diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_prime.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_prime.c | 447 |
1 files changed, 0 insertions, 447 deletions
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c deleted file mode 100644 index 6fa0f9be1e..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.c +++ /dev/null | |||
@@ -1,447 +0,0 @@ | |||
1 | /* crypto/bn/bn_prime.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <time.h> | ||
61 | #include "cryptlib.h" | ||
62 | #include "bn_lcl.h" | ||
63 | #include <openssl/rand.h> | ||
64 | |||
65 | /* The quick seive algorithm approach to weeding out primes is | ||
66 | * Philip Zimmermann's, as implemented in PGP. I have had a read of | ||
67 | * his comments and implemented my own version. | ||
68 | */ | ||
69 | #include "bn_prime.h" | ||
70 | |||
71 | static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2, | ||
72 | BN_MONT_CTX *mont); | ||
73 | static int probable_prime(BIGNUM *rnd, int bits); | ||
74 | static int probable_prime_dh(BIGNUM *rnd, int bits, | ||
75 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); | ||
76 | static int probable_prime_dh_strong(BIGNUM *rnd, int bits, | ||
77 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); | ||
78 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int strong, BIGNUM *add, | ||
79 | BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg) | ||
80 | { | ||
81 | BIGNUM *rnd=NULL; | ||
82 | BIGNUM t; | ||
83 | int i,j,c1=0; | ||
84 | BN_CTX *ctx; | ||
85 | |||
86 | ctx=BN_CTX_new(); | ||
87 | if (ctx == NULL) goto err; | ||
88 | if (ret == NULL) | ||
89 | { | ||
90 | if ((rnd=BN_new()) == NULL) goto err; | ||
91 | } | ||
92 | else | ||
93 | rnd=ret; | ||
94 | BN_init(&t); | ||
95 | loop: | ||
96 | /* make a random number and set the top and bottom bits */ | ||
97 | if (add == NULL) | ||
98 | { | ||
99 | if (!probable_prime(rnd,bits)) goto err; | ||
100 | } | ||
101 | else | ||
102 | { | ||
103 | if (strong) | ||
104 | { | ||
105 | if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx)) | ||
106 | goto err; | ||
107 | } | ||
108 | else | ||
109 | { | ||
110 | if (!probable_prime_dh(rnd,bits,add,rem,ctx)) | ||
111 | goto err; | ||
112 | } | ||
113 | } | ||
114 | /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ | ||
115 | if (callback != NULL) callback(0,c1++,cb_arg); | ||
116 | |||
117 | if (!strong) | ||
118 | { | ||
119 | i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg); | ||
120 | if (i == -1) goto err; | ||
121 | if (i == 0) goto loop; | ||
122 | } | ||
123 | else | ||
124 | { | ||
125 | /* for a strong prime generation, | ||
126 | * check that (p-1)/2 is prime. | ||
127 | * Since a prime is odd, We just | ||
128 | * need to divide by 2 */ | ||
129 | if (!BN_rshift1(&t,rnd)) goto err; | ||
130 | |||
131 | for (i=0; i<BN_prime_checks; i++) | ||
132 | { | ||
133 | j=BN_is_prime(rnd,1,callback,ctx,cb_arg); | ||
134 | if (j == -1) goto err; | ||
135 | if (j == 0) goto loop; | ||
136 | |||
137 | j=BN_is_prime(&t,1,callback,ctx,cb_arg); | ||
