diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_smpl.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_smpl.c | 971 |
1 files changed, 0 insertions, 971 deletions
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c deleted file mode 100644 index 5cd1eac41f..0000000000 --- a/src/lib/libcrypto/ec/ec2_smpl.c +++ /dev/null | |||
@@ -1,971 +0,0 @@ | |||
1 | /* crypto/ec/ec2_smpl.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/err.h> | ||
71 | |||
72 | #include "ec_lcl.h" | ||
73 | |||
74 | |||
75 | const EC_METHOD *EC_GF2m_simple_method(void) | ||
76 | { | ||
77 | static const EC_METHOD ret = { | ||
78 | NID_X9_62_characteristic_two_field, | ||
79 | ec_GF2m_simple_group_init, | ||
80 | ec_GF2m_simple_group_finish, | ||
81 | ec_GF2m_simple_group_clear_finish, | ||
82 | ec_GF2m_simple_group_copy, | ||
83 | ec_GF2m_simple_group_set_curve, | ||
84 | ec_GF2m_simple_group_get_curve, | ||
85 | ec_GF2m_simple_group_get_degree, | ||
86 | ec_GF2m_simple_group_check_discriminant, | ||
87 | ec_GF2m_simple_point_init, | ||
88 | ec_GF2m_simple_point_finish, | ||
89 | ec_GF2m_simple_point_clear_finish, | ||
90 | ec_GF2m_simple_point_copy, | ||
91 | ec_GF2m_simple_point_set_to_infinity, | ||
92 | 0 /* set_Jprojective_coordinates_GFp */, | ||
93 | 0 /* get_Jprojective_coordinates_GFp */, | ||
94 | ec_GF2m_simple_point_set_affine_coordinates, | ||
95 | ec_GF2m_simple_point_get_affine_coordinates, | ||
96 | ec_GF2m_simple_set_compressed_coordinates, | ||
97 | ec_GF2m_simple_point2oct, | ||
98 | ec_GF2m_simple_oct2point, | ||
99 | ec_GF2m_simple_add, | ||
100 | ec_GF2m_simple_dbl, | ||
101 | ec_GF2m_simple_invert, | ||
102 | ec_GF2m_simple_is_at_infinity, | ||
103 | ec_GF2m_simple_is_on_curve, | ||
104 | ec_GF2m_simple_cmp, | ||
105 | ec_GF2m_simple_make_affine, | ||
106 | ec_GF2m_simple_points_make_affine, | ||
107 | |||
108 | /* the following three method functions are defined in ec2_mult.c */ | ||
109 | ec_GF2m_simple_mul, | ||
110 | ec_GF2m_precompute_mult, | ||
111 | ec_GF2m_have_precompute_mult, | ||
112 | |||
113 | ec_GF2m_simple_field_mul, | ||
114 | ec_GF2m_simple_field_sqr, | ||
115 | ec_GF2m_simple_field_div, | ||
116 | 0 /* field_encode */, | ||
117 | 0 /* field_decode */, | ||
118 | 0 /* field_set_to_one */ }; | ||
119 | |||
120 | return &ret; | ||
121 | } | ||
122 | |||
123 | |||
124 | /* Initialize a GF(2^m)-based EC_GROUP structure. | ||
125 | * Note that all other members are handled by EC_GROUP_new. | ||
126 | */ | ||
127 | int ec_GF2m_simple_group_init(EC_GROUP *group) | ||
128 | { | ||
129 | BN_init(&group->field); | ||
130 | BN_init(&group->a); | ||
131 | BN_init(&group->b); | ||
132 | return 1; | ||
133 | } | ||
134 | |||
135 | |||
136 | /* Free a GF(2^m)-based EC_GROUP structure. | ||
137 | * Note that all other members are handled by EC_GROUP_free. | ||
138 | */ | ||
139 | void ec_GF2m_simple_group_finish(EC_GROUP *group) | ||
140 | { | ||
141 | BN_free(&group->field); | ||
142 | BN_free(&group->a); | ||
143 | BN_free(&group->b); | ||
144 | } | ||
145 | |||
146 | |||
147 | /* Clear and free a GF(2^m)-based EC_GROUP structure. | ||
148 | * Note that all other members are handled by EC_GROUP_clear_free. | ||
149 | */ | ||
150 | void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) | ||
151 | { | ||
152 | BN_clear_free(&group->field); | ||
153 | BN_clear_free(&group->a); | ||
154 | BN_clear_free(&group->b); | ||
155 | group->poly[0] = 0; | ||
156 | group->poly[1] = 0; | ||
157 | group->poly[2] = 0; | ||
