diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_prime.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_prime.c | 473 |
1 files changed, 473 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c new file mode 100644 index 0000000000..0c85f70b59 --- /dev/null +++ b/src/lib/libcrypto/bn/bn_prime.c | |||
| @@ -0,0 +1,473 @@ | |||
| 1 | /* crypto/bn/bn_prime.c */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | |||
| 59 | #include <stdio.h> | ||
| 60 | #include <time.h> | ||
| 61 | #include "cryptlib.h" | ||
| 62 | #include "bn_lcl.h" | ||
| 63 | #include "rand.h" | ||
| 64 | |||
| 65 | /* The quick seive algorithm approach to weeding out primes is | ||
| 66 | * Philip Zimmermann's, as implemented in PGP. I have had a read of | ||
| 67 | * his comments and implemented my own version. | ||
| 68 | */ | ||
| 69 | #include "bn_prime.h" | ||
| 70 | |||
| 71 | #ifndef NOPROTO | ||
| 72 | static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2, | ||
| 73 | BN_MONT_CTX *mont); | ||
| 74 | static int probable_prime(BIGNUM *rnd, int bits); | ||
| 75 | static int probable_prime_dh(BIGNUM *rnd, int bits, | ||
| 76 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); | ||
| 77 | static int probable_prime_dh_strong(BIGNUM *rnd, int bits, | ||
| 78 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); | ||
| 79 | #else | ||
| 80 | static int witness(); | ||
| 81 | static int probable_prime(); | ||
| 82 | static int probable_prime_dh(); | ||
| 83 | static int probable_prime_dh_strong(); | ||
| 84 | #endif | ||
| 85 | |||
| 86 | BIGNUM *BN_generate_prime(bits,strong,add,rem,callback,cb_arg) | ||
| 87 | int bits; | ||
| 88 | int strong; | ||
| 89 | BIGNUM *add; | ||
| 90 | BIGNUM *rem; | ||
| 91 | void (*callback)(P_I_I_P); | ||
| 92 | char *cb_arg; | ||
| 93 | { | ||
| 94 | BIGNUM *rnd=NULL; | ||
| 95 | BIGNUM *ret=NULL; | ||
| 96 | BIGNUM *t=NULL; | ||
| 97 | int i,j,c1=0; | ||
| 98 | BN_CTX *ctx; | ||
| 99 | |||
| 100 | ctx=BN_CTX_new(); | ||
| 101 | if (ctx == NULL) goto err; | ||
| 102 | if ((rnd=BN_new()) == NULL) goto err; | ||
| 103 | if (strong) | ||
| 104 | if ((t=BN_new()) == NULL) goto err; | ||
| 105 | loop: | ||
| 106 | /* make a random number and set the top and bottom bits */ | ||
| 107 | if (add == NULL) | ||
| 108 | { | ||
| 109 | if (!probable_prime(rnd,bits)) goto err; | ||
| 110 | } | ||
| 111 | else | ||
| 112 | { | ||
| 113 | if (strong) | ||
| 114 | { | ||
| 115 | if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx)) | ||
| 116 | goto err; | ||
| 117 | } | ||
| 118 | else | ||
| 119 | { | ||
| 120 | if (!probable_prime_dh(rnd,bits,add,rem,ctx)) | ||
| 121 | goto err; | ||
| 122 | } | ||
| 123 | } | ||
