diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_sqrt.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_sqrt.c | 276 |
1 files changed, 142 insertions, 134 deletions
diff --git a/src/lib/libcrypto/bn/bn_sqrt.c b/src/lib/libcrypto/bn/bn_sqrt.c index 6beaf9e5e5..89bb067d88 100644 --- a/src/lib/libcrypto/bn/bn_sqrt.c +++ b/src/lib/libcrypto/bn/bn_sqrt.c | |||
@@ -9,7 +9,7 @@ | |||
9 | * are met: | 9 | * are met: |
10 | * | 10 | * |
11 | * 1. Redistributions of source code must retain the above copyright | 11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. | 12 | * notice, this list of conditions and the following disclaimer. |
13 | * | 13 | * |
14 | * 2. Redistributions in binary form must reproduce the above copyright | 14 | * 2. Redistributions in binary form must reproduce the above copyright |
15 | * notice, this list of conditions and the following disclaimer in | 15 | * notice, this list of conditions and the following disclaimer in |
@@ -59,57 +59,53 @@ | |||
59 | #include "bn_lcl.h" | 59 | #include "bn_lcl.h" |
60 | 60 | ||
61 | 61 | ||
62 | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 62 | BIGNUM * |
63 | BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
63 | /* Returns 'ret' such that | 64 | /* Returns 'ret' such that |
64 | * ret^2 == a (mod p), | 65 | * ret^2 == a (mod p), |
65 | * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course | 66 | * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course |
66 | * in Algebraic Computational Number Theory", algorithm 1.5.1). | 67 | * in Algebraic Computational Number Theory", algorithm 1.5.1). |
67 | * 'p' must be prime! | 68 | * 'p' must be prime! |
68 | */ | 69 | */ |
69 | { | 70 | { |
70 | BIGNUM *ret = in; | 71 | BIGNUM *ret = in; |
71 | int err = 1; | 72 | int err = 1; |
72 | int r; | 73 | int r; |
73 | BIGNUM *A, *b, *q, *t, *x, *y; | 74 | BIGNUM *A, *b, *q, *t, *x, *y; |
74 | int e, i, j; | 75 | int e, i, j; |
75 | 76 | ||
76 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) | 77 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { |
77 | { | 78 | if (BN_abs_is_word(p, 2)) { |
78 | if (BN_abs_is_word(p, 2)) | ||
79 | { | ||
80 | if (ret == NULL) | 79 | if (ret == NULL) |
81 | ret = BN_new(); | 80 | ret = BN_new(); |
82 | if (ret == NULL) | 81 | if (ret == NULL) |
83 | goto end; | 82 | goto end; |
84 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) | 83 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { |
85 | { | ||
86 | if (ret != in) | 84 | if (ret != in) |
87 | BN_free(ret); | 85 | BN_free(ret); |
88 | return NULL; | 86 | return NULL; |
89 | } | 87 | } |
90 | bn_check_top(ret); | 88 | bn_check_top(ret); |
91 | return ret; | 89 | return ret; |
92 | } | 90 | } |
93 | 91 | ||
94 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | 92 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
95 | return(NULL); | 93 | return (NULL); |
96 | } | 94 | } |
97 | 95 | ||
98 | if (BN_is_zero(a) || BN_is_one(a)) | 96 | if (BN_is_zero(a) || BN_is_one(a)) { |
99 | { | ||
100 | if (ret == NULL) | 97 | if (ret == NULL) |
101 | ret = BN_new(); | 98 | ret = BN_new(); |
102 | if (ret == NULL) | 99 | if (ret == NULL) |
103 | goto end; | 100 | goto end; |
104 | if (!BN_set_word(ret, BN_is_one(a))) | 101 | if (!BN_set_word(ret, BN_is_one(a))) { |
105 | { | ||
106 | if (ret != in) | 102 | if (ret != in) |
107 | BN_free(ret); | 103 | BN_free(ret); |
108 | return NULL; | 104 | return NULL; |
109 | } | 105 | } |
110 | bn_check_top(ret); | 106 | bn_check_top(ret); |
111 | return ret; | 107 | return ret; |
