summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/bn_mul.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r--src/lib/libcrypto/bn/bn_mul.c756
1 files changed, 0 insertions, 756 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c
deleted file mode 100644
index 38c47f3d1f..0000000000
--- a/src/lib/libcrypto/bn/bn_mul.c
+++ /dev/null
@@ -1,756 +0,0 @@
1/* crypto/bn/bn_mul.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#include <stdio.h>
60#include "cryptlib.h"
61#include "bn_lcl.h"
62
63#ifdef BN_RECURSION
64/* r is 2*n2 words in size,
65 * a and b are both n2 words in size.
66 * n2 must be a power of 2.
67 * We multiply and return the result.
68 * t must be 2*n2 words in size
69 * We calulate
70 * a[0]*b[0]
71 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
72 * a[1]*b[1]
73 */
74void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
75 BN_ULONG *t)
76 {
77 int n=n2/2,c1,c2;
78 unsigned int neg,zero;
79 BN_ULONG ln,lo,*p;
80
81#ifdef BN_COUNT
82printf(" bn_mul_recursive %d * %d\n",n2,n2);
83#endif
84#ifdef BN_MUL_COMBA
85/* if (n2 == 4)
86 {
87 bn_mul_comba4(r,a,b);
88 return;
89 }
90 else */ if (n2 == 8)
91 {
92 bn_mul_comba8(r,a,b);
93 return;
94 }
95#endif
96 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
97 {
98 /* This should not happen */
99 bn_mul_normal(r,a,n2,b,n2);
100 return;
101 }
102 /* r=(a[0]-a[1])*(b[1]-b[0]) */
103 c1=bn_cmp_words(a,&(a[n]),n);
104 c2=bn_cmp_words(&(b[n]),b,n);
105 zero=neg=0;
106 switch (c1*3+c2)
107 {
108 case -4:
109 bn_sub_words(t, &(a[n]),a, n); /* - */
110 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
111 break;
112 case -3:
113 zero=1;
114 break;
115 case -2:
116 bn_sub_words(t, &(a[n]),a, n); /* - */
117 bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
118 neg=1;
119 break;
120 case -1:
121 case 0:
122 case 1:
123 zero=1;
124 break;
125 case 2:
126 bn_sub_words(t, a, &(a[n]),n); /* + */
127 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
128 neg=1;
129 break;
130 case 3:
131 zero=1;
132 break;
133 case 4:
134 bn_sub_words(t, a, &(a[n]),n);
135 bn_sub_words(&(t[n]),&(b[n]),b, n);
136 break;
137 }
138
139#ifdef BN_MUL_COMBA
140 if (n == 4)
141 {
142 if (!zero)
143 bn_mul_comba4(&(t[n2]),t,&(t[n]));
144 else
145 memset(&(t[n2]),0,8*sizeof(BN_ULONG));
146
147 bn_mul_comba4(r,a,b);
148 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
149 }
150 else if (n == 8)
151 {
152 if (!zero)
153 bn_mul_comba8(&(t[n2]),t,&(t[n]));
154 else
155 memset(&(t[n2]),0,16*sizeof(BN_ULONG));
156
157 bn_mul_comba8(r,a,b);
158 bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
159 }
160 else
161#endif
162 {
163 p= &(t[n2*2]);
164 if (!zero)
165 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
166 else
167 memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
168 bn_mul_recursive(r,a,b,n,p);
169 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
170 }
171
172 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
173 * r[10] holds (a[0]*b[0])
174 * r[32] holds (b[1]*b[1])
175 */
176
177 c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
178
179 if (neg) /* if t[32] is negative */
180 {
181 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
182 }
183 else
184 {
185 /* Might have a carry */
186 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
187 }
188
189 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
190 * r[10] holds (a[0]*b[0])
191 * r[32] holds (b[1]*b[1])
192 * c1 holds the carry bits
193 */
194 c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
195 if (c1)
196 {
197 p= &(r[n+n2]);
198 lo= *p;
199 ln=(lo+c1)&BN_MASK2;
200 *p=ln;
201
202 /* The overflow will stop before we over write
203 * words we should not overwrite */
204 if (ln < (BN_ULONG)c1)
205 {
206 do {
207 p++;
208 lo= *p;
209 ln=(lo+1)&BN_MASK2;
210 *p=ln;
211 } while (ln == 0);
212 }
213 }
214 }
215
216/* n+tn is the word length
