summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/bn_mul.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r--src/lib/libcrypto/bn/bn_mul.c503
1 files changed, 433 insertions, 70 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c
index 3e8d8b9567..41ea925b8d 100644
--- a/src/lib/libcrypto/bn/bn_mul.c
+++ b/src/lib/libcrypto/bn/bn_mul.c
@@ -56,10 +56,325 @@
56 * [including the GNU Public Licence.] 56 * [including the GNU Public Licence.]
57 */ 57 */
58 58
59#ifndef BN_DEBUG
60# undef NDEBUG /* avoid conflicting definitions */
61# define NDEBUG
62#endif
63
59#include <stdio.h> 64#include <stdio.h>
65#include <assert.h>
60#include "cryptlib.h" 66#include "cryptlib.h"
61#include "bn_lcl.h" 67#include "bn_lcl.h"
62 68
69#if defined(OPENSSL_NO_ASM) || !(defined(__i386) || defined(__i386__))/* Assembler implementation exists only for x86 */
70/* Here follows specialised variants of bn_add_words() and
71 bn_sub_words(). They have the property performing operations on
72 arrays of different sizes. The sizes of those arrays is expressed through
73 cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
74 which is the delta between the two lengths, calculated as len(a)-len(b).
75 All lengths are the number of BN_ULONGs... For the operations that require
76 a result array as parameter, it must have the length cl+abs(dl).
77 These functions should probably end up in bn_asm.c as soon as there are
78 assembler counterparts for the systems that use assembler files. */
79
80BN_ULONG bn_sub_part_words(BN_ULONG *r,
81 const BN_ULONG *a, const BN_ULONG *b,
82 int cl, int dl)
83 {
84 BN_ULONG c, t;
85
86 assert(cl >= 0);
87 c = bn_sub_words(r, a, b, cl);
88
89 if (dl == 0)
90 return c;
91
92 r += cl;
93 a += cl;
94 b += cl;
95
96 if (dl < 0)
97 {
98#ifdef BN_COUNT
99 fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
100#endif
101 for (;;)
102 {
103 t = b[0];
104 r[0] = (0-t-c)&BN_MASK2;
105 if (t != 0) c=1;
106 if (++dl >= 0) break;
107
108 t = b[1];
109 r[1] = (0-t-c)&BN_MASK2;
110 if (t != 0) c=1;
111 if (++dl >= 0) break;
112
113 t = b[2];
114 r[2] = (0-t-c)&BN_MASK2;
115 if (t != 0) c=1;
116 if (++dl >= 0) break;
117
118 t = b[3];
119 r[3] = (0-t-c)&BN_MASK2;
120 if (t != 0) c=1;
121 if (++dl >= 0) break;
122
123 b += 4;
124 r += 4;
125 }
126 }
127 else
128 {
129 int save_dl = dl;
130#ifdef BN_COUNT
131 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
132#endif
133 while(c)
134 {
135 t = a[0];
136 r[0] = (t-c)&BN_MASK2;
137 if (t != 0) c=0;
138 if (--dl <= 0) break;
139
140 t = a[1];
141 r[1] = (t-c)&BN_MASK2;
142 if (t != 0) c=0;
143 if (--dl <= 0) break;
144
145 t = a[2];
146 r[2] = (t-c)&BN_MASK2;
147 if (t != 0) c=0;
148 if (--dl <= 0) break;
149
150 t = a[3];
151 r[3] = (t-c)&BN_MASK2;
152 if (t != 0) c=0;
153 if (--dl <= 0) break;
154
155 save_dl = dl;
156 a += 4;
157 r += 4;
158 }
159 if (dl > 0)
160 {
161#ifdef BN_COUNT
162 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
163#endif
164 if (save_dl > dl)
165 {
166 switch (save_dl - dl)
167 {
168 case 1:
169 r[1] = a[1];
170 if (--dl <= 0) break;
171 case 2:
172 r[2] = a[2];
173 if (--dl <= 0) break;
174 case 3:
175 r[3] = a[3];
176 if (--dl <= 0) break;
177 }
178 a += 4;
179 r += 4;
180 }
181 }
182 if (dl > 0)
183 {
184#ifdef BN_COUNT
185 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
186#endif
187 for(;;)
188 {
189 r[0] = a[0];
190 if (--dl <= 0) break;
191 r[1] = a[1];
192 if (--dl <= 0) break;
193 r[2] = a[2];
194 if (--dl <= 0) break;
195 r[3] = a[3];
196 if (--dl <= 0) break;
197
198 a += 4;
199 r += 4;
200 }
201 }
202 }
203 return c;
204 }
205#endif
206
207BN_ULONG bn_add_part_words(BN_ULONG *r,
208 const BN_ULONG *a, const BN_ULONG *b,