112 | } | 108 | } |
113 | 109 | ||
114 | BN_CTX_start(ctx); | 110 | BN_CTX_start(ctx); |
115 | A = BN_CTX_get(ctx); | 111 | A = BN_CTX_get(ctx); |
@@ -118,14 +114,17 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
118 | t = BN_CTX_get(ctx); | 114 | t = BN_CTX_get(ctx); |
119 | x = BN_CTX_get(ctx); | 115 | x = BN_CTX_get(ctx); |
120 | y = BN_CTX_get(ctx); | 116 | y = BN_CTX_get(ctx); |
121 | if (y == NULL) goto end; | 117 | if (y == NULL) |
122 | 118 | goto end; | |
119 | |||
123 | if (ret == NULL) | 120 | if (ret == NULL) |
124 | ret = BN_new(); | 121 | ret = BN_new(); |
125 | if (ret == NULL) goto end; | 122 | if (ret == NULL) |
123 | goto end; | ||
126 | 124 | ||
127 | /* A = a mod p */ | 125 | /* A = a mod p */ |
128 | if (!BN_nnmod(A, a, p, ctx)) goto end; | 126 | if (!BN_nnmod(A, a, p, ctx)) |
127 | goto end; | ||
129 | 128 | ||
130 | /* now write |p| - 1 as 2^e*q where q is odd */ | 129 | /* now write |p| - 1 as 2^e*q where q is odd */ |
131 | e = 1; | 130 | e = 1; |
@@ -133,8 +132,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
133 | e++; | 132 | e++; |
134 | /* we'll set q later (if needed) */ | 133 | /* we'll set q later (if needed) */ |
135 | 134 | ||
136 | if (e == 1) | 135 | if (e == 1) { |
137 | { | ||
138 | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse | 136 | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse |
139 | * modulo (|p|-1)/2, and square roots can be computed | 137 | * modulo (|p|-1)/2, and square roots can be computed |
140 | * directly by modular exponentiation. | 138 | * directly by modular exponentiation. |
@@ -142,16 +140,18 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
142 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), | 140 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), |
143 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. | 141 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. |
144 | */ | 142 | */ |
145 | if (!BN_rshift(q, p, 2)) goto end; | 143 | if (!BN_rshift(q, p, 2)) |
144 | goto end; | ||
146 | q->neg = 0; | 145 | q->neg = 0; |
147 | if (!BN_add_word(q, 1)) goto end; | 146 | if (!BN_add_word(q, 1)) |
148 | if (!BN_mod_exp(ret, A, q, p, ctx)) goto end; | 147 | goto end; |
148 | if (!BN_mod_exp(ret, A, q, p, ctx)) | ||
149 | goto end; | ||
149 | err = 0; | 150 | err = 0; |
150 | goto vrfy; | 151 | goto vrfy; |
151 | } | 152 | } |
152 | 153 | ||
153 | if (e == 2) | 154 | if (e == 2) { |
154 | { | ||
155 | /* |p| == 5 (mod 8) | 155 | /* |p| == 5 (mod 8) |
156 | * | 156 | * |
157 | * In this case 2 is always a non-square since | 157 | * In this case 2 is always a non-square since |
@@ -173,74 +173,81 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
173 | * = a*(-i)*i | 173 | * = a*(-i)*i |
174 | * = a. | 174 | * = a. |
175 | * | 175 | * |
176 | * (This is due to A.O.L. Atkin, | 176 | * (This is due to A.O.L. Atkin, |
177 | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, | 177 | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, |
178 | * November 1992.) | 178 | * November 1992.) |
179 | */ | 179 | */ |
180 | 180 | ||
181 | /* t := 2*a */ | 181 | /* t := 2*a */ |
182 | if (!BN_mod_lshift1_quick(t, A, p)) goto end; | 182 | if (!BN_mod_lshift1_quick(t, A, p)) |
183 | goto end; | ||
183 | 184 | ||
184 | /* b := (2*a)^((|p|-5)/8) */ | 185 | /* b := (2*a)^((|p|-5)/8) */ |
185 | if (!BN_rshift(q, p, 3)) goto end; | 186 | if (!BN_rshift(q, p, 3)) |
187 | goto end; | ||
186 | q->neg = 0; | 188 | q->neg = 0; |
187 | if (!BN_mod_exp(b, t, q, p, ctx)) goto end; | 189 | if (!BN_mod_exp(b, t, q, p, ctx)) |
