 | return; | ||
94 | } | ||
95 | #endif | ||
96 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
97 | { | ||
98 | /* This should not happen */ | ||
99 | bn_mul_normal(r,a,n2,b,n2); | ||
100 | return; | ||
101 | } | ||
102 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
103 | c1=bn_cmp_words(a,&(a[n]),n); | ||
104 | c2=bn_cmp_words(&(b[n]),b,n); | ||
105 | zero=neg=0; | ||
106 | switch (c1*3+c2) | ||
107 | { | ||
108 | case -4: | ||
109 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
110 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
111 | break; | ||
112 | case -3: | ||
113 | zero=1; | ||
114 | break; | ||
115 | case -2: | ||
116 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
117 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | ||
118 | neg=1; | ||
119 | break; | ||
120 | case -1: | ||
121 | case 0: | ||
122 | case 1: | ||
123 | zero=1; | ||
124 | break; | ||
125 | case 2: | ||
126 | bn_sub_words(t, a, &(a[n]),n); /* + */ | ||
127 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
128 | neg=1; | ||
129 | break; | ||
130 | case 3: | ||
131 | zero=1; | ||
132 | break; | ||
133 | case 4: | ||
134 | bn_sub_words(t, a, &(a[n]),n); | ||
135 | bn_sub_words(&(t[n]),&(b[n]),b, n); | ||
136 | break; | ||
137 | } | ||
138 | |||
139 | #ifdef BN_MUL_COMBA | ||
140 | if (n == 4) | ||
141 | { | ||
142 | if (!zero) | ||
143 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
144 | else | ||
145 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); | ||
146 | |||
147 | bn_mul_comba4(r,a,b); | ||
148 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | ||
149 | } | ||
150 | else if (n == 8) | ||
151 | { | ||
152 | if (!zero) | ||
153 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
154 | else | ||
155 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | ||
156 | |||
157 | bn_mul_comba8(r,a,b); | ||
158 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | ||
159 | } | ||
160 | else | ||
161 | #endif | ||
162 | { | ||
163 | p= &(t[n2*2]); | ||
164 | if (!zero) | ||
165 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | ||
166 | else | ||
167 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
168 | bn_mul_recursive(r,a,b,n,p); | ||
169 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); | ||
170 | } | ||
171 | |||
172 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
173 | * r[10] holds (a[0]*b[0]) | ||
174 | * r[32] holds (b[1]*b[1]) | ||
175 | */ | ||
176 | |||
177 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
178 | |||
179 | if (neg) /* if t[32] is negative */ | ||
180 | { | ||
181 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
182 | } | ||
183 | else | ||
184 | { | ||
185 | /* Might have a carry */ | ||
186 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
187 | } | ||
188 | |||
189 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
190 | * r[10] holds (a[0]*b[0]) | ||
191 | * r[32] holds (b[1]*b[1]) | ||
192 | * c1 holds the carry bits | ||
193 | */ | ||
194 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
195 | if (c1) | ||
196 | { | ||
197 | p= &(r[n+n2]); | ||
198 | lo= *p; | ||
199 | ln=(lo+c1)&BN_MASK2; | ||
200 | *p=ln; | ||
201 | |||
202 | /* The overflow will stop before we over write | ||
203 | * words we should not overwrite */ | ||
204 | if (ln < (BN_ULONG)c1) | ||
205 | { | ||
206 | do { | ||
207 | p++; | ||
208 | lo= *p; | ||
209 | ln=(lo+1)&BN_MASK2; | ||
210 | *p=ln; | ||
211 | } while (ln == 0); | ||
212 | } | ||
213 | } | ||
214 | } | ||
215 | |||
216 | /* n+tn is the word length | ||
217 | * t needs to be n*4 is size, as does r */ | ||
218 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, | ||
219 | int n, BN_ULONG *t) | ||
220 | { | ||
221 | int i,j,n2=n*2; | ||
222 | unsigned int c1; | ||
223 | BN_ULONG ln,lo,*p; | ||