| 124 | /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ | ||
| 125 | if (callback != NULL) callback(0,c1++,cb_arg); | ||
| 126 | |||
| 127 | if (!strong) | ||
| 128 | { | ||
| 129 | i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg); | ||
| 130 | if (i == -1) goto err; | ||
| 131 | if (i == 0) goto loop; | ||
| 132 | } | ||
| 133 | else | ||
| 134 | { | ||
| 135 | /* for a strong prime generation, | ||
| 136 | * check that (p-1)/2 is prime. | ||
| 137 | * Since a prime is odd, We just | ||
| 138 | * need to divide by 2 */ | ||
| 139 | if (!BN_rshift1(t,rnd)) goto err; | ||
| 140 | |||
| 141 | for (i=0; i<BN_prime_checks; i++) | ||
| 142 | { | ||
| 143 | j=BN_is_prime(rnd,1,callback,ctx,cb_arg); | ||
| 144 | if (j == -1) goto err; | ||
| 145 | if (j == 0) goto loop; | ||
| 146 | |||
| 147 | j=BN_is_prime(t,1,callback,ctx,cb_arg); | ||
| 148 | if (j == -1) goto err; | ||
| 149 | if (j == 0) goto loop; | ||
| 150 | |||
| 151 | if (callback != NULL) callback(2,c1-1,cb_arg); | ||
| 152 | /* We have a strong prime test pass */ | ||
| 153 | } | ||
| 154 | } | ||
| 155 | /* we have a prime :-) */ | ||
| 156 | ret=rnd; | ||
| 157 | err: | ||
| 158 | if ((ret == NULL) && (rnd != NULL)) BN_free(rnd); | ||
| 159 | if (t != NULL) BN_free(t); | ||
| 160 | if (ctx != NULL) BN_CTX_free(ctx); | ||
| 161 | return(ret); | ||
| 162 | } | ||
| 163 | |||
| 164 | int BN_is_prime(a,checks,callback,ctx_passed,cb_arg) | ||
| 165 | BIGNUM *a; | ||
| 166 | int checks; | ||
| 167 | void (*callback)(P_I_I_P); | ||
| 168 | BN_CTX *ctx_passed; | ||
| 169 | char *cb_arg; | ||
| 170 | { | ||
| 171 | int i,j,c2=0,ret= -1; | ||
| 172 | BIGNUM *check; | ||
| 173 | BN_CTX *ctx=NULL,*ctx2=NULL; | ||
| 174 | BN_MONT_CTX *mont=NULL; | ||
| 175 | |||
| 176 | if (!BN_is_odd(a)) | ||
| 177 | return(0); | ||
| 178 | if (ctx_passed != NULL) | ||
| 179 | ctx=ctx_passed; | ||
| 180 | else | ||
| 181 | if ((ctx=BN_CTX_new()) == NULL) goto err; | ||
| 182 | |||
| 183 | if ((ctx2=BN_CTX_new()) == NULL) goto err; | ||
| 184 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
| 185 | |||
| 186 | check=ctx->bn[ctx->tos++]; | ||
| 187 | |||
| 188 | /* Setup the montgomery structure */ | ||
| 189 | if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err; | ||
| 190 | |||
| 191 | for (i=0; i<checks; i++) | ||
| 192 | { | ||
| 193 | if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err; | ||
| 194 | j=witness(check,a,ctx,ctx2,mont); | ||
| 195 | if (j == -1) goto err; | ||
| 196 | if (j) | ||
| 197 | { | ||
| 198 | ret=0; | ||
| 199 | goto err; | ||
| 200 | } | ||
| 201 | if (callback != NULL) callback(1,c2++,cb_arg); | ||
| 202 | } | ||
| 203 | ret=1; | ||
| 204 | err: | ||
| 205 | ctx->tos--; | ||