138 | if (j == -1) goto err; | ||
139 | if (j == 0) goto loop; | ||
140 | |||
141 | if (callback != NULL) callback(2,c1-1,cb_arg); | ||
142 | /* We have a strong prime test pass */ | ||
143 | } | ||
144 | } | ||
145 | /* we have a prime :-) */ | ||
146 | ret=rnd; | ||
147 | err: | ||
148 | if ((ret == NULL) && (rnd != NULL)) BN_free(rnd); | ||
149 | BN_free(&t); | ||
150 | if (ctx != NULL) BN_CTX_free(ctx); | ||
151 | return(ret); | ||
152 | } | ||
153 | |||
154 | int BN_is_prime(BIGNUM *a, int checks, void (*callback)(int,int,void *), | ||
155 | BN_CTX *ctx_passed, void *cb_arg) | ||
156 | { | ||
157 | int i,j,c2=0,ret= -1; | ||
158 | BIGNUM *check; | ||
159 | BN_CTX *ctx=NULL,*ctx2=NULL; | ||
160 | BN_MONT_CTX *mont=NULL; | ||
161 | |||
162 | if (!BN_is_odd(a)) | ||
163 | return(0); | ||
164 | if (ctx_passed != NULL) | ||
165 | ctx=ctx_passed; | ||
166 | else | ||
167 | if ((ctx=BN_CTX_new()) == NULL) goto err; | ||
168 | |||
169 | if ((ctx2=BN_CTX_new()) == NULL) goto err; | ||
170 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
171 | |||
172 | check= &(ctx->bn[ctx->tos++]); | ||
173 | |||
174 | /* Setup the montgomery structure */ | ||
175 | if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err; | ||
176 | |||
177 | for (i=0; i<checks; i++) | ||
178 | { | ||
179 | if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err; | ||
180 | j=witness(check,a,ctx,ctx2,mont); | ||
181 | if (j == -1) goto err; | ||
182 | if (j) | ||
183 | { | ||
184 | ret=0; | ||
185 | goto err; | ||
186 | } | ||
187 | if (callback != NULL) callback(1,c2++,cb_arg); | ||
188 | } | ||
189 | ret=1; | ||
190 | err: | ||
191 | ctx->tos--; | ||
192 | if ((ctx_passed == NULL) && (ctx != NULL)) | ||
193 | BN_CTX_free(ctx); | ||
194 | if (ctx2 != NULL) | ||
195 | BN_CTX_free(ctx2); | ||
196 | if (mont != NULL) BN_MONT_CTX_free(mont); | ||
197 | |||
198 | return(ret); | ||
199 | } | ||
200 | |||
201 | #define RECP_MUL_MOD | ||
202 | |||
203 | static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx, BN_CTX *ctx2, | ||
204 | BN_MONT_CTX *mont) | ||
205 | { | ||
206 | int k,i,ret= -1,good; | ||
207 | BIGNUM *d,*dd,*tmp,*d1,*d2,*n1; | ||
208 | BIGNUM *mont_one,*mont_n1,*mont_a; | ||
209 | |||
210 | d1= &(ctx->bn[ctx->tos]); | ||
211 | d2= &(ctx->bn[ctx->tos+1]); | ||
212 | n1= &(ctx->bn[ctx->tos+2]); | ||
213 | ctx->tos+=3; | ||
214 | |||
215 | mont_one= &(ctx2->bn[ctx2->tos]); | ||
216 | mont_n1= &(ctx2->bn[ctx2->tos+1]); | ||
217 | mont_a= &(ctx2->bn[ctx2->tos+2]); | ||
218 | ctx2->tos+=3; | ||
219 | |||
220 | d=d1; | ||
221 | dd=d2; | ||
222 | if (!BN_one(d)) goto err; | ||
223 | if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ | ||
224 | k=BN_num_bits(n1); | ||
225 | |||
226 | if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err; | ||
227 | if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err; | ||
228 | if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err; | ||
229 | |||
230 | BN_copy(d,mont_one); | ||
231 | for (i=k-1; i>=0; i--) | ||
232 | { | ||
233 | if ( (BN_cmp(d,mont_one) != 0) && | ||