158 | group->poly[3] = 0; | ||
159 | group->poly[4] = 0; | ||
160 | } | ||
161 | |||
162 | |||
163 | /* Copy a GF(2^m)-based EC_GROUP structure. | ||
164 | * Note that all other members are handled by EC_GROUP_copy. | ||
165 | */ | ||
166 | int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | ||
167 | { | ||
168 | int i; | ||
169 | if (!BN_copy(&dest->field, &src->field)) return 0; | ||
170 | if (!BN_copy(&dest->a, &src->a)) return 0; | ||
171 | if (!BN_copy(&dest->b, &src->b)) return 0; | ||
172 | dest->poly[0] = src->poly[0]; | ||
173 | dest->poly[1] = src->poly[1]; | ||
174 | dest->poly[2] = src->poly[2]; | ||
175 | dest->poly[3] = src->poly[3]; | ||
176 | dest->poly[4] = src->poly[4]; | ||
177 | bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2); | ||
178 | bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2); | ||
179 | for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0; | ||
180 | for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0; | ||
181 | return 1; | ||
182 | } | ||
183 | |||
184 | |||
185 | /* Set the curve parameters of an EC_GROUP structure. */ | ||
186 | int ec_GF2m_simple_group_set_curve(EC_GROUP *group, | ||
187 | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
188 | { | ||
189 | int ret = 0, i; | ||
190 | |||
191 | /* group->field */ | ||
192 | if (!BN_copy(&group->field, p)) goto err; | ||
193 | i = BN_GF2m_poly2arr(&group->field, group->poly, 5); | ||
194 | if ((i != 5) && (i != 3)) | ||
195 | { | ||
196 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); | ||
197 | goto err; | ||
198 | } | ||
199 | |||
200 | /* group->a */ | ||
201 | if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err; | ||
202 | bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2); | ||
203 | for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0; | ||
204 | |||
205 | /* group->b */ | ||
206 | if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err; | ||
207 | bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2); | ||
208 | for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0; | ||
209 | |||
210 | ret = 1; | ||
211 | err: | ||
212 | return ret; | ||
213 | } | ||
214 | |||
215 | |||
216 | /* Get the curve parameters of an EC_GROUP structure. | ||
217 | * If p, a, or b are NULL then there values will not be set but the method will return with success. | ||
218 | */ | ||
219 | int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
220 | { | ||
221 | int ret = 0; | ||
222 | |||
223 | if (p != NULL) | ||
224 | { | ||
225 | if (!BN_copy(p, &group->field)) return 0; | ||
226 | } | ||
227 | |||
228 | if (a != NULL) | ||
229 | { | ||
230 | if (!BN_copy(a, &group->a)) goto err; | ||
231 | } | ||
232 | |||
233 | if (b != NULL) | ||
234 | { | ||
235 | if (!BN_copy(b, &group->b)) goto err; | ||
236 | } | ||
237 | |||
238 | ret = 1; | ||
239 | |||
240 | err: | ||
241 | return ret; | ||
242 | } | ||
243 | |||
244 | |||
245 | /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ | ||
246 | int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) | ||
247 | { | ||
248 | return BN_num_bits(&group->field)-1; | ||
249 | } | ||
250 | |||
251 | |||
252 | /* Checks the discriminant of the curve. | ||
253 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
254 | */ | ||
255 | int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) | ||
256 | { | ||
257 | int ret = 0; | ||
258 | BIGNUM *b; | ||
259 | BN_CTX *new_ctx = NULL; | ||
260 | |||
261 | if (ctx == NULL) | ||
262 | { | ||
263 | ctx = new_ctx = BN_CTX_new(); | ||