| 206 | if ((ctx_passed == NULL) && (ctx != NULL)) | ||
| 207 | BN_CTX_free(ctx); | ||
| 208 | if (ctx2 != NULL) | ||
| 209 | BN_CTX_free(ctx2); | ||
| 210 | if (mont != NULL) BN_MONT_CTX_free(mont); | ||
| 211 | |||
| 212 | return(ret); | ||
| 213 | } | ||
| 214 | |||
| 215 | #define RECP_MUL_MOD | ||
| 216 | |||
| 217 | static int witness(a,n,ctx,ctx2,mont) | ||
| 218 | BIGNUM *a; | ||
| 219 | BIGNUM *n; | ||
| 220 | BN_CTX *ctx,*ctx2; | ||
| 221 | BN_MONT_CTX *mont; | ||
| 222 | { | ||
| 223 | int k,i,ret= -1,good; | ||
| 224 | BIGNUM *d,*dd,*tmp,*d1,*d2,*n1; | ||
| 225 | BIGNUM *mont_one,*mont_n1,*mont_a; | ||
| 226 | |||
| 227 | d1=ctx->bn[ctx->tos]; | ||
| 228 | d2=ctx->bn[ctx->tos+1]; | ||
| 229 | n1=ctx->bn[ctx->tos+2]; | ||
| 230 | ctx->tos+=3; | ||
| 231 | |||
| 232 | mont_one=ctx2->bn[ctx2->tos]; | ||
| 233 | mont_n1=ctx2->bn[ctx2->tos+1]; | ||
| 234 | mont_a=ctx2->bn[ctx2->tos+2]; | ||
| 235 | ctx2->tos+=3; | ||
| 236 | |||
| 237 | d=d1; | ||
| 238 | dd=d2; | ||
| 239 | if (!BN_one(d)) goto err; | ||
| 240 | if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ | ||
| 241 | k=BN_num_bits(n1); | ||
| 242 | |||
| 243 | if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err; | ||
| 244 | if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err; | ||
| 245 | if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err; | ||
| 246 | |||
| 247 | BN_copy(d,mont_one); | ||
| 248 | for (i=k-1; i>=0; i--) | ||
| 249 | { | ||
| 250 | if ( (BN_cmp(d,mont_one) != 0) && | ||
| 251 | (BN_cmp(d,mont_n1) != 0)) | ||
| 252 | good=1; | ||
| 253 | else | ||
| 254 | good=0; | ||
| 255 | |||
| 256 | BN_mod_mul_montgomery(dd,d,d,mont,ctx2); | ||
| 257 | |||
| 258 | if (good && (BN_cmp(dd,mont_one) == 0)) | ||
| 259 | { | ||
| 260 | ret=1; | ||
| 261 | goto err; | ||
| 262 | } | ||
| 263 | if (BN_is_bit_set(n1,i)) | ||
| 264 | { | ||
| 265 | BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2); | ||
| 266 | } | ||
| 267 | else | ||
| 268 | { | ||
| 269 | tmp=d; | ||
| 270 | d=dd; | ||
| 271 | dd=tmp; | ||
| 272 | } | ||
| 273 | } | ||
| 274 | if (BN_cmp(d,mont_one) == 0) | ||
| 275 | i=0; | ||
| 276 | else i=1; | ||
| 277 | ret=i; | ||
| 278 | err: | ||
| 279 | ctx->tos-=3; | ||
| 280 | ctx2->tos-=3; | ||
| 281 | return(ret); | ||
| 282 | } | ||
| 283 | |||
| 284 | static int probable_prime(rnd, bits) | ||
| 285 | BIGNUM *rnd; | ||
| 286 | int bits; | ||
| 287 | { | ||
| 288 | int i; | ||
| 289 | MS_STATIC BN_ULONG mods[NUMPRIMES]; | ||
| 290 | BN_ULONG delta; | ||
| 291 | |||
| 292 | if (!BN_rand(rnd,bits,1,1)) return(0); | ||
| 293 | /* we now have a random number 'rand' to test. */ | ||
| 294 | for (i=1; i<NUMPRIMES; i++) | ||
| 295 | mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]); | ||