224 | |||
225 | #ifdef BN_COUNT | ||
226 | printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); | ||
227 | #endif | ||
228 | if (n < 8) | ||
229 | { | ||
230 | i=tn+n; | ||
231 | bn_mul_normal(r,a,i,b,i); | ||
232 | return; | ||
233 | } | ||
234 | |||
235 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
236 | bn_sub_words(t, a, &(a[n]),n); /* + */ | ||
237 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
238 | |||
239 | /* if (n == 4) | ||
240 | { | ||
241 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
242 | bn_mul_comba4(r,a,b); | ||
243 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
244 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
245 | } | ||
246 | else */ if (n == 8) | ||
247 | { | ||
248 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
249 | bn_mul_comba8(r,a,b); | ||
250 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
251 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
252 | } | ||
253 | else | ||
254 | { | ||
255 | p= &(t[n2*2]); | ||
256 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | ||
257 | bn_mul_recursive(r,a,b,n,p); | ||
258 | i=n/2; | ||
259 | /* If there is only a bottom half to the number, | ||
260 | * just do it */ | ||
261 | j=tn-i; | ||
262 | if (j == 0) | ||
263 | { | ||
264 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); | ||
265 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | ||
266 | } | ||
267 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
268 | { | ||
269 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
270 | j,i,p); | ||
271 | memset(&(r[n2+tn*2]),0, | ||
272 | sizeof(BN_ULONG)*(n2-tn*2)); | ||
273 | } | ||
274 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
275 | { | ||
276 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | ||
277 | if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
278 | { | ||
279 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
280 | } | ||
281 | else | ||
282 | { | ||
283 | for (;;) | ||
284 | { | ||
285 | i/=2; | ||
286 | if (i < tn) | ||
287 | { | ||
288 | bn_mul_part_recursive(&(r[n2]), | ||
289 | &(a[n]),&(b[n]), | ||
290 | tn-i,i,p); | ||
291 | break; | ||
292 | } | ||
293 | else if (i == tn) | ||
294 | { | ||
295 | bn_mul_recursive(&(r[n2]), | ||
296 | &(a[n]),&(b[n]), | ||
297 | i,p); | ||
298 | break; | ||
299 | } | ||
300 | } | ||
301 | } | ||
302 | } | ||
303 | } | ||
304 | |||
305 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
306 | * r[10] holds (a[0]*b[0]) | ||
307 | * r[32] holds (b[1]*b[1]) | ||
308 | */ | ||
309 | |||
310 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
311 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
312 | |||
313 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
314 | * r[10] holds (a[0]*b[0]) | ||
315 | * r[32] holds (b[1]*b[1]) | ||
316 | * c1 holds the carry bits | ||
317 | */ | ||
318 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
319 | if (c1) | ||
320 | { | ||
321 | p= &(r[n+n2]); | ||
322 | lo= *p; | ||
323 | ln=(lo+c1)&BN_MASK2; | ||
324 | *p=ln; | ||
325 | |||
326 | /* The overflow will stop before we over write | ||
327 | * words we should not overwrite */ | ||
328 | if (ln < c1) | ||
329 | { | ||
330 | do { | ||
331 | p++; | ||
332 | lo= *p; | ||
333 | ln=(lo+1)&BN_MASK2; | ||
334 | *p=ln; | ||
335 | } while (ln == 0); | ||
336 | } | ||
337 | } | ||
338 | } | ||
339 | |||
340 | /* a and b must be the same size, which is n2. | ||
341 | * r needs to be n2 words and t needs to be n2*2 | ||
342 | */ | ||
343 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
344 | BN_ULONG *t) | ||
345 | { | ||
346 | int n=n2/2; | ||
347 | |||
348 | #ifdef BN_COUNT | ||
349 | printf(" bn_mul_low_recursive %d * %d\n",n2,n2); | ||
350 | #endif | ||
351 | |||
352 | bn_mul_recursive(r,a,b,n,&(t[0])); | ||
