summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/bn_prime.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/bn_prime.c')
-rw-r--r--src/lib/libcrypto/bn/bn_prime.c459
1 files changed, 226 insertions, 233 deletions
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c
index 0c85f70b59..918b9237c6 100644
--- a/src/lib/libcrypto/bn/bn_prime.c
+++ b/src/lib/libcrypto/bn/bn_prime.c
@@ -55,53 +55,100 @@
55 * copied and put under another distribution licence 55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.] 56 * [including the GNU Public Licence.]
57 */ 57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
58 111
59#include <stdio.h> 112#include <stdio.h>
60#include <time.h> 113#include <time.h>
61#include "cryptlib.h" 114#include "cryptlib.h"
62#include "bn_lcl.h" 115#include "bn_lcl.h"
63#include "rand.h" 116#include <openssl/rand.h>
64 117
65/* The quick seive algorithm approach to weeding out primes is 118/* The quick sieve algorithm approach to weeding out primes is
66 * Philip Zimmermann's, as implemented in PGP. I have had a read of 119 * Philip Zimmermann's, as implemented in PGP. I have had a read of
67 * his comments and implemented my own version. 120 * his comments and implemented my own version.
68 */ 121 */
69#include "bn_prime.h" 122#include "bn_prime.h"
70 123
71#ifndef NOPROTO 124static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
72static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2, 125 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
73 BN_MONT_CTX *mont);
74static int probable_prime(BIGNUM *rnd, int bits); 126static int probable_prime(BIGNUM *rnd, int bits);
75static int probable_prime_dh(BIGNUM *rnd, int bits, 127static int probable_prime_dh(BIGNUM *rnd, int bits,
76 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); 128 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
77static int probable_prime_dh_strong(BIGNUM *rnd, int bits, 129static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
78 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); 130 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
79#else 131
80static int witness(); 132BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
81static int probable_prime(); 133 const BIGNUM *add, const BIGNUM *rem,
82static int probable_prime_dh(); 134 void (*callback)(int,int,void *), void *cb_arg)
83static int probable_prime_dh_strong();
84#endif
85
86BIGNUM *BN_generate_prime(bits,strong,add,rem,callback,cb_arg)
87int bits;
88int strong;
89BIGNUM *add;
90BIGNUM *rem;
91void (*callback)(P_I_I_P);
92char *cb_arg;
93 { 135 {
94 BIGNUM *rnd=NULL; 136 BIGNUM *rnd=NULL;
95 BIGNUM *ret=NULL; 137 BIGNUM t;
96 BIGNUM *t=NULL; 138 int found=0;
97 int i,j,c1=0; 139 int i,j,c1=0;
98 BN_CTX *ctx; 140 BN_CTX *ctx;
141 int checks = BN_prime_checks_for_size(bits);
99 142
100 ctx=BN_CTX_new(); 143 ctx=BN_CTX_new();
101 if (ctx == NULL) goto err; 144 if (ctx == NULL) goto err;
102 if ((rnd=BN_new()) == NULL) goto err; 145 if (ret == NULL)
103 if (strong) 146 {
104 if ((t=BN_new()) == NULL) goto err; 147 if ((rnd=BN_new()) == NULL) goto err;
148 }
149 else
150 rnd=ret;
151 BN_init(&t);
105loop: 152loop:
106 /* make a random number and set the top and bottom bits */ 153 /* make a random number and set the top and bottom bits */
107 if (add == NULL) 154 if (add == NULL)
@@ -110,9 +157,9 @@ loop:
110 } 157 }
111 else 158 else
112 { 159 {
113 if (strong) 160 if (safe)
114 { 161 {
115 if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx)) 162 if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx))
116 goto err; 163 goto err;
117 } 164 }
118 else 165 else
@@ -124,171 +171,188 @@ loop:
124 /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ 171 /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
125 if (callback != NULL) callback(0,c1++,cb_arg); 172 if (callback != NULL) callback(0,c1++,cb_arg);
126 173
127 if (!strong) 174 if (!safe)
128 { 175 {
129 i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg); 176 i=BN_is_prime_fasttest(rnd,checks,callback,ctx,cb_arg,0);
130 if (i == -1) goto err; 177 if (i == -1) goto err;
131 if (i == 0) goto loop; 178 if (i == 0) goto loop;
132 } 179 }
133 else 180 else
134 { 181 {
135 /* for a strong prime generation, 182 /* for "safe prime" generation,
136 * check that (p-1)/2 is prime. 183 * check that (p-1)/2 is prime.