209 int cl, int dl)
210 {
211 BN_ULONG c, l, t;
212
213 assert(cl >= 0);
214 c = bn_add_words(r, a, b, cl);
215
216 if (dl == 0)
217 return c;
218
219 r += cl;
220 a += cl;
221 b += cl;
222
223 if (dl < 0)
224 {
225 int save_dl = dl;
226#ifdef BN_COUNT
227 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
228#endif
229 while (c)
230 {
231 l=(c+b[0])&BN_MASK2;
232 c=(l < c);
233 r[0]=l;
234 if (++dl >= 0) break;
235
236 l=(c+b[1])&BN_MASK2;
237 c=(l < c);
238 r[1]=l;
239 if (++dl >= 0) break;
240
241 l=(c+b[2])&BN_MASK2;
242 c=(l < c);
243 r[2]=l;
244 if (++dl >= 0) break;
245
246 l=(c+b[3])&BN_MASK2;
247 c=(l < c);
248 r[3]=l;
249 if (++dl >= 0) break;
250
251 save_dl = dl;
252 b+=4;
253 r+=4;
254 }
255 if (dl < 0)
256 {
257#ifdef BN_COUNT
258 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
259#endif
260 if (save_dl < dl)
261 {
262 switch (dl - save_dl)
263 {
264 case 1:
265 r[1] = b[1];
266 if (++dl >= 0) break;
267 case 2:
268 r[2] = b[2];
269 if (++dl >= 0) break;
270 case 3:
271 r[3] = b[3];
272 if (++dl >= 0) break;
273 }
274 b += 4;
275 r += 4;
276 }
277 }
278 if (dl < 0)
279 {
280#ifdef BN_COUNT
281 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
282#endif
283 for(;;)
284 {
285 r[0] = b[0];
286 if (++dl >= 0) break;
287 r[1] = b[1];
288 if (++dl >= 0) break;
289 r[2] = b[2];
290 if (++dl >= 0) break;
291 r[3] = b[3];
292 if (++dl >= 0) break;
293
294 b += 4;
295 r += 4;
296 }
297 }
298 }
299 else
300 {
301 int save_dl = dl;
302#ifdef BN_COUNT
303 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
304#endif
305 while (c)
306 {
307 t=(a[0]+c)&BN_MASK2;
308 c=(t < c);
309 r[0]=t;
310 if (--dl <= 0) break;
311
312 t=(a[1]+c)&BN_MASK2;
313 c=(t < c);
314 r[1]=t;
315 if (--dl <= 0) break;
316
317 t=(a[2]+c)&BN_MASK2;
318 c=(t < c);
319 r[2]=t;
320 if (--dl <= 0) break;
321
322 t=(a[3]+c)&BN_MASK2;
323 c=(t < c);
324 r[3]=t;
325 if (--dl <= 0) break;
326
327 save_dl = dl;
328 a+=4;
329 r+=4;
330 }
331#ifdef BN_COUNT
332 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
333#endif
334 if (dl > 0)
335 {
336 if (save_dl > dl)
337 {
338 switch (save_dl - dl)
339 {
340 case 1:
341 r[1] = a[1];
342 if (--dl <= 0) break;
343 case 2:
344 r[2] = a[2];
345 if (--dl <= 0) break;
346 case 3:
347 r[3] = a[3];
348 if (--dl <= 0) break;
349 }
350 a += 4;
351 r += 4;
352 }
353 }
354 if (dl > 0)
355 {
356#ifdef BN_COUNT
357 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
358#endif
359 for(;;)
360 {
361 r[0] = a[0];
362 if (--dl <= 0) break;
363 r[1] = a[1];
364 if (--dl <= 0) break;
365 r[2] = a[2];
366 if (--dl <= 0) break;
367 r[3] = a[3];
368 if (--dl <= 0) break;
369
370 a += 4;
371 r += 4;
372 }
373 }
374 }
375 return c;
376 }
377
63#ifdef BN_RECURSION 378#ifdef BN_RECURSION
64/* Karatsuba recursive multiplication algorithm 379/* Karatsuba recursive multiplication algorithm
65 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ 380 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
@@ -75,14 +390,15 @@
75 * a[1]*b[1] 390 * a[1]*b[1]
76 */ 391 */
77void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, 392void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
78 BN_ULONG *t) 393 int dna, int dnb, BN_ULONG *t)
79 { 394 {
80 int n=n2/2,c1,c2; 395 int n=n2/2,c1,c2;
396 int tna=n+dna, tnb=n+dnb;
81 unsigned int neg,zero; 397 unsigned int neg,zero;
82 BN_ULONG ln,lo,*p; 398 BN_ULONG ln,lo,*p;
83 399
84# ifdef BN_COUNT 400# ifdef BN_COUNT
85 printf(" bn_mul_recursive %d * %d\n",n2,n2); 401 fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2);
86# endif 402# endif
87# ifdef BN_MUL_COMBA 403# ifdef BN_MUL_COMBA
88# if 0 404# if 0
@@ -105,21 +421,21 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