264 | if (ctx == NULL) | ||
265 | { | ||
266 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
267 | goto err; | ||
268 | } | ||
269 | } | ||
270 | BN_CTX_start(ctx); | ||
271 | b = BN_CTX_get(ctx); | ||
272 | if (b == NULL) goto err; | ||
273 | |||
274 | if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err; | ||
275 | |||
276 | /* check the discriminant: | ||
277 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
278 | */ | ||
279 | if (BN_is_zero(b)) goto err; | ||
280 | |||
281 | ret = 1; | ||
282 | |||
283 | err: | ||
284 | if (ctx != NULL) | ||
285 | BN_CTX_end(ctx); | ||
286 | if (new_ctx != NULL) | ||
287 | BN_CTX_free(new_ctx); | ||
288 | return ret; | ||
289 | } | ||
290 | |||
291 | |||
292 | /* Initializes an EC_POINT. */ | ||
293 | int ec_GF2m_simple_point_init(EC_POINT *point) | ||
294 | { | ||
295 | BN_init(&point->X); | ||
296 | BN_init(&point->Y); | ||
297 | BN_init(&point->Z); | ||
298 | return 1; | ||
299 | } | ||
300 | |||
301 | |||
302 | /* Frees an EC_POINT. */ | ||
303 | void ec_GF2m_simple_point_finish(EC_POINT *point) | ||
304 | { | ||
305 | BN_free(&point->X); | ||
306 | BN_free(&point->Y); | ||
307 | BN_free(&point->Z); | ||
308 | } | ||
309 | |||
310 | |||
311 | /* Clears and frees an EC_POINT. */ | ||
312 | void ec_GF2m_simple_point_clear_finish(EC_POINT *point) | ||
313 | { | ||
314 | BN_clear_free(&point->X); | ||
315 | BN_clear_free(&point->Y); | ||
316 | BN_clear_free(&point->Z); | ||
317 | point->Z_is_one = 0; | ||
318 | } | ||
319 | |||
320 | |||
321 | /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ | ||
322 | int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | ||
323 | { | ||
324 | if (!BN_copy(&dest->X, &src->X)) return 0; | ||
325 | if (!BN_copy(&dest->Y, &src->Y)) return 0; | ||
326 | if (!BN_copy(&dest->Z, &src->Z)) return 0; | ||
327 | dest->Z_is_one = src->Z_is_one; | ||
328 | |||
329 | return 1; | ||
330 | } | ||
331 | |||
332 | |||
333 | /* Set an EC_POINT to the point at infinity. | ||
334 | * A point at infinity is represented by having Z=0. | ||
335 | */ | ||
336 | int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
337 | { | ||
338 | point->Z_is_one = 0; | ||
339 | BN_zero(&point->Z); | ||
340 | return 1; | ||
341 | } | ||
342 | |||
343 | |||
344 | /* Set the coordinates of an EC_POINT using affine coordinates. | ||
345 | * Note that the simple implementation only uses affine coordinates. | ||
346 | */ | ||
347 | int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
348 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
349 | { | ||
350 | int ret = 0; | ||
351 | if (x == NULL || y == NULL) | ||
352 | { | ||
353 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
354 | return 0; | ||
355 | } | ||
356 | |||
357 | if (!BN_copy(&point->X, x)) goto err; | ||
358 | BN_set_negative(&point->X, 0); | ||
359 | if (!BN_copy(&point->Y, y)) goto err; | ||
360 | BN_set_negative(&point->Y, 0); | ||
361 | if (!BN_copy(&point->Z, BN_value_one())) goto err; | ||
362 | BN_set_negative(&point->Z, 0); | ||
363 | point->Z_is_one = 1; | ||
364 | ret = 1; | ||
365 | |||
366 | err: | ||
367 | return ret; | ||
368 | } | ||
369 | |||
370 | |||
371 | /* Gets the affine coordinates of an EC_POINT. | ||
372 | * Note that the simple implementation only uses affine coordinates. | ||
373 | */ | ||
374 | int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | ||
375 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
376 | { | ||
377 | int ret = 0; | ||
378 | |||