234 | (BN_cmp(d,mont_n1) != 0)) | ||
235 | good=1; | ||
236 | else | ||
237 | good=0; | ||
238 | |||
239 | BN_mod_mul_montgomery(dd,d,d,mont,ctx2); | ||
240 | |||
241 | if (good && (BN_cmp(dd,mont_one) == 0)) | ||
242 | { | ||
243 | ret=1; | ||
244 | goto err; | ||
245 | } | ||
246 | if (BN_is_bit_set(n1,i)) | ||
247 | { | ||
248 | BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2); | ||
249 | } | ||
250 | else | ||
251 | { | ||
252 | tmp=d; | ||
253 | d=dd; | ||
254 | dd=tmp; | ||
255 | } | ||
256 | } | ||
257 | if (BN_cmp(d,mont_one) == 0) | ||
258 | i=0; | ||
259 | else i=1; | ||
260 | ret=i; | ||
261 | err: | ||
262 | ctx->tos-=3; | ||
263 | ctx2->tos-=3; | ||
264 | return(ret); | ||
265 | } | ||
266 | |||
267 | static int probable_prime(BIGNUM *rnd, int bits) | ||
268 | { | ||
269 | int i; | ||
270 | MS_STATIC BN_ULONG mods[NUMPRIMES]; | ||
271 | BN_ULONG delta,d; | ||
272 | |||
273 | again: | ||
274 | if (!BN_rand(rnd,bits,1,1)) return(0); | ||
275 | /* we now have a random number 'rand' to test. */ | ||
276 | for (i=1; i<NUMPRIMES; i++) | ||
277 | mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]); | ||
278 | delta=0; | ||
279 | loop: for (i=1; i<NUMPRIMES; i++) | ||
280 | { | ||
281 | /* check that rnd is not a prime and also | ||
282 | * that gcd(rnd-1,primes) == 1 (except for 2) */ | ||
283 | if (((mods[i]+delta)%primes[i]) <= 1) | ||
284 | { | ||
285 | d=delta; | ||
286 | delta+=2; | ||
287 | /* perhaps need to check for overflow of | ||
288 | * delta (but delta can be upto 2^32) | ||
289 | * 21-May-98 eay - added overflow check */ | ||
290 | if (delta < d) goto again; | ||
291 | goto loop; | ||
292 | } | ||
293 | } | ||
294 | if (!BN_add_word(rnd,delta)) return(0); | ||
295 | return(1); | ||
296 | } | ||
297 | |||
298 | static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem, | ||
299 | BN_CTX *ctx) | ||
300 | { | ||
301 | int i,ret=0; | ||
302 | BIGNUM *t1; | ||
303 | |||
304 | t1= &(ctx->bn[ctx->tos++]); | ||
305 | |||
306 | if (!BN_rand(rnd,bits,0,1)) goto err; | ||
307 | |||
308 | /* we need ((rnd-rem) % add) == 0 */ | ||
309 | |||
310 | if (!BN_mod(t1,rnd,add,ctx)) goto err; | ||
311 | if (!BN_sub(rnd,rnd,t1)) goto err; | ||
312 | if (rem == NULL) | ||
313 | { if (!BN_add_word(rnd,1)) goto err; } | ||
314 | else | ||
315 | { if (!BN_add(rnd,rnd,rem)) goto err; } | ||
316 | |||
317 | /* we now have a random number 'rand' to test. */ | ||
318 | |||
319 | loop: for (i=1; i<NUMPRIMES; i++) | ||
320 | { | ||
321 | /* check that rnd is a prime */ | ||
322 | if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1) | ||
323 | { | ||
324 | if (!BN_add(rnd,rnd,add)) goto err; | ||
325 | goto loop; | ||
326 | } | ||
327 | } | ||
328 | ret=1; | ||
329 | err: | ||
330 | ctx->tos--; | ||
331 | return(ret); | ||
332 | } | ||
333 | |||
334 | static int probable_prime_dh_strong(BIGNUM *p, int bits, BIGNUM *padd, | ||
335 | BIGNUM *rem, BN_CTX *ctx) | ||
336 | { | ||
337 | int i,ret=0; | ||
338 | BIGNUM *t1,*qadd=NULL,*q=NULL; | ||
339 | |||
340 | bits--; | ||
341 | t1= &(ctx->bn[ctx->tos++]); | ||