105 return; 421 return;
106 } 422 }
107 /* r=(a[0]-a[1])*(b[1]-b[0]) */ 423 /* r=(a[0]-a[1])*(b[1]-b[0]) */
108 c1=bn_cmp_words(a,&(a[n]),n); 424 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
109 c2=bn_cmp_words(&(b[n]),b,n); 425 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
110 zero=neg=0; 426 zero=neg=0;
111 switch (c1*3+c2) 427 switch (c1*3+c2)
112 { 428 {
113 case -4: 429 case -4:
114 bn_sub_words(t, &(a[n]),a, n); /* - */ 430 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
115 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ 431 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
116 break; 432 break;
117 case -3: 433 case -3:
118 zero=1; 434 zero=1;
119 break; 435 break;
120 case -2: 436 case -2:
121 bn_sub_words(t, &(a[n]),a, n); /* - */ 437 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
122 bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ 438 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
123 neg=1; 439 neg=1;
124 break; 440 break;
125 case -1: 441 case -1:
@@ -128,21 +444,22 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
128 zero=1; 444 zero=1;
129 break; 445 break;
130 case 2: 446 case 2:
131 bn_sub_words(t, a, &(a[n]),n); /* + */ 447 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
132 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ 448 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
133 neg=1; 449 neg=1;
134 break; 450 break;
135 case 3: 451 case 3:
136 zero=1; 452 zero=1;
137 break; 453 break;
138 case 4: 454 case 4:
139 bn_sub_words(t, a, &(a[n]),n); 455 bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
140 bn_sub_words(&(t[n]),&(b[n]),b, n); 456 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
141 break; 457 break;
142 } 458 }
143 459
144# ifdef BN_MUL_COMBA 460# ifdef BN_MUL_COMBA
145 if (n == 4) 461 if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
462 extra args to do this well */
146 { 463 {
147 if (!zero) 464 if (!zero)
148 bn_mul_comba4(&(t[n2]),t,&(t[n])); 465 bn_mul_comba4(&(t[n2]),t,&(t[n]));
@@ -152,7 +469,9 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
152 bn_mul_comba4(r,a,b); 469 bn_mul_comba4(r,a,b);
153 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); 470 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
154 } 471 }
155 else if (n == 8) 472 else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
473 take extra args to do this
474 well */
156 { 475 {
157 if (!zero) 476 if (!zero)
158 bn_mul_comba8(&(t[n2]),t,&(t[n])); 477 bn_mul_comba8(&(t[n2]),t,&(t[n]));
@@ -167,11 +486,11 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
167 { 486 {
168 p= &(t[n2*2]); 487 p= &(t[n2*2]);
169 if (!zero) 488 if (!zero)
170 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); 489 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
171 else 490 else
172 memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); 491 memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
173 bn_mul_recursive(r,a,b,n,p); 492 bn_mul_recursive(r,a,b,n,0,0,p);
174 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); 493 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
175 } 494 }
176 495
177 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign 496 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
@@ -220,39 +539,39 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
220 539
221/* n+tn is the word length 540/* n+tn is the word length
222 * t needs to be n*4 is size, as does r */ 541 * t needs to be n*4 is size, as does r */
223void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, 542void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
224 int n, BN_ULONG *t) 543 int tna, int tnb, BN_ULONG *t)
