diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_prime.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_prime.c | 546 |
1 files changed, 0 insertions, 546 deletions
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c deleted file mode 100644 index fb39756de2..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.c +++ /dev/null | |||
@@ -1,546 +0,0 @@ | |||
1 | /* $OpenBSD: bn_prime.c,v 1.15 2016/07/05 02:54:35 bcook Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | #include <time.h> | ||
114 | |||
115 | #include <openssl/err.h> | ||
116 | |||
117 | #include "bn_lcl.h" | ||
118 | |||
119 | /* NB: these functions have been "upgraded", the deprecated versions (which are | ||
120 | * compatibility wrappers using these functions) are in bn_depr.c. | ||
121 | * - Geoff | ||
122 | */ | ||
123 | |||
124 | /* The quick sieve algorithm approach to weeding out primes is | ||
125 | * Philip Zimmermann's, as implemented in PGP. I have had a read of | ||
126 | * his comments and implemented my own version. | ||
127 | */ | ||
128 | #include "bn_prime.h" | ||
129 | |||
130 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, | ||
131 | const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont); | ||
132 | static int probable_prime(BIGNUM *rnd, int bits); | ||
133 | static int probable_prime_dh(BIGNUM *rnd, int bits, | ||
134 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); | ||
135 | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, | ||
136 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); | ||
137 | |||
138 | int | ||
139 | BN_GENCB_call(BN_GENCB *cb, int a, int b) | ||
140 | { | ||
141 | /* No callback means continue */ | ||
142 | if (!cb) | ||
143 | return 1; | ||
144 | switch (cb->ver) { | ||
145 | case 1: | ||
146 | /* Deprecated-style callbacks */ | ||
147 | if (!cb->cb.cb_1) | ||
148 | return 1; | ||
149 | cb->cb.cb_1(a, b, cb->arg); | ||
150 | return 1; | ||
151 | case 2: | ||
152 | /* New-style callbacks */ | ||
153 | return cb->cb.cb_2(a, b, cb); | ||
154 | default: | ||
155 | break; | ||
156 | } | ||
157 | /* Unrecognised callback type */ | ||
158 | return 0; | ||
159 | } | ||
160 | |||
161 | int | ||
162 | BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | ||
163 | const BIGNUM *rem, BN_GENCB *cb) | ||
164 | { | ||
165 | BIGNUM *t; | ||
166 | int found = 0; | ||
167 | int i, j, c1 = 0; | ||
168 | BN_CTX *ctx; | ||
169 | int checks; | ||
170 | |||
171 | if (bits < 2 || (bits == 2 && safe)) { | ||
172 | /* | ||
173 | * There are no prime numbers smaller than 2, and the smallest | ||
174 | * safe prime (7) spans three bits. | ||
175 | */ | ||
176 | BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); | ||
177 | return 0; | ||
178 | } | ||
179 | |||
180 | ctx = BN_CTX_new(); | ||
181 | if (ctx == NULL) | ||
182 | goto err; | ||
183 | BN_CTX_start(ctx); | ||
184 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
185 | goto err; | ||
186 | |||
187 | checks = BN_prime_checks_for_size(bits); | ||
188 | |||
189 | loop: | ||
190 | /* make a random number and set the top and bottom bits */ | ||
191 | if (add == NULL) { | ||
192 | if (!probable_prime(ret, bits)) | ||
193 | goto err; | ||
194 | } else { | ||
195 | if (safe) { | ||
196 | if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) | ||
197 | goto err; | ||
198 | } else { | ||
199 | if (!probable_prime_dh(ret, bits, add, rem, ctx)) | ||
200 | goto err; | ||