137 * Since a prime is odd, We just 184 * Since a prime is odd, We just
138 * need to divide by 2 */ 185 * need to divide by 2 */
139 if (!BN_rshift1(t,rnd)) goto err; 186 if (!BN_rshift1(&t,rnd)) goto err;
140 187
141 for (i=0; i<BN_prime_checks; i++) 188 for (i=0; i<checks; i++)
142 { 189 {
143 j=BN_is_prime(rnd,1,callback,ctx,cb_arg); 190 j=BN_is_prime_fasttest(rnd,1,callback,ctx,cb_arg,0);
144 if (j == -1) goto err; 191 if (j == -1) goto err;
145 if (j == 0) goto loop; 192 if (j == 0) goto loop;
146 193
147 j=BN_is_prime(t,1,callback,ctx,cb_arg); 194 j=BN_is_prime_fasttest(&t,1,callback,ctx,cb_arg,0);
148 if (j == -1) goto err; 195 if (j == -1) goto err;
149 if (j == 0) goto loop; 196 if (j == 0) goto loop;
150 197
151 if (callback != NULL) callback(2,c1-1,cb_arg); 198 if (callback != NULL) callback(2,c1-1,cb_arg);
152 /* We have a strong prime test pass */ 199 /* We have a safe prime test pass */
153 } 200 }
154 } 201 }
155 /* we have a prime :-) */ 202 /* we have a prime :-) */
156 ret=rnd; 203 found = 1;
157err: 204err:
158 if ((ret == NULL) && (rnd != NULL)) BN_free(rnd); 205 if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd);
159 if (t != NULL) BN_free(t); 206 BN_free(&t);
160 if (ctx != NULL) BN_CTX_free(ctx); 207 if (ctx != NULL) BN_CTX_free(ctx);
161 return(ret); 208 return(found ? rnd : NULL);
162 } 209 }
163 210
164int BN_is_prime(a,checks,callback,ctx_passed,cb_arg) 211int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
165BIGNUM *a; 212 BN_CTX *ctx_passed, void *cb_arg)
166int checks;
167void (*callback)(P_I_I_P);
168BN_CTX *ctx_passed;
169char *cb_arg;
170 { 213 {
171 int i,j,c2=0,ret= -1; 214 return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0);
172 BIGNUM *check; 215 }
173 BN_CTX *ctx=NULL,*ctx2=NULL;
174 BN_MONT_CTX *mont=NULL;
175 216
217int BN_is_prime_fasttest(const BIGNUM *a, int checks,
218 void (*callback)(int,int,void *),
219 BN_CTX *ctx_passed, void *cb_arg,
220 int do_trial_division)
221 {
222 int i, j, ret = -1;
223 int k;
224 BN_CTX *ctx = NULL;
225 BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
226 BN_MONT_CTX *mont = NULL;
227 const BIGNUM *A = NULL;
228
229 if (BN_cmp(a, BN_value_one()) <= 0)
230 return 0;
231
232 if (checks == BN_prime_checks)
233 checks = BN_prime_checks_for_size(BN_num_bits(a));
234
235 /* first look for small factors */
176 if (!BN_is_odd(a)) 236 if (!BN_is_odd(a))
177 return(0); 237 return 0;
238 if (do_trial_division)
239 {
240 for (i = 1; i < NUMPRIMES; i++)
241 if (BN_mod_word(a, primes[i]) == 0)
242 return 0;
243 if (callback != NULL) callback(1, -1, cb_arg);
244 }
245
178 if (ctx_passed != NULL) 246 if (ctx_passed != NULL)
179 ctx=ctx_passed; 247 ctx = ctx_passed;
180 else 248 else
181 if ((ctx=BN_CTX_new()) == NULL) goto err; 249 if ((ctx=BN_CTX_new()) == NULL)
182 250 goto err;
183 if ((ctx2=BN_CTX_new()) == NULL) goto err; 251 BN_CTX_start(ctx);
184 if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
185
186 check=ctx->bn[ctx->tos++];
187 252
188 /* Setup the montgomery structure */ 253 /* A := abs(a) */