353 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | ||
354 | { | ||
355 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | ||
356 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
357 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | ||
358 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
359 | } | ||
360 | else | ||
361 | { | ||
362 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | ||
363 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | ||
364 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
365 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | ||
366 | } | ||
367 | } | ||
368 | |||
369 | /* a and b must be the same size, which is n2. | ||
370 | * r needs to be n2 words and t needs to be n2*2 | ||
371 | * l is the low words of the output. | ||
372 | * t needs to be n2*3 | ||
373 | */ | ||
374 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
375 | BN_ULONG *t) | ||
376 | { | ||
377 | int i,n; | ||
378 | int c1,c2; | ||
379 | int neg,oneg,zero; | ||
380 | BN_ULONG ll,lc,*lp,*mp; | ||
381 | |||
382 | #ifdef BN_COUNT | ||
383 | printf(" bn_mul_high %d * %d\n",n2,n2); | ||
384 | #endif | ||
385 | n=n2/2; | ||
386 | |||
387 | /* Calculate (al-ah)*(bh-bl) */ | ||
388 | neg=zero=0; | ||
389 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | ||
390 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | ||
391 | switch (c1*3+c2) | ||
392 | { | ||
393 | case -4: | ||
394 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
395 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
396 | break; | ||
397 | case -3: | ||
398 | zero=1; | ||
399 | break; | ||
400 | case -2: | ||
401 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
402 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
403 | neg=1; | ||
404 | break; | ||
405 | case -1: | ||
406 | case 0: | ||
407 | case 1: | ||
408 | zero=1; | ||
409 | break; | ||
410 | case 2: | ||
411 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
412 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
413 | neg=1; | ||
414 | break; | ||
415 | case 3: | ||
416 | zero=1; | ||
417 | break; | ||
418 | case 4: | ||
419 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
420 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
421 | break; | ||
422 | } | ||
423 | |||
424 | oneg=neg; | ||
425 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
426 | /* r[10] = (a[1]*b[1]) */ | ||
427 | #ifdef BN_MUL_COMBA | ||
428 | if (n == 8) | ||
429 | { | ||
430 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | ||
431 | bn_mul_comba8(r,&(a[n]),&(b[n])); | ||
432 | } | ||
433 | else | ||
434 | #endif | ||
435 | { | ||
436 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); | ||
437 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); | ||
438 | } | ||
439 | |||
440 | /* s0 == low(al*bl) | ||
441 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
442 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
443 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
444 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
445 | */ | ||
446 | if (l != NULL) | ||
447 | { | ||
448 | lp= &(t[n2+n]); | ||
449 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | ||
450 | } | ||
451 | else | ||
452 | { | ||
453 | c1=0; | ||
454 | lp= &(r[0]); | ||
455 | } | ||
456 | |||
457 | if (neg) | ||
458 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | ||
459 | else | ||
460 | { | ||
461 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | ||
462 | neg=0; | ||
463 | } | ||
464 | |||
465 | if (l != NULL) | ||
466 | { | ||
467 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | ||
468 | } | ||
469 | else | ||
470 | { | ||
471 | lp= &(t[n2+n]); | ||
472 | mp= &(t[n2]); | ||
473 | for (i=0; i<n; i++) | ||