201 | } | ||
202 | } | ||
203 | /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */ | ||
204 | if (!BN_GENCB_call(cb, 0, c1++)) | ||
205 | /* aborted */ | ||
206 | goto err; | ||
207 | |||
208 | if (!safe) { | ||
209 | i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb); | ||
210 | if (i == -1) | ||
211 | goto err; | ||
212 | if (i == 0) | ||
213 | goto loop; | ||
214 | } else { | ||
215 | /* for "safe prime" generation, | ||
216 | * check that (p-1)/2 is prime. | ||
217 | * Since a prime is odd, We just | ||
218 | * need to divide by 2 */ | ||
219 | if (!BN_rshift1(t, ret)) | ||
220 | goto err; | ||
221 | |||
222 | for (i = 0; i < checks; i++) { | ||
223 | j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb); | ||
224 | if (j == -1) | ||
225 | goto err; | ||
226 | if (j == 0) | ||
227 | goto loop; | ||
228 | |||
229 | j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb); | ||
230 | if (j == -1) | ||
231 | goto err; | ||
232 | if (j == 0) | ||
233 | goto loop; | ||
234 | |||
235 | if (!BN_GENCB_call(cb, 2, c1 - 1)) | ||
236 | goto err; | ||
237 | /* We have a safe prime test pass */ | ||
238 | } | ||
239 | } | ||
240 | /* we have a prime :-) */ | ||
241 | found = 1; | ||
242 | |||
243 | err: | ||
244 | if (ctx != NULL) { | ||
245 | BN_CTX_end(ctx); | ||
246 | BN_CTX_free(ctx); | ||
247 | } | ||
248 | bn_check_top(ret); | ||
249 | return found; | ||
250 | } | ||
251 | |||
252 | int | ||
253 | BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb) | ||
254 | { | ||
255 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); | ||
256 | } | ||
257 | |||
258 | int | ||
259 | BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, | ||
260 | int do_trial_division, BN_GENCB *cb) | ||
261 | { | ||
262 | int i, j, ret = -1; | ||
263 | int k; | ||
264 | BN_CTX *ctx = NULL; | ||
265 | BIGNUM *A1, *A1_odd, *check; /* taken from ctx */ | ||
266 | BN_MONT_CTX *mont = NULL; | ||
267 | const BIGNUM *A = NULL; | ||
268 | |||
269 | if (BN_cmp(a, BN_value_one()) <= 0) | ||
270 | return 0; | ||
271 | |||
272 | if (checks == BN_prime_checks) | ||
273 | checks = BN_prime_checks_for_size(BN_num_bits(a)); | ||
274 | |||
275 | /* first look for small factors */ | ||
276 | if (!BN_is_odd(a)) | ||
277 | /* a is even => a is prime if and only if a == 2 */ | ||
278 | return BN_is_word(a, 2); | ||
279 | if (do_trial_division) { | ||
280 | for (i = 1; i < NUMPRIMES; i++) { | ||
281 | BN_ULONG mod = BN_mod_word(a, primes[i]); | ||
282 | if (mod == (BN_ULONG)-1) | ||
283 | goto err; | ||
284 | if (mod == 0) | ||
285 | return 0; | ||
286 | } | ||
287 | if (!BN_GENCB_call(cb, 1, -1)) | ||
288 | goto err; | ||
289 | } | ||
290 | |||
291 | if (ctx_passed != NULL) | ||
292 | ctx = ctx_passed; | ||
293 | else if ((ctx = BN_CTX_new()) == NULL) | ||
294 | goto err; | ||
295 | BN_CTX_start(ctx); | ||
296 | |||
297 | /* A := abs(a) */ | ||
298 | if (a->neg) { | ||
299 | BIGNUM *t; | ||
300 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
301 | goto err; | ||
302 | BN_copy(t, a); | ||
303 | t->neg = 0; | ||
304 | A = t; | ||
305 | } else | ||
306 | A = a; | ||
307 | if ((A1 = BN_CTX_get(ctx)) == NULL) | ||
308 | goto err; | ||
309 | if ((A1_odd = BN_CTX_get(ctx)) == NULL) | ||
310 | goto err; | ||
311 | if ((check = BN_CTX_get(ctx)) == NULL) | ||
312 | goto err; | ||
313 | |||
314 | /* compute A1 := A - 1 */ | ||
315 | if (!BN_copy(A1, A)) | ||
316 | goto err; | ||