189 if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err; 254 if (a->neg)
255 {
256 BIGNUM *t;
257 if ((t = BN_CTX_get(ctx)) == NULL) goto err;
258 BN_copy(t, a);
259 t->neg = 0;
260 A = t;
261 }
262 else
263 A = a;
264 A1 = BN_CTX_get(ctx);
265 A1_odd = BN_CTX_get(ctx);
266 check = BN_CTX_get(ctx);
267 if (check == NULL) goto err;
268
269 /* compute A1 := A - 1 */
270 if (!BN_copy(A1, A))
271 goto err;
272 if (!BN_sub_word(A1, 1))
273 goto err;
274 if (BN_is_zero(A1))
275 {
276 ret = 0;
277 goto err;
278 }
190 279
191 for (i=0; i<checks; i++) 280 /* write A1 as A1_odd * 2^k */
281 k = 1;
282 while (!BN_is_bit_set(A1, k))
283 k++;
284 if (!BN_rshift(A1_odd, A1, k))
285 goto err;
286
287 /* Montgomery setup for computations mod A */
288 mont = BN_MONT_CTX_new();
289 if (mont == NULL)
290 goto err;
291 if (!BN_MONT_CTX_set(mont, A, ctx))
292 goto err;
293
294 for (i = 0; i < checks; i++)
192 { 295 {
193 if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err; 296 if (!BN_pseudo_rand_range(check, A1))
194 j=witness(check,a,ctx,ctx2,mont); 297 goto err;
298 if (!BN_add_word(check, 1))
299 goto err;
300 /* now 1 <= check < A */
301
302 j = witness(check, A, A1, A1_odd, k, ctx, mont);
195 if (j == -1) goto err; 303 if (j == -1) goto err;
196 if (j) 304 if (j)
197 { 305 {
198 ret=0; 306 ret=0;
199 goto err; 307 goto err;
200 } 308 }
201 if (callback != NULL) callback(1,c2++,cb_arg); 309 if (callback != NULL) callback(1,i,cb_arg);
202 } 310 }
203 ret=1; 311 ret=1;
204err: 312err:
205 ctx->tos--; 313 if (ctx != NULL)
206 if ((ctx_passed == NULL) && (ctx != NULL)) 314 {
207 BN_CTX_free(ctx); 315 BN_CTX_end(ctx);
208 if (ctx2 != NULL) 316 if (ctx_passed == NULL)
209 BN_CTX_free(ctx2); 317 BN_CTX_free(ctx);
210 if (mont != NULL) BN_MONT_CTX_free(mont); 318 }
211 319 if (mont != NULL)
320 BN_MONT_CTX_free(mont);
321
212 return(ret); 322 return(ret);
213 } 323 }
214 324
215#define RECP_MUL_MOD 325static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
216 326 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
217static int witness(a,n,ctx,ctx2,mont)
218BIGNUM *a;
219BIGNUM *n;
220BN_CTX *ctx,*ctx2;
221BN_MONT_CTX *mont;
222 { 327 {
223 int k,i,ret= -1,good; 328 if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
224 BIGNUM *d,*dd,*tmp,*d1,*d2,*n1; 329 return -1;
225 BIGNUM *mont_one,*mont_n1,*mont_a; 330 if (BN_is_one(w))
226 331 return 0; /* probably prime */
227 d1=ctx->bn[ctx->tos]; 332 if (BN_cmp(w, a1) == 0)
228 d2=ctx->bn[ctx->tos+1]; 333 return 0; /* w == -1 (mod a), 'a' is probably prime */
229 n1=ctx->bn[ctx->tos+2]; 334 while (--k)
230 ctx->tos+=3;
231
232 mont_one=ctx2->bn[ctx2->tos];
233 mont_n1=ctx2->bn[ctx2->tos+1];
234 mont_a=ctx2->bn[ctx2->tos+2];
235 ctx2->tos+=3;
236
237 d=d1;
238 dd=d2;
239 if (!BN_one(d)) goto err;
240 if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */
241 k=BN_num_bits(n1);
242
243 if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err;
244 if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err;
245 if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err;
246
247 BN_copy(d,mont_one);