474 | lp[i]=((~mp[i])+1)&BN_MASK2; | ||
475 | } | ||
476 | |||
477 | /* s[0] = low(al*bl) | ||
478 | * t[3] = high(al*bl) | ||
479 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
480 | * r[10] = (a[1]*b[1]) | ||
481 | */ | ||
482 | /* R[10] = al*bl | ||
483 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
484 | * R[32] = ah*bh | ||
485 | */ | ||
486 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
487 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
488 | * R[3]=r[1]+(carry/borrow) | ||
489 | */ | ||
490 | if (l != NULL) | ||
491 | { | ||
492 | lp= &(t[n2]); | ||
493 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | ||
494 | } | ||
495 | else | ||
496 | { | ||
497 | lp= &(t[n2+n]); | ||
498 | c1=0; | ||
499 | } | ||
500 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | ||
501 | if (oneg) | ||
502 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
503 | else | ||
504 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
505 | |||
506 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); | ||
507 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | ||
508 | if (oneg) | ||
509 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
510 | else | ||
511 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
512 | |||
513 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
514 | { | ||
515 | i=0; | ||
516 | if (c1 > 0) | ||
517 | { | ||
518 | lc=c1; | ||
519 | do { | ||
520 | ll=(r[i]+lc)&BN_MASK2; | ||
521 | r[i++]=ll; | ||
522 | lc=(lc > ll); | ||
523 | } while (lc); | ||
524 | } | ||
525 | else | ||
526 | { | ||
527 | lc= -c1; | ||
528 | do { | ||
529 | ll=r[i]; | ||
530 | r[i++]=(ll-lc)&BN_MASK2; | ||
531 | lc=(lc > ll); | ||
532 | } while (lc); | ||
533 | } | ||
534 | } | ||
535 | if (c2 != 0) /* Add starting at r[1] */ | ||
536 | { | ||
537 | i=n; | ||
538 | if (c2 > 0) | ||
539 | { | ||
540 | lc=c2; | ||
541 | do { | ||
542 | ll=(r[i]+lc)&BN_MASK2; | ||
543 | r[i++]=ll; | ||
544 | lc=(lc > ll); | ||
545 | } while (lc); | ||
546 | } | ||
547 | else | ||
548 | { | ||
549 | lc= -c2; | ||
550 | do { | ||
551 | ll=r[i]; | ||
552 | r[i++]=(ll-lc)&BN_MASK2; | ||
553 | lc=(lc > ll); | ||
554 | } while (lc); | ||
555 | } | ||
556 | } | ||
557 | } | ||
558 | #endif | ||
559 | |||
560 | int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
561 | { | ||
562 | int top,al,bl; | ||
563 | BIGNUM *rr; | ||
564 | #ifdef BN_RECURSION | ||
565 | BIGNUM *t; | ||
566 | int i,j,k; | ||
567 | #endif | ||
568 | |||
569 | #ifdef BN_COUNT | ||
570 | printf("BN_mul %d * %d\n",a->top,b->top); | ||
571 | #endif | ||
572 | |||
573 | bn_check_top(a); | ||
574 | bn_check_top(b); | ||
575 | bn_check_top(r); | ||
576 | |||
577 | al=a->top; | ||
578 | bl=b->top; | ||
579 | r->neg=a->neg^b->neg; | ||
580 | |||
581 | if ((al == 0) || (bl == 0)) | ||
582 | { | ||
583 | BN_zero(r); | ||
584 | return(1); | ||
585 | } | ||
586 | top=al+bl; | ||
587 | |||
588 | if ((r == a) || (r == b)) | ||
589 | rr= &(ctx->bn[ctx->tos+1]); | ||
590 | else | ||
591 | rr=r; | ||
592 | |||
593 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
594 | if (al == bl) | ||
595 | { | ||
596 | # ifdef BN_MUL_COMBA | ||
597 | /* if (al == 4) | ||
598 | { | ||
599 | if (bn_wexpand(rr,8) == NULL) return(0); | ||
600 | rr->top=8; | ||
601 | bn_mul_comba4(rr->d,a->d,b->d); | ||
602 | goto end; | ||
603 | } | ||
604 | else */ if (al == 8) | ||
605 | { | ||
606 | if (bn_wexpand(rr,16) == NULL) return(0); | ||
607 | rr->top=16; | ||
608 | bn_mul_comba8(rr->d,a->d,b->d); | ||
609 | goto end; | ||
610 | } | ||
611 | else | ||
612 | # endif | ||
613 | #ifdef BN_RECURSION | ||
614 | if (al < BN_MULL_SIZE_NORMAL) | ||
615 | #endif | ||
616 | { | ||
617 | if (bn_wexpand(rr,top) == NULL) return(0); | ||
618 | rr->top=top; | ||
619 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