379 | if (EC_POINT_is_at_infinity(group, point)) | ||
380 | { | ||
381 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
382 | return 0; | ||
383 | } | ||
384 | |||
385 | if (BN_cmp(&point->Z, BN_value_one())) | ||
386 | { | ||
387 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
388 | return 0; | ||
389 | } | ||
390 | if (x != NULL) | ||
391 | { | ||
392 | if (!BN_copy(x, &point->X)) goto err; | ||
393 | BN_set_negative(x, 0); | ||
394 | } | ||
395 | if (y != NULL) | ||
396 | { | ||
397 | if (!BN_copy(y, &point->Y)) goto err; | ||
398 | BN_set_negative(y, 0); | ||
399 | } | ||
400 | ret = 1; | ||
401 | |||
402 | err: | ||
403 | return ret; | ||
404 | } | ||
405 | |||
406 | |||
407 | /* Include patented algorithms. */ | ||
408 | #include "ec2_smpt.c" | ||
409 | |||
410 | |||
411 | /* Converts an EC_POINT to an octet string. | ||
412 | * If buf is NULL, the encoded length will be returned. | ||
413 | * If the length len of buf is smaller than required an error will be returned. | ||
414 | * | ||
415 | * The point compression section of this function is patented by Certicom Corp. | ||
416 | * under US Patent 6,141,420. Point compression is disabled by default and can | ||
417 | * be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at | ||
418 | * Configure-time. | ||
419 | */ | ||
420 | size_t ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, | ||
421 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
422 | { | ||
423 | size_t ret; | ||
424 | BN_CTX *new_ctx = NULL; | ||
425 | int used_ctx = 0; | ||
426 | BIGNUM *x, *y, *yxi; | ||
427 | size_t field_len, i, skip; | ||
428 | |||
429 | #ifndef OPENSSL_EC_BIN_PT_COMP | ||
430 | if ((form == POINT_CONVERSION_COMPRESSED) || (form == POINT_CONVERSION_HYBRID)) | ||
431 | { | ||
432 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_DISABLED); | ||
433 | goto err; | ||
434 | } | ||
435 | #endif | ||
436 | |||
437 | if ((form != POINT_CONVERSION_COMPRESSED) | ||
438 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
439 | && (form != POINT_CONVERSION_HYBRID)) | ||
440 | { | ||
441 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); | ||
442 | goto err; | ||
443 | } | ||
444 | |||
445 | if (EC_POINT_is_at_infinity(group, point)) | ||
446 | { | ||
447 | /* encodes to a single 0 octet */ | ||
448 | if (buf != NULL) | ||
449 | { | ||
450 | if (len < 1) | ||
451 | { | ||
452 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
453 | return 0; | ||
454 | } | ||
455 | buf[0] = 0; | ||
456 | } | ||
457 | return 1; | ||
458 | } | ||
459 | |||
460 | |||
461 | /* ret := required output buffer length */ | ||
462 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
463 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
464 | |||
465 | /* if 'buf' is NULL, just return required length */ | ||
466 | if (buf != NULL) | ||
467 | { | ||
468 | if (len < ret) | ||
469 | { | ||
470 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
471 | goto err; | ||
472 | } | ||
473 | |||
474 | if (ctx == NULL) | ||
475 | { | ||
476 | ctx = new_ctx = BN_CTX_new(); | ||
477 | if (ctx == NULL) | ||
478 | return 0; | ||
479 | } | ||
480 | |||
481 | BN_CTX_start(ctx); | ||
482 | used_ctx = 1; | ||
483 | x = BN_CTX_get(ctx); | ||
484 | y = BN_CTX_get(ctx); | ||
485 | yxi = BN_CTX_get(ctx); | ||
486 | if (yxi == NULL) goto err; | ||
487 | |||
488 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
489 | |||
490 | buf[0] = form; | ||
491 | #ifdef OPENSSL_EC_BIN_PT_COMP | ||