342 | q= &(ctx->bn[ctx->tos++]); | ||
343 | qadd= &(ctx->bn[ctx->tos++]); | ||
344 | |||
345 | if (!BN_rshift1(qadd,padd)) goto err; | ||
346 | |||
347 | if (!BN_rand(q,bits,0,1)) goto err; | ||
348 | |||
349 | /* we need ((rnd-rem) % add) == 0 */ | ||
350 | if (!BN_mod(t1,q,qadd,ctx)) goto err; | ||
351 | if (!BN_sub(q,q,t1)) goto err; | ||
352 | if (rem == NULL) | ||
353 | { if (!BN_add_word(q,1)) goto err; } | ||
354 | else | ||
355 | { | ||
356 | if (!BN_rshift1(t1,rem)) goto err; | ||
357 | if (!BN_add(q,q,t1)) goto err; | ||
358 | } | ||
359 | |||
360 | /* we now have a random number 'rand' to test. */ | ||
361 | if (!BN_lshift1(p,q)) goto err; | ||
362 | if (!BN_add_word(p,1)) goto err; | ||
363 | |||
364 | loop: for (i=1; i<NUMPRIMES; i++) | ||
365 | { | ||
366 | /* check that p and q are prime */ | ||
367 | /* check that for p and q | ||
368 | * gcd(p-1,primes) == 1 (except for 2) */ | ||
369 | if ( (BN_mod_word(p,(BN_ULONG)primes[i]) == 0) || | ||
370 | (BN_mod_word(q,(BN_ULONG)primes[i]) == 0)) | ||
371 | { | ||
372 | if (!BN_add(p,p,padd)) goto err; | ||
373 | if (!BN_add(q,q,qadd)) goto err; | ||
374 | goto loop; | ||
375 | } | ||
376 | } | ||
377 | ret=1; | ||
378 | err: | ||
379 | ctx->tos-=3; | ||
380 | return(ret); | ||
381 | } | ||
382 | |||
383 | #if 0 | ||
384 | static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx) | ||
385 | { | ||
386 | int k,i,nb,ret= -1; | ||
387 | BIGNUM *d,*dd,*tmp; | ||
388 | BIGNUM *d1,*d2,*x,*n1,*inv; | ||
389 | |||
390 | d1= &(ctx->bn[ctx->tos]); | ||
391 | d2= &(ctx->bn[ctx->tos+1]); | ||
392 | x= &(ctx->bn[ctx->tos+2]); | ||
393 | n1= &(ctx->bn[ctx->tos+3]); | ||
394 | inv=&(ctx->bn[ctx->tos+4]); | ||
395 | ctx->tos+=5; | ||
396 | |||
397 | d=d1; | ||
398 | dd=d2; | ||
399 | if (!BN_one(d)) goto err; | ||
400 | if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ | ||
401 | k=BN_num_bits(n1); | ||
402 | |||
403 | /* i=BN_num_bits(n); */ | ||
404 | #ifdef RECP_MUL_MOD | ||
405 | nb=BN_reciprocal(inv,n,ctx); /**/ | ||
406 | if (nb == -1) goto err; | ||
407 | #endif | ||
408 | |||
409 | for (i=k-1; i>=0; i--) | ||
410 | { | ||
411 | if (BN_copy(x,d) == NULL) goto err; | ||
412 | #ifndef RECP_MUL_MOD | ||
413 | if (!BN_mod_mul(dd,d,d,n,ctx)) goto err; | ||
414 | #else | ||
415 | if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err; | ||
416 | #endif | ||
417 | if ( BN_is_one(dd) && | ||
418 | !BN_is_one(x) && | ||
419 | (BN_cmp(x,n1) != 0)) | ||
420 | { | ||
421 | ret=1; | ||
422 | goto err; | ||
423 | } | ||
424 | if (BN_is_bit_set(n1,i)) | ||
425 | { | ||
426 | #ifndef RECP_MUL_MOD | ||
427 | if (!BN_mod_mul(d,dd,a,n,ctx)) goto err; | ||
428 | #else | ||
429 | if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err; | ||
430 | #endif | ||
431 | } | ||
432 | else | ||
433 | { | ||
434 | tmp=d; | ||
435 | d=dd; | ||
436 | dd=tmp; | ||
437 | } | ||
438 | } | ||
439 | if (BN_is_one(d)) | ||
440 | i=0; | ||
441 | else i=1; | ||
442 | ret=i; | ||
443 | err: | ||
444 | ctx->tos-=5; | ||
445 | return(ret); | ||
446 | } | ||
447 | #endif | ||