217 * t needs to be n*4 is size, as does r */
218void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
219 int n, BN_ULONG *t)
220 {
221 int i,j,n2=n*2;
222 unsigned int c1;
223 BN_ULONG ln,lo,*p;
224
225#ifdef BN_COUNT
226printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
227#endif
228 if (n < 8)
229 {
230 i=tn+n;
231 bn_mul_normal(r,a,i,b,i);
232 return;
233 }
234
235 /* r=(a[0]-a[1])*(b[1]-b[0]) */
236 bn_sub_words(t, a, &(a[n]),n); /* + */
237 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
238
239/* if (n == 4)
240 {
241 bn_mul_comba4(&(t[n2]),t,&(t[n]));
242 bn_mul_comba4(r,a,b);
243 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
244 memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
245 }
246 else */ if (n == 8)
247 {
248 bn_mul_comba8(&(t[n2]),t,&(t[n]));
249 bn_mul_comba8(r,a,b);
250 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
251 memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
252 }
253 else
254 {
255 p= &(t[n2*2]);
256 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
257 bn_mul_recursive(r,a,b,n,p);
258 i=n/2;
259 /* If there is only a bottom half to the number,
260 * just do it */
261 j=tn-i;
262 if (j == 0)
263 {
264 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
265 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
266 }
267 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
268 {
269 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
270 j,i,p);
271 memset(&(r[n2+tn*2]),0,
272 sizeof(BN_ULONG)*(n2-tn*2));
273 }
274 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
275 {
276 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
277 if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
278 {
279 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
280 }
281 else
282 {
283 for (;;)
284 {
285 i/=2;
286 if (i < tn)
287 {
288 bn_mul_part_recursive(&(r[n2]),
289 &(a[n]),&(b[n]),
290 tn-i,i,p);
291 break;
292 }
293 else if (i == tn)
294 {
295 bn_mul_recursive(&(r[n2]),
296 &(a[n]),&(b[n]),
297 i,p);
298 break;
299 }
300 }
301 }
302 }
303 }
304
305 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
306 * r[10] holds (a[0]*b[0])
307 * r[32] holds (b[1]*b[1])
308 */
309
310 c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
311 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
312
313 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
314 * r[10] holds (a[0]*b[0])
315 * r[32] holds (b[1]*b[1])
316 * c1 holds the carry bits
317 */
318 c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
319 if (c1)
320 {
321 p= &(r[n+n2]);
322 lo= *p;
323 ln=(lo+c1)&BN_MASK2;
324 *p=ln;
325
326 /* The overflow will stop before we over write
327 * words we should not overwrite */
328 if (ln < c1)
329 {
330 do {
331 p++;
332 lo= *p;
333 ln=(lo+1)&BN_MASK2;
334 *p=ln;
335 } while (ln == 0);
336 }
337 }
338 }
339
340/* a and b must be the same size, which is n2.
341 * r needs to be n2 words and t needs to be n2*2
342 */
343void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
344 BN_ULONG *t)
345 {
346 int n=n2/2;
347
348#ifdef BN_COUNT
349printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
350#endif
351
352 bn_mul_recursive(r,a,b,n,&(t[0]));
353 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
354 {
355 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
356 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
357 bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
358 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
359 }
360 else
361 {
362 bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
363 bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
364 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
365 bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
366 }
367 }
368
369/* a and b must be the same size, which is n2.
370 * r needs to be n2 words and t needs to be n2*2
371 * l is the low words of the output.