| 296 | delta=0; | ||
| 297 | loop: for (i=1; i<NUMPRIMES; i++) | ||
| 298 | { | ||
| 299 | /* check that rnd is not a prime and also | ||
| 300 | * that gcd(rnd-1,primes) == 1 (except for 2) */ | ||
| 301 | if (((mods[i]+delta)%primes[i]) <= 1) | ||
| 302 | { | ||
| 303 | delta+=2; | ||
| 304 | /* perhaps need to check for overflow of | ||
| 305 | * delta (but delta can be upto 2^32) */ | ||
| 306 | goto loop; | ||
| 307 | } | ||
| 308 | } | ||
| 309 | if (!BN_add_word(rnd,delta)) return(0); | ||
| 310 | return(1); | ||
| 311 | } | ||
| 312 | |||
| 313 | static int probable_prime_dh(rnd, bits, add, rem,ctx) | ||
| 314 | BIGNUM *rnd; | ||
| 315 | int bits; | ||
| 316 | BIGNUM *add; | ||
| 317 | BIGNUM *rem; | ||
| 318 | BN_CTX *ctx; | ||
| 319 | { | ||
| 320 | int i,ret=0; | ||
| 321 | BIGNUM *t1; | ||
| 322 | |||
| 323 | t1=ctx->bn[ctx->tos++]; | ||
| 324 | |||
| 325 | if (!BN_rand(rnd,bits,0,1)) goto err; | ||
| 326 | |||
| 327 | /* we need ((rnd-rem) % add) == 0 */ | ||
| 328 | |||
| 329 | if (!BN_mod(t1,rnd,add,ctx)) goto err; | ||
| 330 | if (!BN_sub(rnd,rnd,t1)) goto err; | ||
| 331 | if (rem == NULL) | ||
| 332 | { if (!BN_add_word(rnd,1)) goto err; } | ||
| 333 | else | ||
| 334 | { if (!BN_add(rnd,rnd,rem)) goto err; } | ||
| 335 | |||
| 336 | /* we now have a random number 'rand' to test. */ | ||
| 337 | |||
| 338 | loop: for (i=1; i<NUMPRIMES; i++) | ||
| 339 | { | ||
| 340 | /* check that rnd is a prime */ | ||
| 341 | if (BN_mod_word(rnd,(BN_LONG)primes[i]) <= 1) | ||
| 342 | { | ||
| 343 | if (!BN_add(rnd,rnd,add)) goto err; | ||
| 344 | goto loop; | ||
| 345 | } | ||
| 346 | } | ||
| 347 | ret=1; | ||
| 348 | err: | ||
| 349 | ctx->tos--; | ||
| 350 | return(ret); | ||
| 351 | } | ||
| 352 | |||
| 353 | static int probable_prime_dh_strong(p, bits, padd, rem,ctx) | ||
| 354 | BIGNUM *p; | ||
| 355 | int bits; | ||
| 356 | BIGNUM *padd; | ||
| 357 | BIGNUM *rem; | ||
| 358 | BN_CTX *ctx; | ||
| 359 | { | ||
| 360 | int i,ret=0; | ||
| 361 | BIGNUM *t1,*qadd=NULL,*q=NULL; | ||
| 362 | |||
| 363 | bits--; | ||
| 364 | t1=ctx->bn[ctx->tos++]; | ||
| 365 | q=ctx->bn[ctx->tos++]; | ||
| 366 | qadd=ctx->bn[ctx->tos++]; | ||
| 367 | |||
| 368 | if (!BN_rshift1(qadd,padd)) goto err; | ||
| 369 | |||
| 370 | if (!BN_rand(q,bits,0,1)) goto err; | ||
| 371 | |||
| 372 | /* we need ((rnd-rem) % add) == 0 */ | ||
| 373 | if (!BN_mod(t1,q,qadd,ctx)) goto err; | ||
| 374 | if (!BN_sub(q,q,t1)) goto err; | ||
| 375 | if (rem == NULL) | ||
| 376 | { if (!BN_add_word(q,1)) goto err; } | ||
| 377 | else | ||
| 378 | { | ||
| 379 | if (!BN_rshift1(t1,rem)) goto err; | ||
| 380 | if (!BN_add(q,q,t1)) goto err; | ||
| 381 | } | ||
