diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_mult.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_mult.c | 386 |
1 files changed, 0 insertions, 386 deletions
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c deleted file mode 100644 index e12b9b284a..0000000000 --- a/src/lib/libcrypto/ec/ec2_mult.c +++ /dev/null | |||
@@ -1,386 +0,0 @@ | |||
1 | /* crypto/ec/ec2_mult.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/err.h> | ||
71 | |||
72 | #include "ec_lcl.h" | ||
73 | |||
74 | |||
75 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | ||
76 | * coordinates. | ||
77 | * Uses algorithm Mdouble in appendix of | ||
78 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
79 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
80 | * modified to not require precomputation of c=b^{2^{m-1}}. | ||
81 | */ | ||
82 | static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | ||
83 | { | ||
84 | BIGNUM *t1; | ||
85 | int ret = 0; | ||
86 | |||
87 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | ||
88 | BN_CTX_start(ctx); | ||
89 | t1 = BN_CTX_get(ctx); | ||
90 | if (t1 == NULL) goto err; | ||
91 | |||
92 | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | ||
93 | if (!group->meth->field_sqr(group, t1, z, ctx)) goto err; | ||
94 | if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err; | ||
95 | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | ||
96 | if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err; | ||
97 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err; | ||
98 | if (!BN_GF2m_add(x, x, t1)) goto err; | ||
99 | |||
100 | ret = 1; | ||
101 | |||
102 | err: | ||
103 | BN_CTX_end(ctx); | ||
104 | return ret; | ||
105 | } | ||
106 | |||
107 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | ||
108 | * projective coordinates. | ||
109 | * Uses algorithm Madd in appendix of | ||
110 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
111 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
112 | */ | ||
113 | static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | ||
114 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | ||
115 | { | ||
116 | BIGNUM *t1, *t2; | ||
117 | int ret = 0; | ||
118 | |||
119 | /* Since Madd is static we can guarantee that ctx != NULL. */ | ||
120 | BN_CTX_start(ctx); | ||
121 | t1 = BN_CTX_get(ctx); | ||
122 | t2 = BN_CTX_get(ctx); | ||
123 | if (t2 == NULL) goto err; | ||
124 | |||
125 | if (!BN_copy(t1, x)) goto err; | ||
126 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err; | ||
127 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err; | ||
128 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err; | ||
129 | if (!BN_GF2m_add(z1, z1, x1)) goto err; | ||
130 | if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err; | ||
131 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err; | ||
132 | if (!BN_GF2m_add(x1, x1, t2)) goto err; | ||
133 | |||
134 | ret = 1; | ||
135 | |||
136 | err: | ||
137 | BN_CTX_end(ctx); | ||
138 | return ret; | ||
139 | } | ||
140 | |||
141 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | ||
142 | * using Montgomery point multiplication algorithm Mxy() in appendix of | ||
143 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
144 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
145 | * Returns: | ||
146 | * 0 on error | ||
147 | * 1 if return value should be the point at infinity | ||
148 | * 2 otherwise | ||
149 | */ | ||
150 | static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | ||
151 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | ||
152 | { | ||
153 | BIGNUM *t3, *t4, *t5; | ||
154 | int ret = 0; | ||
155 | |||
156 | if (BN_is_zero(z1)) | ||
157 | { | ||
158 | BN_zero(x2); | ||
159 | BN_zero(z2); | ||
160 | return 1; | ||
161 | } | ||
162 | |||
163 | if (BN_is_zero(z2)) | ||
164 | { | ||
165 | if (!BN_copy(x2, x)) return 0; | ||
166 | if (!BN_GF2m_add(z2, x, y)) return 0; | ||
167 | return 2; | ||
168 | } | ||
169 | |||
170 | /* Since Mxy is static we can guarantee that ctx != NULL. */ | ||
171 | BN_CTX_start(ctx); | ||
172 | t3 = BN_CTX_get(ctx); | ||
173 | t4 = BN_CTX_get(ctx); | ||
174 | t5 = BN_CTX_get(ctx); | ||
175 | if (t5 == NULL) goto err; | ||
176 | |||
177 | if (!BN_one(t5)) goto err; | ||
178 | |||
179 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err; | ||
180 | |||
181 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err; | ||
182 | if (!BN_GF2m_add(z1, z1, x1)) goto err; | ||
183 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err; | ||
184 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err; | ||
185 | if (!BN_GF2m_add(z2, z2, x2)) goto err; | ||
186 | |||
187 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err; | ||
188 | if (!group->meth->field_sqr(group, t4, x, ctx)) goto err; | ||
189 | if (!BN_GF2m_add(t4, t4, y)) goto err; | ||
190 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err; | ||
191 | if (!BN_GF2m_add(t4, t4, z2)) goto err; | ||
192 | |||
193 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err; | ||
194 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err; | ||
195 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err; | ||
196 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err; | ||
197 | if (!BN_GF2m_add(z2, x2, x)) goto err; | ||
198 | |||
199 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err; | ||
200 | if (!BN_GF2m_add(z2, z2, y)) goto err; | ||
201 | |||
202 | ret = 2; | ||
203 | |||
204 | err: | ||
205 | BN_CTX_end(ctx); | ||
206 | return ret; | ||
207 | } | ||
208 | |||
209 | /* Computes scalar*point and stores the result in r. | ||
210 | * point can not equal r. | ||
211 | * Uses algorithm 2P of | ||