492 | if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) | ||
493 | { | ||
494 | if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; | ||
495 | if (BN_is_odd(yxi)) buf[0]++; | ||
496 | } | ||
497 | #endif | ||
498 | |||
499 | i = 1; | ||
500 | |||
501 | skip = field_len - BN_num_bytes(x); | ||
502 | if (skip > field_len) | ||
503 | { | ||
504 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
505 | goto err; | ||
506 | } | ||
507 | while (skip > 0) | ||
508 | { | ||
509 | buf[i++] = 0; | ||
510 | skip--; | ||
511 | } | ||
512 | skip = BN_bn2bin(x, buf + i); | ||
513 | i += skip; | ||
514 | if (i != 1 + field_len) | ||
515 | { | ||
516 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
517 | goto err; | ||
518 | } | ||
519 | |||
520 | if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) | ||
521 | { | ||
522 | skip = field_len - BN_num_bytes(y); | ||
523 | if (skip > field_len) | ||
524 | { | ||
525 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
526 | goto err; | ||
527 | } | ||
528 | while (skip > 0) | ||
529 | { | ||
530 | buf[i++] = 0; | ||
531 | skip--; | ||
532 | } | ||
533 | skip = BN_bn2bin(y, buf + i); | ||
534 | i += skip; | ||
535 | } | ||
536 | |||
537 | if (i != ret) | ||
538 | { | ||
539 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
540 | goto err; | ||
541 | } | ||
542 | } | ||
543 | |||
544 | if (used_ctx) | ||
545 | BN_CTX_end(ctx); | ||
546 | if (new_ctx != NULL) | ||
547 | BN_CTX_free(new_ctx); | ||
548 | return ret; | ||
549 | |||
550 | err: | ||
551 | if (used_ctx) | ||
552 | BN_CTX_end(ctx); | ||
553 | if (new_ctx != NULL) | ||
554 | BN_CTX_free(new_ctx); | ||
555 | return 0; | ||
556 | } | ||
557 | |||
558 | |||
559 | /* Converts an octet string representation to an EC_POINT. | ||
560 | * Note that the simple implementation only uses affine coordinates. | ||
561 | */ | ||
562 | int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
563 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
564 | { | ||
565 | point_conversion_form_t form; | ||
566 | int y_bit; | ||
567 | BN_CTX *new_ctx = NULL; | ||
568 | BIGNUM *x, *y, *yxi; | ||
569 | size_t field_len, enc_len; | ||
570 | int ret = 0; | ||
571 | |||
572 | if (len == 0) | ||
573 | { | ||
574 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); | ||
575 | return 0; | ||
576 | } | ||
577 | form = buf[0]; | ||
578 | y_bit = form & 1; | ||
579 | form = form & ~1U; | ||
580 | if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) | ||
581 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
582 | && (form != POINT_CONVERSION_HYBRID)) | ||
583 | { | ||
584 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
585 | return 0; | ||
586 | } | ||
587 | if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) | ||
588 | { | ||
589 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
590 | return 0; | ||
591 | } | ||
592 | |||
593 | if (form == 0) | ||
594 | { | ||
595 | if (len != 1) | ||
596 | { | ||
597 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
598 | return 0; | ||
599 | } | ||
600 | |||
601 | return EC_POINT_set_to_infinity(group, point); | ||
602 | } | ||
603 | |||
604 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
605 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
606 | |||
607 | if (len != enc_len) | ||
608 | { | ||
609 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
610 | return 0; | ||
611 | } | ||
612 | |||
613 | if (ctx == NULL) | ||
614 | { | ||
615 | ctx = new_ctx = BN_CTX_new(); | ||
616 | if (ctx == NULL) | ||