317 | if (!BN_sub_word(A1, 1)) | ||
318 | goto err; | ||
319 | if (BN_is_zero(A1)) { | ||
320 | ret = 0; | ||
321 | goto err; | ||
322 | } | ||
323 | |||
324 | /* write A1 as A1_odd * 2^k */ | ||
325 | k = 1; | ||
326 | while (!BN_is_bit_set(A1, k)) | ||
327 | k++; | ||
328 | if (!BN_rshift(A1_odd, A1, k)) | ||
329 | goto err; | ||
330 | |||
331 | /* Montgomery setup for computations mod A */ | ||
332 | mont = BN_MONT_CTX_new(); | ||
333 | if (mont == NULL) | ||
334 | goto err; | ||
335 | if (!BN_MONT_CTX_set(mont, A, ctx)) | ||
336 | goto err; | ||
337 | |||
338 | for (i = 0; i < checks; i++) { | ||
339 | if (!BN_pseudo_rand_range(check, A1)) | ||
340 | goto err; | ||
341 | if (!BN_add_word(check, 1)) | ||
342 | goto err; | ||
343 | /* now 1 <= check < A */ | ||
344 | |||
345 | j = witness(check, A, A1, A1_odd, k, ctx, mont); | ||
346 | if (j == -1) | ||
347 | goto err; | ||
348 | if (j) { | ||
349 | ret = 0; | ||
350 | goto err; | ||
351 | } | ||
352 | if (!BN_GENCB_call(cb, 1, i)) | ||
353 | goto err; | ||
354 | } | ||
355 | ret = 1; | ||
356 | |||
357 | err: | ||
358 | if (ctx != NULL) { | ||
359 | BN_CTX_end(ctx); | ||
360 | if (ctx_passed == NULL) | ||
361 | BN_CTX_free(ctx); | ||
362 | } | ||
363 | BN_MONT_CTX_free(mont); | ||
364 | |||
365 | return (ret); | ||
366 | } | ||
367 | |||
368 | static int | ||
369 | witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, const BIGNUM *a1_odd, | ||
370 | int k, BN_CTX *ctx, BN_MONT_CTX *mont) | ||
371 | { | ||
372 | if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) | ||
373 | /* w := w^a1_odd mod a */ | ||
374 | return -1; | ||
375 | if (BN_is_one(w)) | ||
376 | return 0; /* probably prime */ | ||
377 | if (BN_cmp(w, a1) == 0) | ||
378 | return 0; /* w == -1 (mod a), 'a' is probably prime */ | ||
379 | while (--k) { | ||
380 | if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ | ||
381 | return -1; | ||
382 | if (BN_is_one(w)) | ||
383 | return 1; /* 'a' is composite, otherwise a previous 'w' would | ||
384 | * have been == -1 (mod 'a') */ | ||
385 | if (BN_cmp(w, a1) == 0) | ||
386 | return 0; /* w == -1 (mod a), 'a' is probably prime */ | ||
387 | } | ||
388 | /* If we get here, 'w' is the (a-1)/2-th power of the original 'w', | ||
389 | * and it is neither -1 nor +1 -- so 'a' cannot be prime */ | ||
390 | bn_check_top(w); | ||
391 | return 1; | ||
392 | } | ||
393 | |||
394 | static int | ||
395 | probable_prime(BIGNUM *rnd, int bits) | ||
396 | { | ||
397 | int i; | ||
398 | prime_t mods[NUMPRIMES]; | ||
399 | BN_ULONG delta, maxdelta; | ||
400 | |||
401 | again: | ||
402 | if (!BN_rand(rnd, bits, 1, 1)) | ||
403 | return (0); | ||
404 | /* we now have a random number 'rand' to test. */ | ||
405 | for (i = 1; i < NUMPRIMES; i++) { | ||
406 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); | ||
407 | if (mod == (BN_ULONG)-1) | ||
408 | return (0); | ||
409 | mods[i] = (prime_t)mod; | ||
410 | } | ||
411 | maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; | ||
412 | delta = 0; | ||
413 | loop: | ||
414 | for (i = 1; i < NUMPRIMES; i++) { | ||
415 | /* check that rnd is not a prime and also | ||
416 | * that gcd(rnd-1,primes) == 1 (except for 2) */ | ||
417 | if (((mods[i] + delta) % primes[i]) <= 1) { | ||
418 | delta += 2; | ||
419 | if (delta > maxdelta) | ||
420 | goto again; | ||
421 | goto loop; | ||
422 | } | ||
423 | } | ||
424 | if (!BN_add_word(rnd, delta)) | ||
425 | return (0); | ||