620 | goto end; | ||
621 | } | ||
622 | # ifdef BN_RECURSION | ||
623 | goto symetric; | ||
624 | # endif | ||
625 | } | ||
626 | #endif | ||
627 | #ifdef BN_RECURSION | ||
628 | else if ((al < BN_MULL_SIZE_NORMAL) || (bl < BN_MULL_SIZE_NORMAL)) | ||
629 | { | ||
630 | if (bn_wexpand(rr,top) == NULL) return(0); | ||
631 | rr->top=top; | ||
632 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
633 | goto end; | ||
634 | } | ||
635 | else | ||
636 | { | ||
637 | i=(al-bl); | ||
638 | if ((i == 1) && !BN_get_flags(b,BN_FLG_STATIC_DATA)) | ||
639 | { | ||
640 | bn_wexpand(b,al); | ||
641 | b->d[bl]=0; | ||
642 | bl++; | ||
643 | goto symetric; | ||
644 | } | ||
645 | else if ((i == -1) && !BN_get_flags(a,BN_FLG_STATIC_DATA)) | ||
646 | { | ||
647 | bn_wexpand(a,bl); | ||
648 | a->d[al]=0; | ||
649 | al++; | ||
650 | goto symetric; | ||
651 | } | ||
652 | } | ||
653 | #endif | ||
654 | |||
655 | /* asymetric and >= 4 */ | ||
656 | if (bn_wexpand(rr,top) == NULL) return(0); | ||
657 | rr->top=top; | ||
658 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
659 | |||
660 | #ifdef BN_RECURSION | ||
661 | if (0) | ||
662 | { | ||
663 | symetric: | ||
664 | /* symetric and > 4 */ | ||
665 | /* 16 or larger */ | ||
666 | j=BN_num_bits_word((BN_ULONG)al); | ||
667 | j=1<<(j-1); | ||
668 | k=j+j; | ||
669 | t= &(ctx->bn[ctx->tos]); | ||
670 | if (al == j) /* exact multiple */ | ||
671 | { | ||
672 | bn_wexpand(t,k*2); | ||
673 | bn_wexpand(rr,k*2); | ||
674 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | ||
675 | } | ||
676 | else | ||
677 | { | ||
678 | bn_wexpand(a,k); | ||
679 | bn_wexpand(b,k); | ||
680 | bn_wexpand(t,k*4); | ||
681 | bn_wexpand(rr,k*4); | ||
682 | for (i=a->top; i<k; i++) | ||
683 | a->d[i]=0; | ||
684 | for (i=b->top; i<k; i++) | ||
685 | b->d[i]=0; | ||
686 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | ||
687 | } | ||
688 | rr->top=top; | ||
689 | } | ||
690 | #endif | ||
691 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
692 | end: | ||
693 | #endif | ||
694 | bn_fix_top(rr); | ||
695 | if (r != rr) BN_copy(r,rr); | ||
696 | return(1); | ||
697 | } | ||
698 | |||
699 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
700 | { | ||
701 | BN_ULONG *rr; | ||
702 | |||
703 | #ifdef BN_COUNT | ||
704 | printf(" bn_mul_normal %d * %d\n",na,nb); | ||
705 | #endif | ||
706 | |||
707 | if (na < nb) | ||
708 | { | ||
709 | int itmp; | ||
710 | BN_ULONG *ltmp; | ||
711 | |||
712 | itmp=na; na=nb; nb=itmp; | ||
713 | ltmp=a; a=b; b=ltmp; | ||
714 | |||
715 | } | ||
716 | rr= &(r[na]); | ||
717 | rr[0]=bn_mul_words(r,a,na,b[0]); | ||
718 | |||
719 | for (;;) | ||
720 | { | ||
721 | if (--nb <= 0) return; | ||
722 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); | ||
723 | if (--nb <= 0) return; | ||
724 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | ||
725 | if (--nb <= 0) return; | ||
726 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | ||
727 | if (--nb <= 0) return; | ||
728 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | ||
729 | rr+=4; | ||
730 | r+=4; | ||
731 | b+=4; | ||
732 | } | ||
733 | } | ||
734 | |||
735 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
736 | { | ||
737 | #ifdef BN_COUNT | ||
738 | printf(" bn_mul_low_normal %d * %d\n",n,n); | ||
739 | #endif | ||
740 | bn_mul_words(r,a,n,b[0]); | ||
741 | |||
742 | for (;;) | ||
743 | { | ||
744 | if (--n <= 0) return; | ||
745 | bn_mul_add_words(&(r[1]),a,n,b[1]); | ||
746 | if (--n <= 0) return; | ||
747 | bn_mul_add_words(&(r[2]),a,n,b[2]); | ||
748 | if (--n <= 0) return; | ||
749 | bn_mul_add_words(&(r[3]),a,n,b[3]); | ||
750 | if (--n <= 0) return; | ||
751 | bn_mul_add_words(&(r[4]),a,n,b[4]); | ||
752 | r+=4; | ||
753 | b+=4; | ||
754 | } | ||
755 | } | ||
756 | |||