| 382 | |||
| 383 | /* we now have a random number 'rand' to test. */ | ||
| 384 | if (!BN_lshift1(p,q)) goto err; | ||
| 385 | if (!BN_add_word(p,1)) goto err; | ||
| 386 | |||
| 387 | loop: for (i=1; i<NUMPRIMES; i++) | ||
| 388 | { | ||
| 389 | /* check that p and q are prime */ | ||
| 390 | /* check that for p and q | ||
| 391 | * gcd(p-1,primes) == 1 (except for 2) */ | ||
| 392 | if ( (BN_mod_word(p,(BN_LONG)primes[i]) == 0) || | ||
| 393 | (BN_mod_word(q,(BN_LONG)primes[i]) == 0)) | ||
| 394 | { | ||
| 395 | if (!BN_add(p,p,padd)) goto err; | ||
| 396 | if (!BN_add(q,q,qadd)) goto err; | ||
| 397 | goto loop; | ||
| 398 | } | ||
| 399 | } | ||
| 400 | ret=1; | ||
| 401 | err: | ||
| 402 | ctx->tos-=3; | ||
| 403 | return(ret); | ||
| 404 | } | ||
| 405 | |||
| 406 | #if 0 | ||
| 407 | static int witness(a, n,ctx) | ||
| 408 | BIGNUM *a; | ||
| 409 | BIGNUM *n; | ||
| 410 | BN_CTX *ctx; | ||
| 411 | { | ||
| 412 | int k,i,nb,ret= -1; | ||
| 413 | BIGNUM *d,*dd,*tmp; | ||
| 414 | BIGNUM *d1,*d2,*x,*n1,*inv; | ||
| 415 | |||
| 416 | d1=ctx->bn[ctx->tos]; | ||
| 417 | d2=ctx->bn[ctx->tos+1]; | ||
| 418 | x=ctx->bn[ctx->tos+2]; | ||
| 419 | n1=ctx->bn[ctx->tos+3]; | ||
| 420 | inv=ctx->bn[ctx->tos+4]; | ||
| 421 | ctx->tos+=5; | ||
| 422 | |||
| 423 | d=d1; | ||
| 424 | dd=d2; | ||
| 425 | if (!BN_one(d)) goto err; | ||
| 426 | if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ | ||
| 427 | k=BN_num_bits(n1); | ||
| 428 | |||
| 429 | /* i=BN_num_bits(n); */ | ||
| 430 | #ifdef RECP_MUL_MOD | ||
| 431 | nb=BN_reciprocal(inv,n,ctx); /**/ | ||
| 432 | if (nb == -1) goto err; | ||
| 433 | #endif | ||
| 434 | |||
| 435 | for (i=k-1; i>=0; i--) | ||
| 436 | { | ||
| 437 | if (BN_copy(x,d) == NULL) goto err; | ||
| 438 | #ifndef RECP_MUL_MOD | ||
| 439 | if (!BN_mod_mul(dd,d,d,n,ctx)) goto err; | ||
| 440 | #else | ||
| 441 | if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err; | ||
| 442 | #endif | ||
| 443 | if ( BN_is_one(dd) && | ||
| 444 | !BN_is_one(x) && | ||
| 445 | (BN_cmp(x,n1) != 0)) | ||
| 446 | { | ||
| 447 | ret=1; | ||
| 448 | goto err; | ||
| 449 | } | ||
| 450 | if (BN_is_bit_set(n1,i)) | ||
| 451 | { | ||
| 452 | #ifndef RECP_MUL_MOD | ||
| 453 | if (!BN_mod_mul(d,dd,a,n,ctx)) goto err; | ||
| 454 | #else | ||
| 455 | if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err; | ||
| 456 | #endif | ||
| 457 | } | ||
| 458 | else | ||
| 459 | { | ||
| 460 | tmp=d; | ||
| 461 | d=dd; | ||
| 462 | dd=tmp; | ||
| 463 | } | ||
| 464 | } | ||
| 465 | if (BN_is_one(d)) | ||
| 466 | i=0; | ||
| 467 | else i=1; | ||
| 468 | ret=i; | ||
| 469 | err: | ||
| 470 | ctx->tos-=5; | ||
| 471 | return(ret); | ||
| 472 | } | ||
| 473 | #endif | ||