426 | bn_check_top(rnd); | ||
427 | return (1); | ||
428 | } | ||
429 | |||
430 | static int | ||
431 | probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, | ||
432 | BN_CTX *ctx) | ||
433 | { | ||
434 | int i, ret = 0; | ||
435 | BIGNUM *t1; | ||
436 | |||
437 | BN_CTX_start(ctx); | ||
438 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
439 | goto err; | ||
440 | |||
441 | if (!BN_rand(rnd, bits, 0, 1)) | ||
442 | goto err; | ||
443 | |||
444 | /* we need ((rnd-rem) % add) == 0 */ | ||
445 | |||
446 | if (!BN_mod(t1, rnd, add, ctx)) | ||
447 | goto err; | ||
448 | if (!BN_sub(rnd, rnd, t1)) | ||
449 | goto err; | ||
450 | if (rem == NULL) { | ||
451 | if (!BN_add_word(rnd, 1)) | ||
452 | goto err; | ||
453 | } else { | ||
454 | if (!BN_add(rnd, rnd, rem)) | ||
455 | goto err; | ||
456 | } | ||
457 | |||
458 | /* we now have a random number 'rand' to test. */ | ||
459 | |||
460 | loop: | ||
461 | for (i = 1; i < NUMPRIMES; i++) { | ||
462 | /* check that rnd is a prime */ | ||
463 | BN_LONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); | ||
464 | if (mod == (BN_ULONG)-1) | ||
465 | goto err; | ||
466 | if (mod <= 1) { | ||
467 | if (!BN_add(rnd, rnd, add)) | ||
468 | goto err; | ||
469 | goto loop; | ||
470 | } | ||
471 | } | ||
472 | ret = 1; | ||
473 | |||
474 | err: | ||
475 | BN_CTX_end(ctx); | ||
476 | bn_check_top(rnd); | ||
477 | return (ret); | ||
478 | } | ||
479 | |||
480 | static int | ||
481 | probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, | ||
482 | const BIGNUM *rem, BN_CTX *ctx) | ||
483 | { | ||
484 | int i, ret = 0; | ||
485 | BIGNUM *t1, *qadd, *q; | ||
486 | |||
487 | bits--; | ||
488 | BN_CTX_start(ctx); | ||
489 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
490 | goto err; | ||
491 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
492 | goto err; | ||
493 | if ((qadd = BN_CTX_get(ctx)) == NULL) | ||
494 | goto err; | ||
495 | |||
496 | if (!BN_rshift1(qadd, padd)) | ||
497 | goto err; | ||
498 | |||
499 | if (!BN_rand(q, bits, 0, 1)) | ||
500 | goto err; | ||
501 | |||
502 | /* we need ((rnd-rem) % add) == 0 */ | ||
503 | if (!BN_mod(t1, q,qadd, ctx)) | ||
504 | goto err; | ||
505 | if (!BN_sub(q, q, t1)) | ||
506 | goto err; | ||
507 | if (rem == NULL) { | ||
508 | if (!BN_add_word(q, 1)) | ||
509 | goto err; | ||
510 | } else { | ||
511 | if (!BN_rshift1(t1, rem)) | ||
512 | goto err; | ||
513 | if (!BN_add(q, q, t1)) | ||
514 | goto err; | ||
515 | } | ||
516 | |||
517 | /* we now have a random number 'rand' to test. */ | ||
518 | if (!BN_lshift1(p, q)) | ||
519 | goto err; | ||
520 | if (!BN_add_word(p, 1)) | ||
521 | goto err; | ||
522 | |||
523 | loop: | ||
524 | for (i = 1; i < NUMPRIMES; i++) { | ||
525 | /* check that p and q are prime */ | ||
526 | /* check that for p and q | ||
527 | * gcd(p-1,primes) == 1 (except for 2) */ | ||
528 | BN_ULONG pmod = BN_mod_word(p, (BN_ULONG)primes[i]); | ||
529 | BN_ULONG qmod = BN_mod_word(q, (BN_ULONG)primes[i]); | ||
530 | if (pmod == (BN_ULONG)-1 || qmod == (BN_ULONG)-1) | ||
531 | goto err; | ||
532 | if (pmod == 0 || qmod == 0) { | ||
533 | if (!BN_add(p, p, padd)) | ||
534 | goto err; | ||
535 | if (!BN_add(q, q, qadd)) | ||
536 | goto err; | ||
537 | goto loop; | ||
538 | } | ||
539 | } | ||
540 | ret = 1; | ||
541 | |||
542 | err: | ||
543 | BN_CTX_end(ctx); | ||
544 | bn_check_top(p); | ||
545 | return (ret); | ||
546 | } | ||