372 * t needs to be n2*3
373 */
374void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
375 BN_ULONG *t)
376 {
377 int i,n;
378 int c1,c2;
379 int neg,oneg,zero;
380 BN_ULONG ll,lc,*lp,*mp;
381
382#ifdef BN_COUNT
383printf(" bn_mul_high %d * %d\n",n2,n2);
384#endif
385 n=n2/2;
386
387 /* Calculate (al-ah)*(bh-bl) */
388 neg=zero=0;
389 c1=bn_cmp_words(&(a[0]),&(a[n]),n);
390 c2=bn_cmp_words(&(b[n]),&(b[0]),n);
391 switch (c1*3+c2)
392 {
393 case -4:
394 bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
395 bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
396 break;
397 case -3:
398 zero=1;
399 break;
400 case -2:
401 bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
402 bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
403 neg=1;
404 break;
405 case -1:
406 case 0:
407 case 1:
408 zero=1;
409 break;
410 case 2:
411 bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
412 bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
413 neg=1;
414 break;
415 case 3:
416 zero=1;
417 break;
418 case 4:
419 bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
420 bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
421 break;
422 }
423
424 oneg=neg;
425 /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
426 /* r[10] = (a[1]*b[1]) */
427#ifdef BN_MUL_COMBA
428 if (n == 8)
429 {
430 bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
431 bn_mul_comba8(r,&(a[n]),&(b[n]));
432 }
433 else
434#endif
435 {
436 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
437 bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
438 }
439
440 /* s0 == low(al*bl)
441 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
442 * We know s0 and s1 so the only unknown is high(al*bl)
443 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
444 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
445 */
446 if (l != NULL)
447 {
448 lp= &(t[n2+n]);
449 c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
450 }
451 else
452 {
453 c1=0;
454 lp= &(r[0]);
455 }
456
457 if (neg)
458 neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
459 else
460 {
461 bn_add_words(&(t[n2]),lp,&(t[0]),n);
462 neg=0;
463 }
464
465 if (l != NULL)
466 {
467 bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
468 }
469 else
470 {
471 lp= &(t[n2+n]);
472 mp= &(t[n2]);
473 for (i=0; i<n; i++)
474 lp[i]=((~mp[i])+1)&BN_MASK2;
475 }
476
477 /* s[0] = low(al*bl)
478 * t[3] = high(al*bl)
479 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
480 * r[10] = (a[1]*b[1])
481 */
482 /* R[10] = al*bl
483 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
484 * R[32] = ah*bh
485 */
486 /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
487 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
488 * R[3]=r[1]+(carry/borrow)
489 */
490 if (l != NULL)
491 {
492 lp= &(t[n2]);
493 c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
494 }
495 else
496 {
497 lp= &(t[n2+n]);
498 c1=0;
499 }
500 c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n));
501 if (oneg)
502 c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
503 else
504 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
505
506 c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
507 c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
508 if (oneg)
509 c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
510 else
511 c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
512
513 if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
514 {
515 i=0;
516 if (c1 > 0)
517 {
518 lc=c1;
519 do {
520 ll=(r[i]+lc)&BN_MASK2;
521 r[i++]=ll;
522 lc=(lc > ll);
523 } while (lc);
524 }
525 else
526 {
527 lc= -c1;
528 do {
529 ll=r[i];
530 r[i++]=(ll-lc)&BN_MASK2;
531 lc=(lc > ll);
532 } while (lc);
533 }
534 }
535 if (c2 != 0) /* Add starting at r[1] */
536 {
537 i=n;
538 if (c2 > 0)
539 {
540 lc=c2;
541 do {
542 ll=(r[i]+lc)&BN_MASK2;
543 r[i++]=ll;
544 lc=(lc > ll);
545 } while (lc);
546 }
547 else
548 {
549 lc= -c2;
550 do {
551 ll=r[i];
552 r[i++]=(ll-lc)&BN_MASK2;
553 lc=(lc > ll);
554 } while (lc);