190 | goto end; | ||
188 | 191 | ||
189 | /* y := b^2 */ | 192 | /* y := b^2 */ |
190 | if (!BN_mod_sqr(y, b, p, ctx)) goto end; | 193 | if (!BN_mod_sqr(y, b, p, ctx)) |
194 | goto end; | ||
191 | 195 | ||
192 | /* t := (2*a)*b^2 - 1*/ | 196 | /* t := (2*a)*b^2 - 1*/ |
193 | if (!BN_mod_mul(t, t, y, p, ctx)) goto end; | 197 | if (!BN_mod_mul(t, t, y, p, ctx)) |
194 | if (!BN_sub_word(t, 1)) goto end; | 198 | goto end; |
199 | if (!BN_sub_word(t, 1)) | ||
200 | goto end; | ||
195 | 201 | ||
196 | /* x = a*b*t */ | 202 | /* x = a*b*t */ |
197 | if (!BN_mod_mul(x, A, b, p, ctx)) goto end; | 203 | if (!BN_mod_mul(x, A, b, p, ctx)) |
198 | if (!BN_mod_mul(x, x, t, p, ctx)) goto end; | 204 | goto end; |
205 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
206 | goto end; | ||
199 | 207 | ||
200 | if (!BN_copy(ret, x)) goto end; | 208 | if (!BN_copy(ret, x)) |
209 | goto end; | ||
201 | err = 0; | 210 | err = 0; |
202 | goto vrfy; | 211 | goto vrfy; |
203 | } | 212 | } |
204 | 213 | ||
205 | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. | 214 | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. |
206 | * First, find some y that is not a square. */ | 215 | * First, find some y that is not a square. */ |
207 | if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ | 216 | if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ |
208 | q->neg = 0; | 217 | q->neg = 0; |
209 | i = 2; | 218 | i = 2; |
210 | do | 219 | do { |
211 | { | ||
212 | /* For efficiency, try small numbers first; | 220 | /* For efficiency, try small numbers first; |
213 | * if this fails, try random numbers. | 221 | * if this fails, try random numbers. |
214 | */ | 222 | */ |
215 | if (i < 22) | 223 | if (i < 22) { |
216 | { | 224 | if (!BN_set_word(y, i)) |
217 | if (!BN_set_word(y, i)) goto end; | 225 | goto end; |
226 | } else { | ||
227 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) | ||
228 | goto end; | ||
229 | if (BN_ucmp(y, p) >= 0) { | ||
230 | if (!(p->neg ? BN_add : BN_sub)(y, y, p)) | ||
231 | goto end; | ||
218 | } | 232 | } |
219 | else | ||
220 | { | ||
221 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end; | ||
222 | if (BN_ucmp(y, p) >= 0) | ||
223 | { | ||
224 | if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end; | ||
225 | } | ||
226 | /* now 0 <= y < |p| */ | 233 | /* now 0 <= y < |p| */ |
227 | if (BN_is_zero(y)) | 234 | if (BN_is_zero(y)) |
228 | if (!BN_set_word(y, i)) goto end; | 235 | if (!BN_set_word(y, i)) |
229 | } | 236 | goto end; |
230 | 237 | } | |
238 | |||
231 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ | 239 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ |
232 | if (r < -1) goto end; | 240 | if (r < -1) |
233 | if (r == 0) | 241 | goto end; |
234 | { | 242 | if (r == 0) { |
235 | /* m divides p */ | 243 | /* m divides p */ |
236 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | 244 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
237 | goto end; | 245 | goto end; |
238 | } | ||
239 | } | 246 | } |
247 | } | ||
240 | while (r == 1 && ++i < 82); | 248 | while (r == 1 && ++i < 82); |
241 | 249 | ||
242 | if (r != -1) | 250 | if (r != -1) { |
243 | { | ||
244 | /* Many rounds and still no non-square -- this is more likely | 251 | /* Many rounds and still no non-square -- this is more likely |
245 | * a bug than just bad luck. | 252 | * a bug than just bad luck. |
246 | * Even if p is not prime, we should have found some y | 253 | * Even if p is not prime, we should have found some y |