225 { 544 {
226 int i,j,n2=n*2; 545 int i,j,n2=n*2;
227 unsigned int c1,c2,neg,zero; 546 unsigned int c1,c2,neg,zero;
228 BN_ULONG ln,lo,*p; 547 BN_ULONG ln,lo,*p;
229 548
230# ifdef BN_COUNT 549# ifdef BN_COUNT
231 printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); 550 fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
551 tna, n, tnb, n);
232# endif 552# endif
233 if (n < 8) 553 if (n < 8)
234 { 554 {
235 i=tn+n; 555 bn_mul_normal(r,a,n+tna,b,n+tnb);
236 bn_mul_normal(r,a,i,b,i);
237 return; 556 return;
238 } 557 }
239 558
240 /* r=(a[0]-a[1])*(b[1]-b[0]) */ 559 /* r=(a[0]-a[1])*(b[1]-b[0]) */
241 c1=bn_cmp_words(a,&(a[n]),n); 560 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
242 c2=bn_cmp_words(&(b[n]),b,n); 561 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
243 zero=neg=0; 562 zero=neg=0;
244 switch (c1*3+c2) 563 switch (c1*3+c2)
245 { 564 {
246 case -4: 565 case -4:
247 bn_sub_words(t, &(a[n]),a, n); /* - */ 566 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
248 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ 567 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
249 break; 568 break;
250 case -3: 569 case -3:
251 zero=1; 570 zero=1;
252 /* break; */ 571 /* break; */
253 case -2: 572 case -2:
254 bn_sub_words(t, &(a[n]),a, n); /* - */ 573 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
255 bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ 574 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
256 neg=1; 575 neg=1;
257 break; 576 break;
258 case -1: 577 case -1:
@@ -261,16 +580,16 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
261 zero=1; 580 zero=1;
262 /* break; */ 581 /* break; */
263 case 2: 582 case 2:
264 bn_sub_words(t, a, &(a[n]),n); /* + */ 583 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
265 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ 584 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
266 neg=1; 585 neg=1;
267 break; 586 break;
268 case 3: 587 case 3:
269 zero=1; 588 zero=1;
270 /* break; */ 589 /* break; */
271 case 4: 590 case 4:
272 bn_sub_words(t, a, &(a[n]),n); 591 bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
273 bn_sub_words(&(t[n]),&(b[n]),b, n); 592 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
274 break; 593 break;
275 } 594 }
276 /* The zero case isn't yet implemented here. The speedup 595 /* The zero case isn't yet implemented here. The speedup
@@ -289,54 +608,59 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
289 { 608 {
290 bn_mul_comba8(&(t[n2]),t,&(t[n])); 609 bn_mul_comba8(&(t[n2]),t,&(t[n]));
291 bn_mul_comba8(r,a,b); 610 bn_mul_comba8(r,a,b);
292 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); 611 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
293 memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); 612 memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
294 } 613 }
295 else 614 else
296 { 615 {
297 p= &(t[n2*2]); 616 p= &(t[n2*2]);
298 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); 617 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
299 bn_mul_recursive(r,a,b,n,p); 618 bn_mul_recursive(r,a,b,n,0,0,p);
300 i=n/2; 619 i=n/2;
301 /* If there is only a bottom half to the number, 620 /* If there is only a bottom half to the number,
302 * just do it */ 621 * just do it */
303 j=tn-i; 622 if (tna > tnb)
623 j = tna - i;
624 else
625 j = tnb - i;
304 if (j == 0) 626 if (j == 0)
305 { 627 {
306 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); 628 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
629 i,tna-i,tnb-i,p);
307 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); 630 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