555 }
556 }
557 }
558#endif
559
560int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
561 {
562 int top,al,bl;
563 BIGNUM *rr;
564#ifdef BN_RECURSION
565 BIGNUM *t;
566 int i,j,k;
567#endif
568
569#ifdef BN_COUNT
570printf("BN_mul %d * %d\n",a->top,b->top);
571#endif
572
573 bn_check_top(a);
574 bn_check_top(b);
575 bn_check_top(r);
576
577 al=a->top;
578 bl=b->top;
579 r->neg=a->neg^b->neg;
580
581 if ((al == 0) || (bl == 0))
582 {
583 BN_zero(r);
584 return(1);
585 }
586 top=al+bl;
587
588 if ((r == a) || (r == b))
589 rr= &(ctx->bn[ctx->tos+1]);
590 else
591 rr=r;
592
593#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
594 if (al == bl)
595 {
596# ifdef BN_MUL_COMBA
597/* if (al == 4)
598 {
599 if (bn_wexpand(rr,8) == NULL) return(0);
600 rr->top=8;
601 bn_mul_comba4(rr->d,a->d,b->d);
602 goto end;
603 }
604 else */ if (al == 8)
605 {
606 if (bn_wexpand(rr,16) == NULL) return(0);
607 rr->top=16;
608 bn_mul_comba8(rr->d,a->d,b->d);
609 goto end;
610 }
611 else
612# endif
613#ifdef BN_RECURSION
614 if (al < BN_MULL_SIZE_NORMAL)
615#endif
616 {
617 if (bn_wexpand(rr,top) == NULL) return(0);
618 rr->top=top;
619 bn_mul_normal(rr->d,a->d,al,b->d,bl);
620 goto end;
621 }
622# ifdef BN_RECURSION
623 goto symetric;
624# endif
625 }
626#endif
627#ifdef BN_RECURSION
628 else if ((al < BN_MULL_SIZE_NORMAL) || (bl < BN_MULL_SIZE_NORMAL))
629 {
630 if (bn_wexpand(rr,top) == NULL) return(0);
631 rr->top=top;
632 bn_mul_normal(rr->d,a->d,al,b->d,bl);
633 goto end;
634 }
635 else
636 {
637 i=(al-bl);
638 if ((i == 1) && !BN_get_flags(b,BN_FLG_STATIC_DATA))
639 {
640 bn_wexpand(b,al);
641 b->d[bl]=0;
642 bl++;
643 goto symetric;
644 }
645 else if ((i == -1) && !BN_get_flags(a,BN_FLG_STATIC_DATA))
646 {
647 bn_wexpand(a,bl);
648 a->d[al]=0;
649 al++;
650 goto symetric;
651 }
652 }
653#endif
654
655 /* asymetric and >= 4 */
656 if (bn_wexpand(rr,top) == NULL) return(0);
657 rr->top=top;
658 bn_mul_normal(rr->d,a->d,al,b->d,bl);
659
660#ifdef BN_RECURSION
661 if (0)
662 {
663symetric:
664 /* symetric and > 4 */
665 /* 16 or larger */
666 j=BN_num_bits_word((BN_ULONG)al);
667 j=1<<(j-1);
668 k=j+j;
669 t= &(ctx->bn[ctx->tos]);
670 if (al == j) /* exact multiple */
671 {
672 bn_wexpand(t,k*2);
673 bn_wexpand(rr,k*2);
674 bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
675 }
676 else
677 {
678 bn_wexpand(a,k);
679 bn_wexpand(b,k);
680 bn_wexpand(t,k*4);
681 bn_wexpand(rr,k*4);
682 for (i=a->top; i<k; i++)
683 a->d[i]=0;
684 for (i=b->top; i<k; i++)
685 b->d[i]=0;
686 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
687 }
688 rr->top=top;
689 }
690#endif
691#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
692end:
693#endif
694 bn_fix_top(rr);
695 if (r != rr) BN_copy(r,rr);
696 return(1);
697 }
698
699void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
700 {
701 BN_ULONG *rr;
702
703#ifdef BN_COUNT
704printf(" bn_mul_normal %d * %d\n",na,nb);
705#endif
706
707 if (na < nb)
708 {
709 int itmp;
710 BN_ULONG *ltmp;
711
712 itmp=na; na=nb; nb=itmp;
713 ltmp=a; a=b; b=ltmp;
714
715 }
716 rr= &(r[na]);
717 rr[0]=bn_mul_words(r,a,na,b[0]);
718
719 for (;;)
720 {
721 if (--nb <= 0) return;
722 rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
723 if (--nb <= 0) return;
724 rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
725 if (--nb <= 0) return;
726 rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
727 if (--nb <= 0) return;
728 rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
729 rr+=4;
730 r+=4;
731 b+=4;
732 }
733 }
734
735void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
736 {
737#ifdef BN_COUNT
738printf(" bn_mul_low_normal %d * %d\n",n,n);
739#endif
740 bn_mul_words(r,a,n,b[0]);
741
742 for (;;)
743 {
744 if (--n <= 0) return;
745 bn_mul_add_words(&(r[1]),a,n,b[1]);
746 if (--n <= 0) return;
747 bn_mul_add_words(&(r[2]),a,n,b[2]);
748 if (--n <= 0) return;
749 bn_mul_add_words(&(r[3]),a,n,b[3]);
750 if (--n <= 0) return;
751 bn_mul_add_words(&(r[4]),a,n,b[4]);
752 r+=4;
753 b+=4;
754 }
755 }
756