@@ -248,19 +255,20 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
248 | */ | 255 | */ |
249 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); | 256 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); |
250 | goto end; | 257 | goto end; |
251 | } | 258 | } |
252 | 259 | ||
253 | /* Here's our actual 'q': */ | 260 | /* Here's our actual 'q': */ |
254 | if (!BN_rshift(q, q, e)) goto end; | 261 | if (!BN_rshift(q, q, e)) |
262 | goto end; | ||
255 | 263 | ||
256 | /* Now that we have some non-square, we can find an element | 264 | /* Now that we have some non-square, we can find an element |
257 | * of order 2^e by computing its q'th power. */ | 265 | * of order 2^e by computing its q'th power. */ |
258 | if (!BN_mod_exp(y, y, q, p, ctx)) goto end; | 266 | if (!BN_mod_exp(y, y, q, p, ctx)) |
259 | if (BN_is_one(y)) | 267 | goto end; |
260 | { | 268 | if (BN_is_one(y)) { |
261 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | 269 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
262 | goto end; | 270 | goto end; |
263 | } | 271 | } |
264 | 272 | ||
265 | /* Now we know that (if p is indeed prime) there is an integer | 273 | /* Now we know that (if p is indeed prime) there is an integer |
266 | * k, 0 <= k < 2^e, such that | 274 | * k, 0 <= k < 2^e, such that |
@@ -279,45 +287,45 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
279 | * | 287 | * |
280 | * so it is the square root that we are looking for. | 288 | * so it is the square root that we are looking for. |
281 | */ | 289 | */ |
282 | 290 | ||
283 | /* t := (q-1)/2 (note that q is odd) */ | 291 | /* t := (q-1)/2 (note that q is odd) */ |
284 | if (!BN_rshift1(t, q)) goto end; | 292 | if (!BN_rshift1(t, q)) |
285 | 293 | goto end; | |
294 | |||
286 | /* x := a^((q-1)/2) */ | 295 | /* x := a^((q-1)/2) */ |
287 | if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ | 296 | if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ |
288 | { | 297 | { |
289 | if (!BN_nnmod(t, A, p, ctx)) goto end; | 298 | if (!BN_nnmod(t, A, p, ctx)) |
290 | if (BN_is_zero(t)) | 299 | goto end; |
291 | { | 300 | if (BN_is_zero(t)) { |
292 | /* special case: a == 0 (mod p) */ | 301 | /* special case: a == 0 (mod p) */ |
293 | BN_zero(ret); | 302 | BN_zero(ret); |
294 | err = 0; | 303 | err = 0; |
295 | goto end; | 304 | goto end; |
296 | } | 305 | } else if (!BN_one(x)) |
297 | else | 306 | goto end; |
298 | if (!BN_one(x)) goto end; | 307 | } else { |
299 | } | 308 | if (!BN_mod_exp(x, A, t, p, ctx)) |
300 | else | 309 | goto end; |
301 | { | 310 | if (BN_is_zero(x)) { |
302 | if (!BN_mod_exp(x, A, t, p, ctx)) goto end; | ||
303 | if (BN_is_zero(x)) | ||
304 | { | ||
305 | /* special case: a == 0 (mod p) */ | 311 | /* special case: a == 0 (mod p) */ |
306 | BN_zero(ret); | 312 | BN_zero(ret); |
307 | err = 0; | 313 | err = 0; |
308 | goto end; | 314 | goto end; |
309 | } | ||
310 | } | 315 | } |
316 | } | ||
311 | 317 | ||
312 | /* b := a*x^2 (= a^q) */ | 318 | /* b := a*x^2 (= a^q) */ |
313 | if (!BN_mod_sqr(b, x, p, ctx)) goto end; | 319 | if (!BN_mod_sqr(b, x, p, ctx)) |
314 | if (!BN_mod_mul(b, b, A, p, ctx)) goto end; | 320 | goto end; |
315 | 321 | if (!BN_mod_mul(b, b, A, p, ctx)) | |
322 | goto end; | ||
323 | |||
316 | /* x := a*x (= a^((q+1)/2)) */ | 324 | /* x := a*x (= a^((q+1)/2)) */ |
317 | if (!BN_mod_mul(x, x, A, p, ctx)) goto end; | 325 | if (!BN_mod_mul(x, x, A, p, ctx)) |
326 | goto end; | ||
318 | 327 | ||
319 | while (1) | 328 | while (1) { |
320 | { | ||