248 for (i=k-1; i>=0; i--)
249 { 335 {
250 if ( (BN_cmp(d,mont_one) != 0) && 336 if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
251 (BN_cmp(d,mont_n1) != 0)) 337 return -1;
252 good=1; 338 if (BN_is_one(w))
253 else 339 return 1; /* 'a' is composite, otherwise a previous 'w' would
254 good=0; 340 * have been == -1 (mod 'a') */
255 341 if (BN_cmp(w, a1) == 0)
256 BN_mod_mul_montgomery(dd,d,d,mont,ctx2); 342 return 0; /* w == -1 (mod a), 'a' is probably prime */
257
258 if (good && (BN_cmp(dd,mont_one) == 0))
259 {
260 ret=1;
261 goto err;
262 }
263 if (BN_is_bit_set(n1,i))
264 {
265 BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2);
266 }
267 else
268 {
269 tmp=d;
270 d=dd;
271 dd=tmp;
272 }
273 } 343 }
274 if (BN_cmp(d,mont_one) == 0) 344 /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
275 i=0; 345 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
276 else i=1; 346 return 1;
277 ret=i;
278err:
279 ctx->tos-=3;
280 ctx2->tos-=3;
281 return(ret);
282 } 347 }
283 348
284static int probable_prime(rnd, bits) 349static int probable_prime(BIGNUM *rnd, int bits)
285BIGNUM *rnd;
286int bits;
287 { 350 {
288 int i; 351 int i;
289 MS_STATIC BN_ULONG mods[NUMPRIMES]; 352 BN_ULONG mods[NUMPRIMES];
290 BN_ULONG delta; 353 BN_ULONG delta,d;
291 354
355again:
292 if (!BN_rand(rnd,bits,1,1)) return(0); 356 if (!BN_rand(rnd,bits,1,1)) return(0);
293 /* we now have a random number 'rand' to test. */ 357 /* we now have a random number 'rand' to test. */
294 for (i=1; i<NUMPRIMES; i++) 358 for (i=1; i<NUMPRIMES; i++)
@@ -300,9 +364,12 @@ int bits;
300 * that gcd(rnd-1,primes) == 1 (except for 2) */ 364 * that gcd(rnd-1,primes) == 1 (except for 2) */
301 if (((mods[i]+delta)%primes[i]) <= 1) 365 if (((mods[i]+delta)%primes[i]) <= 1)
302 { 366 {
367 d=delta;
303 delta+=2; 368 delta+=2;
304 /* perhaps need to check for overflow of 369 /* perhaps need to check for overflow of
305 * delta (but delta can be upto 2^32) */ 370 * delta (but delta can be up to 2^32)
371 * 21-May-98 eay - added overflow check */
372 if (delta < d) goto again;
306 goto loop; 373 goto loop;
307 } 374 }
308 } 375 }
@@ -310,17 +377,14 @@ int bits;
310 return(1); 377 return(1);
311 } 378 }
312 379
313static int probable_prime_dh(rnd, bits, add, rem,ctx) 380static int probable_prime_dh(BIGNUM *rnd, int bits,
314BIGNUM *rnd; 381 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
315int bits;
316BIGNUM *add;
317BIGNUM *rem;
318BN_CTX *ctx;
319 { 382 {
320 int i,ret=0; 383 int i,ret=0;
321 BIGNUM *t1; 384 BIGNUM *t1;
322 385
323 t1=ctx->bn[ctx->tos++]; 386 BN_CTX_start(ctx);
387 if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
324 388
325 if (!BN_rand(rnd,bits,0,1)) goto err; 389 if (!BN_rand(rnd,bits,0,1)) goto err;
326 390
@@ -338,7 +402,7 @@ BN_CTX *ctx;
338 loop: for (i=1; i<NUMPRIMES; i++) 402 loop: for (i=1; i<NUMPRIMES; i++)
339 { 403 {
340 /* check that rnd is a prime */ 404 /* check that rnd is a prime */
341 if (BN_mod_word(rnd,(BN_LONG)primes[i]) <= 1) 405 if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
342 { 406 {