308 } 631 }
309 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ 632 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
310 { 633 {
311 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), 634 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
312 j,i,p); 635 i,tna-i,tnb-i,p);
313 memset(&(r[n2+tn*2]),0, 636 memset(&(r[n2+tna+tnb]),0,
314 sizeof(BN_ULONG)*(n2-tn*2)); 637 sizeof(BN_ULONG)*(n2-tna-tnb));
315 } 638 }
316 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ 639 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
317 { 640 {
318 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); 641 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
319 if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) 642 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
643 && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
320 { 644 {
321 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); 645 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
322 } 646 }
323 else 647 else
324 { 648 {
325 for (;;) 649 for (;;)
326 { 650 {
327 i/=2; 651 i/=2;
328 if (i < tn) 652 if (i < tna && i < tnb)
329 { 653 {
330 bn_mul_part_recursive(&(r[n2]), 654 bn_mul_part_recursive(&(r[n2]),
331 &(a[n]),&(b[n]), 655 &(a[n]),&(b[n]),
332 tn-i,i,p); 656 i,tna-i,tnb-i,p);
333 break; 657 break;
334 } 658 }
335 else if (i == tn) 659 else if (i <= tna && i <= tnb)
336 { 660 {
337 bn_mul_recursive(&(r[n2]), 661 bn_mul_recursive(&(r[n2]),
338 &(a[n]),&(b[n]), 662 &(a[n]),&(b[n]),
339 i,p); 663 i,tna-i,tnb-i,p);
340 break; 664 break;
341 } 665 }
342 } 666 }
@@ -397,10 +721,10 @@ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
397 int n=n2/2; 721 int n=n2/2;
398 722
399# ifdef BN_COUNT 723# ifdef BN_COUNT
400 printf(" bn_mul_low_recursive %d * %d\n",n2,n2); 724 fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
401# endif 725# endif
402 726
403 bn_mul_recursive(r,a,b,n,&(t[0])); 727 bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
404 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) 728 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
405 { 729 {
406 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); 730 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
@@ -431,7 +755,7 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
431 BN_ULONG ll,lc,*lp,*mp; 755 BN_ULONG ll,lc,*lp,*mp;
432 756
433# ifdef BN_COUNT 757# ifdef BN_COUNT
434 printf(" bn_mul_high %d * %d\n",n2,n2); 758 fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
435# endif 759# endif
436 n=n2/2; 760 n=n2/2;
437 761
@@ -484,8 +808,8 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
484 else 808 else
485# endif 809# endif
486 { 810 {
487 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); 811 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
488 bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); 812 bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
489 } 813 }
490 814
491 /* s0 == low(al*bl) 815 /* s0 == low(al*bl)
@@ -608,21 +932,21 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
608 } 932 }
609#endif /* BN_RECURSION */ 933#endif /* BN_RECURSION */
610 934
611int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) 935int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
612 { 936 {
937 int ret=0;
613 int top,al,bl; 938 int top,al,bl;
614 BIGNUM *rr; 939 BIGNUM *rr;
615 int ret = 0;
616#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) 940#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
617 int i; 941 int i;
618#endif 942#endif
619#ifdef BN_RECURSION 943#ifdef BN_RECURSION
620 BIGNUM *t; 944 BIGNUM *t=NULL;
621 int j,k; 945 int j=0,k;
622#endif 946#endif
623 947