321 | /* Now b is a^q * y^k for some even k (0 <= k < 2^E | 329 | /* Now b is a^q * y^k for some even k (0 <= k < 2^E |
322 | * where E refers to the original value of e, which we | 330 | * where E refers to the original value of e, which we |
323 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). | 331 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). |
@@ -327,67 +335,67 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
327 | * b^2^(e-1) = 1. | 335 | * b^2^(e-1) = 1. |
328 | */ | 336 | */ |
329 | 337 | ||
330 | if (BN_is_one(b)) | 338 | if (BN_is_one(b)) { |
331 | { | 339 | if (!BN_copy(ret, x)) |
332 | if (!BN_copy(ret, x)) goto end; | 340 | goto end; |
333 | err = 0; | 341 | err = 0; |
334 | goto vrfy; | 342 | goto vrfy; |
335 | } | 343 | } |
336 | 344 | ||
337 | 345 | ||
338 | /* find smallest i such that b^(2^i) = 1 */ | 346 | /* find smallest i such that b^(2^i) = 1 */ |
339 | i = 1; | 347 | i = 1; |
340 | if (!BN_mod_sqr(t, b, p, ctx)) goto end; | 348 | if (!BN_mod_sqr(t, b, p, ctx)) |
341 | while (!BN_is_one(t)) | 349 | goto end; |
342 | { | 350 | while (!BN_is_one(t)) { |
343 | i++; | 351 | i++; |
344 | if (i == e) | 352 | if (i == e) { |
345 | { | ||
346 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); | 353 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
347 | goto end; | 354 | goto end; |
348 | } | ||
349 | if (!BN_mod_mul(t, t, t, p, ctx)) goto end; | ||
350 | } | 355 | } |
351 | 356 | if (!BN_mod_mul(t, t, t, p, ctx)) | |
357 | goto end; | ||
358 | } | ||
359 | |||
352 | 360 | ||
353 | /* t := y^2^(e - i - 1) */ | 361 | /* t := y^2^(e - i - 1) */ |
354 | if (!BN_copy(t, y)) goto end; | 362 | if (!BN_copy(t, y)) |
355 | for (j = e - i - 1; j > 0; j--) | 363 | goto end; |
356 | { | 364 | for (j = e - i - 1; j > 0; j--) { |
357 | if (!BN_mod_sqr(t, t, p, ctx)) goto end; | 365 | if (!BN_mod_sqr(t, t, p, ctx)) |
358 | } | 366 | goto end; |
359 | if (!BN_mod_mul(y, t, t, p, ctx)) goto end; | ||
360 | if (!BN_mod_mul(x, x, t, p, ctx)) goto end; | ||
361 | if (!BN_mod_mul(b, b, y, p, ctx)) goto end; | ||
362 | e = i; | ||
363 | } | 367 | } |
368 | if (!BN_mod_mul(y, t, t, p, ctx)) | ||
369 | goto end; | ||
370 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
371 | goto end; | ||
372 | if (!BN_mod_mul(b, b, y, p, ctx)) | ||
373 | goto end; | ||
374 | e = i; | ||
375 | } | ||
364 | 376 | ||
365 | vrfy: | 377 | vrfy: |
366 | if (!err) | 378 | if (!err) { |
367 | { | ||
368 | /* verify the result -- the input might have been not a square | 379 | /* verify the result -- the input might have been not a square |
369 | * (test added in 0.9.8) */ | 380 | * (test added in 0.9.8) */ |
370 | 381 | ||
371 | if (!BN_mod_sqr(x, ret, p, ctx)) | 382 | if (!BN_mod_sqr(x, ret, p, ctx)) |
372 | err = 1; | 383 | err = 1; |
373 | 384 | ||
374 | if (!err && 0 != BN_cmp(x, A)) | 385 | if (!err && 0 != BN_cmp(x, A)) { |
375 | { | ||
376 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); | 386 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
377 | err = 1; | 387 | err = 1; |
378 | } | ||
379 | } | 388 | } |
389 | } | ||
380 | 390 | ||
381 | end: | 391 | end: |
382 | if (err) | 392 | if (err) { |
383 | { | 393 | if (ret != NULL && ret != in) { |
384 | if (ret != NULL && ret != in) | ||
385 | { | ||
386 | BN_clear_free(ret); | 394 | BN_clear_free(ret); |
387 | } | ||
388 | ret = NULL; | ||
389 | } | 395 | } |
396 | ret = NULL; | ||
397 | } | ||
390 | BN_CTX_end(ctx); | 398 | BN_CTX_end(ctx); |
391 | bn_check_top(ret); | 399 | bn_check_top(ret); |
392 | return ret; | 400 | return ret; |
393 | } | 401 | } |