343 if (!BN_add(rnd,rnd,add)) goto err; 407 if (!BN_add(rnd,rnd,add)) goto err;
344 goto loop; 408 goto loop;
@@ -346,24 +410,22 @@ BN_CTX *ctx;
346 } 410 }
347 ret=1; 411 ret=1;
348err: 412err:
349 ctx->tos--; 413 BN_CTX_end(ctx);
350 return(ret); 414 return(ret);
351 } 415 }
352 416
353static int probable_prime_dh_strong(p, bits, padd, rem,ctx) 417static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
354BIGNUM *p; 418 const BIGNUM *rem, BN_CTX *ctx)
355int bits;
356BIGNUM *padd;
357BIGNUM *rem;
358BN_CTX *ctx;
359 { 419 {
360 int i,ret=0; 420 int i,ret=0;
361 BIGNUM *t1,*qadd=NULL,*q=NULL; 421 BIGNUM *t1,*qadd,*q;
362 422
363 bits--; 423 bits--;
364 t1=ctx->bn[ctx->tos++]; 424 BN_CTX_start(ctx);
365 q=ctx->bn[ctx->tos++]; 425 t1 = BN_CTX_get(ctx);
366 qadd=ctx->bn[ctx->tos++]; 426 q = BN_CTX_get(ctx);
427 qadd = BN_CTX_get(ctx);
428 if (qadd == NULL) goto err;
367 429
368 if (!BN_rshift1(qadd,padd)) goto err; 430 if (!BN_rshift1(qadd,padd)) goto err;
369 431
@@ -389,8 +451,8 @@ BN_CTX *ctx;
389 /* check that p and q are prime */ 451 /* check that p and q are prime */
390 /* check that for p and q 452 /* check that for p and q
391 * gcd(p-1,primes) == 1 (except for 2) */ 453 * gcd(p-1,primes) == 1 (except for 2) */
392 if ( (BN_mod_word(p,(BN_LONG)primes[i]) == 0) || 454 if ( (BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
393 (BN_mod_word(q,(BN_LONG)primes[i]) == 0)) 455 (BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
394 { 456 {
395 if (!BN_add(p,p,padd)) goto err; 457 if (!BN_add(p,p,padd)) goto err;
396 if (!BN_add(q,q,qadd)) goto err; 458 if (!BN_add(q,q,qadd)) goto err;
@@ -399,75 +461,6 @@ BN_CTX *ctx;
399 } 461 }
400 ret=1; 462 ret=1;
401err: 463err:
402 ctx->tos-=3; 464 BN_CTX_end(ctx);
403 return(ret);
404 }
405
406#if 0
407static int witness(a, n,ctx)
408BIGNUM *a;
409BIGNUM *n;
410BN_CTX *ctx;
411 {
412 int k,i,nb,ret= -1;
413 BIGNUM *d,*dd,*tmp;
414 BIGNUM *d1,*d2,*x,*n1,*inv;
415
416 d1=ctx->bn[ctx->tos];
417 d2=ctx->bn[ctx->tos+1];
418 x=ctx->bn[ctx->tos+2];
419 n1=ctx->bn[ctx->tos+3];
420 inv=ctx->bn[ctx->tos+4];
421 ctx->tos+=5;
422
423 d=d1;
424 dd=d2;
425 if (!BN_one(d)) goto err;
426 if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */
427 k=BN_num_bits(n1);
428
429 /* i=BN_num_bits(n); */
430#ifdef RECP_MUL_MOD
431 nb=BN_reciprocal(inv,n,ctx); /**/
432 if (nb == -1) goto err;
433#endif
434
435 for (i=k-1; i>=0; i--)
436 {
437 if (BN_copy(x,d) == NULL) goto err;
438#ifndef RECP_MUL_MOD
439 if (!BN_mod_mul(dd,d,d,n,ctx)) goto err;
440#else
441 if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err;
442#endif
443 if ( BN_is_one(dd) &&
444 !BN_is_one(x) &&
445 (BN_cmp(x,n1) != 0))
446 {
447 ret=1;
448 goto err;
449 }
450 if (BN_is_bit_set(n1,i))
451 {
452#ifndef RECP_MUL_MOD
453 if (!BN_mod_mul(d,dd,a,n,ctx)) goto err;
454#else
455 if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err;
456#endif
457 }
458 else
459 {
460 tmp=d;
461 d=dd;
462 dd=tmp;
463 }
464 }
465 if (BN_is_one(d))
466 i=0;
467 else i=1;
468 ret=i;
469err:
470 ctx->tos-=5;
471 return(ret); 465 return(ret);
472 } 466 }
473#endif