212 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
213 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
214 | */ | ||
215 | static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
216 | const EC_POINT *point, BN_CTX *ctx) | ||
217 | { | ||
218 | BIGNUM *x1, *x2, *z1, *z2; | ||
219 | int ret = 0, i; | ||
220 | BN_ULONG mask,word; | ||
221 | |||
222 | if (r == point) | ||
223 | { | ||
224 | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); | ||
225 | return 0; | ||
226 | } | ||
227 | |||
228 | /* if result should be point at infinity */ | ||
229 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | ||
230 | EC_POINT_is_at_infinity(group, point)) | ||
231 | { | ||
232 | return EC_POINT_set_to_infinity(group, r); | ||
233 | } | ||
234 | |||
235 | /* only support affine coordinates */ | ||
236 | if (!point->Z_is_one) return 0; | ||
237 | |||
238 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | ||
239 | BN_CTX_start(ctx); | ||
240 | x1 = BN_CTX_get(ctx); | ||
241 | z1 = BN_CTX_get(ctx); | ||
242 | if (z1 == NULL) goto err; | ||
243 | |||
244 | x2 = &r->X; | ||
245 | z2 = &r->Y; | ||
246 | |||
247 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */ | ||
248 | if (!BN_one(z1)) goto err; /* z1 = 1 */ | ||
249 | if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */ | ||
250 | if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err; | ||
251 | if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */ | ||
252 | |||
253 | /* find top most bit and go one past it */ | ||
254 | i = scalar->top - 1; | ||
255 | mask = BN_TBIT; | ||
256 | word = scalar->d[i]; | ||
257 | while (!(word & mask)) mask >>= 1; | ||
258 | mask >>= 1; | ||
259 | /* if top most bit was at word break, go to next word */ | ||
260 | if (!mask) | ||
261 | { | ||
262 | i--; | ||
263 | mask = BN_TBIT; | ||
264 | } | ||
265 | |||
266 | for (; i >= 0; i--) | ||
267 | { | ||
268 | word = scalar->d[i]; | ||
269 | while (mask) | ||
270 | { | ||
271 | if (word & mask) | ||
272 | { | ||
273 | if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err; | ||
274 | if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err; | ||
275 | } | ||
276 | else | ||
277 | { | ||
278 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err; | ||
279 | if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err; | ||
280 | } | ||
281 | mask >>= 1; | ||
282 | } | ||
283 | mask = BN_TBIT; | ||
284 | } | ||
285 | |||
286 | /* convert out of "projective" coordinates */ | ||
287 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | ||
288 | if (i == 0) goto err; | ||
289 | else if (i == 1) | ||
290 | { | ||
291 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
292 | } | ||
293 | else | ||
294 | { | ||
295 | if (!BN_one(&r->Z)) goto err; | ||
296 | r->Z_is_one = 1; | ||
297 | } | ||
298 | |||
299 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | ||
300 | BN_set_negative(&r->X, 0); | ||
301 | BN_set_negative(&r->Y, 0); | ||
302 | |||
303 | ret = 1; | ||
304 | |||
305 | err: | ||
306 | BN_CTX_end(ctx); | ||
307 | return ret; | ||
308 | } | ||
309 | |||
310 | |||
311 | /* Computes the sum | ||
312 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | ||
313 | * gracefully ignoring NULL scalar values. | ||
314 | */ | ||
315 | int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
316 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
317 | { | ||
318 | BN_CTX *new_ctx = NULL; | ||
319 | int ret = 0; | ||
320 | size_t i; | ||
321 | EC_POINT *p=NULL; | ||
322 | EC_POINT *acc = NULL; | ||
323 | |||
324 | if (ctx == NULL) | ||
325 | { | ||
326 | ctx = new_ctx = BN_CTX_new(); | ||
327 | if (ctx == NULL) | ||
328 | return 0; | ||
329 | } | ||
330 | |||
331 | /* This implementation is more efficient than the wNAF implementation for 2 | ||
332 | * or fewer points. Use the ec_wNAF_mul implementation for 3 or more points, | ||
333 | * or if we can perform a fast multiplication based on precomputation. | ||
334 | */ | ||
335 | if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group))) | ||
336 | { | ||
337 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | ||
338 | goto err; | ||
339 | } | ||
340 | |||
341 | if ((p = EC_POINT_new(group)) == NULL) goto err; | ||
342 | if ((acc = EC_POINT_new(group)) == NULL) goto err; | ||
343 | |||
344 | if (!EC_POINT_set_to_infinity(group, acc)) goto err; | ||
345 | |||
346 | if (scalar) | ||
347 | { | ||
348 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err; | ||
349 | if (BN_is_negative(scalar)) | ||
350 | if (!group->meth->invert(group, p, ctx)) goto err; | ||
351 | if (!group->meth->add(group, acc, acc, p, ctx)) goto err; | ||
352 | } | ||
353 | |||
354 | for (i = 0; i < num; i++) | ||
355 | { | ||
356 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err; | ||
357 | if (BN_is_negative(scalars[i])) | ||
358 | if (!group->meth->invert(group, p, ctx)) goto err; | ||
359 | if (!group->meth->add(group, acc, acc, p, ctx)) goto err; | ||
360 | } | ||
361 | |||
362 | if (!EC_POINT_copy(r, acc)) goto err; | ||
363 | |||
364 | ret = 1; | ||
365 | |||
366 | err: | ||
367 | if (p) EC_POINT_free(p); | ||
368 | if (acc) EC_POINT_free(acc); | ||
369 | if (new_ctx != NULL) | ||
370 | BN_CTX_free(new_ctx); | ||
371 | return ret; | ||
372 | } | ||
373 | |||
374 | |||
375 | /* Precomputation for point multiplication: fall back to wNAF methods | ||
376 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | ||
377 | |||
378 | int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
379 | { | ||
380 | return ec_wNAF_precompute_mult(group, ctx); | ||
381 | } | ||
382 | |||
383 | int ec_GF2m_have_precompute_mult(const EC_GROUP *group) | ||
384 | { | ||
385 | return ec_wNAF_have_precompute_mult(group); | ||
386 | } | ||