624#ifdef BN_COUNT 948#ifdef BN_COUNT
625 printf("BN_mul %d * %d\n",a->top,b->top); 949 fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
626#endif 950#endif
627 951
628 bn_check_top(a); 952 bn_check_top(a);
@@ -675,17 +999,55 @@ int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
675#ifdef BN_RECURSION 999#ifdef BN_RECURSION
676 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) 1000 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
677 { 1001 {
1002 if (i >= -1 && i <= 1)
1003 {
1004 int sav_j =0;
1005 /* Find out the power of two lower or equal
1006 to the longest of the two numbers */
1007 if (i >= 0)
1008 {
1009 j = BN_num_bits_word((BN_ULONG)al);
1010 }
1011 if (i == -1)
1012 {
1013 j = BN_num_bits_word((BN_ULONG)bl);
1014 }
1015 sav_j = j;
1016 j = 1<<(j-1);
1017 assert(j <= al || j <= bl);
1018 k = j+j;
1019 t = BN_CTX_get(ctx);
1020 if (al > j || bl > j)
1021 {
1022 bn_wexpand(t,k*4);
1023 bn_wexpand(rr,k*4);
1024 bn_mul_part_recursive(rr->d,a->d,b->d,
1025 j,al-j,bl-j,t->d);
1026 }
1027 else /* al <= j || bl <= j */
1028 {
1029 bn_wexpand(t,k*2);
1030 bn_wexpand(rr,k*2);
1031 bn_mul_recursive(rr->d,a->d,b->d,
1032 j,al-j,bl-j,t->d);
1033 }
1034 rr->top=top;
1035 goto end;
1036 }
1037#if 0
678 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) 1038 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
679 { 1039 {
680 bn_wexpand(b,al); 1040 BIGNUM *tmp_bn = (BIGNUM *)b;
681 b->d[bl]=0; 1041 bn_wexpand(tmp_bn,al);
1042 tmp_bn->d[bl]=0;
682 bl++; 1043 bl++;
683 i--; 1044 i--;
684 } 1045 }
685 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) 1046 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
686 { 1047 {
687 bn_wexpand(a,bl); 1048 BIGNUM *tmp_bn = (BIGNUM *)a;
688 a->d[al]=0; 1049 bn_wexpand(tmp_bn,bl);
1050 tmp_bn->d[al]=0;
689 al++; 1051 al++;
690 i++; 1052 i++;
691 } 1053 }
@@ -705,19 +1067,14 @@ int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
705 } 1067 }
706 else 1068 else
707 { 1069 {
708 bn_wexpand(a,k);
709 bn_wexpand(b,k);
710 bn_wexpand(t,k*4); 1070 bn_wexpand(t,k*4);
711 bn_wexpand(rr,k*4); 1071 bn_wexpand(rr,k*4);
712 for (i=a->top; i<k; i++)
713 a->d[i]=0;
714 for (i=b->top; i<k; i++)
715 b->d[i]=0;
716 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); 1072 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
717 } 1073 }
718 rr->top=top; 1074 rr->top=top;
719 goto end; 1075 goto end;
720 } 1076 }
1077#endif
721 } 1078 }
722#endif /* BN_RECURSION */ 1079#endif /* BN_RECURSION */
723 if (bn_wexpand(rr,top) == NULL) goto err; 1080 if (bn_wexpand(rr,top) == NULL) goto err;
@@ -740,7 +1097,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
740 BN_ULONG *rr; 1097 BN_ULONG *rr;
741 1098
742#ifdef BN_COUNT 1099#ifdef BN_COUNT
743 printf(" bn_mul_normal %d * %d\n",na,nb); 1100 fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
744#endif 1101#endif
745 1102
746 if (na < nb) 1103 if (na < nb)
@@ -753,7 +1110,13 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
753 1110
754 } 1111 }
755 rr= &(r[na]); 1112 rr= &(r[na]);
756 rr[0]=bn_mul_words(r,a,na,b[0]); 1113 if (nb <= 0)
1114 {
1115 (void)bn_mul_words(r,a,na,0);
1116 return;
1117 }
1118 else
1119 rr[0]=bn_mul_words(r,a,na,b[0]);
757 1120
758 for (;;) 1121 for (;;)
759 { 1122 {
@@ -774,7 +1137,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
774void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) 1137void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
775 { 1138 {
776#ifdef BN_COUNT 1139#ifdef BN_COUNT
777 printf(" bn_mul_low_normal %d * %d\n",n,n); 1140 fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
778#endif 1141#endif
779 bn_mul_words(r,a,n,b[0]); 1142 bn_mul_words(r,a,n,b[0]);
780 1143