617 | return 0; | ||
618 | } | ||
619 | |||
620 | BN_CTX_start(ctx); | ||
621 | x = BN_CTX_get(ctx); | ||
622 | y = BN_CTX_get(ctx); | ||
623 | yxi = BN_CTX_get(ctx); | ||
624 | if (yxi == NULL) goto err; | ||
625 | |||
626 | if (!BN_bin2bn(buf + 1, field_len, x)) goto err; | ||
627 | if (BN_ucmp(x, &group->field) >= 0) | ||
628 | { | ||
629 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
630 | goto err; | ||
631 | } | ||
632 | |||
633 | if (form == POINT_CONVERSION_COMPRESSED) | ||
634 | { | ||
635 | if (!EC_POINT_set_compressed_coordinates_GF2m(group, point, x, y_bit, ctx)) goto err; | ||
636 | } | ||
637 | else | ||
638 | { | ||
639 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; | ||
640 | if (BN_ucmp(y, &group->field) >= 0) | ||
641 | { | ||
642 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
643 | goto err; | ||
644 | } | ||
645 | if (form == POINT_CONVERSION_HYBRID) | ||
646 | { | ||
647 | if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; | ||
648 | if (y_bit != BN_is_odd(yxi)) | ||
649 | { | ||
650 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
651 | goto err; | ||
652 | } | ||
653 | } | ||
654 | |||
655 | if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
656 | } | ||
657 | |||
658 | if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */ | ||
659 | { | ||
660 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); | ||
661 | goto err; | ||
662 | } | ||
663 | |||
664 | ret = 1; | ||
665 | |||
666 | err: | ||
667 | BN_CTX_end(ctx); | ||
668 | if (new_ctx != NULL) | ||
669 | BN_CTX_free(new_ctx); | ||
670 | return ret; | ||
671 | } | ||
672 | |||
673 | |||
674 | /* Computes a + b and stores the result in r. r could be a or b, a could be b. | ||
675 | * Uses algorithm A.10.2 of IEEE P1363. | ||
676 | */ | ||
677 | int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
678 | { | ||
679 | BN_CTX *new_ctx = NULL; | ||
680 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; | ||
681 | int ret = 0; | ||
682 | |||
683 | if (EC_POINT_is_at_infinity(group, a)) | ||
684 | { | ||
685 | if (!EC_POINT_copy(r, b)) return 0; | ||
686 | return 1; | ||
687 | } | ||
688 | |||
689 | if (EC_POINT_is_at_infinity(group, b)) | ||
690 | { | ||
691 | if (!EC_POINT_copy(r, a)) return 0; | ||
692 | return 1; | ||
693 | } | ||
694 | |||
695 | if (ctx == NULL) | ||
696 | { | ||
697 | ctx = new_ctx = BN_CTX_new(); | ||
698 | if (ctx == NULL) | ||
699 | return 0; | ||
700 | } | ||
701 | |||
702 | BN_CTX_start(ctx); | ||
703 | x0 = BN_CTX_get(ctx); | ||
704 | y0 = BN_CTX_get(ctx); | ||
705 | x1 = BN_CTX_get(ctx); | ||
706 | y1 = BN_CTX_get(ctx); | ||
707 | x2 = BN_CTX_get(ctx); | ||
708 | y2 = BN_CTX_get(ctx); | ||
709 | s = BN_CTX_get(ctx); | ||
710 | t = BN_CTX_get(ctx); | ||
711 | if (t == NULL) goto err; | ||
712 | |||
713 | if (a->Z_is_one) | ||
714 | { | ||
715 | if (!BN_copy(x0, &a->X)) goto err; | ||
716 | if (!BN_copy(y0, &a->Y)) goto err; | ||
717 | } | ||
718 | else | ||
719 | { | ||
720 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err; | ||
721 | } | ||
722 | if (b->Z_is_one) | ||
723 | { | ||
724 | if (!BN_copy(x1, &b->X)) goto err; | ||
725 | if (!BN_copy(y1, &b->Y)) goto err; | ||
726 | } | ||
727 | else | ||
728 | { | ||
729 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err; | ||
730 | } | ||
731 | |||
732 | |||
733 | if (BN_GF2m_cmp(x0, x1)) | ||
734 | { | ||
735 | if (!BN_GF2m_add(t, x0, x1)) goto err; | ||
736 | if (!BN_GF2m_add(s, y0, y1)) goto err; | ||
737 | if (!group->meth->field_div(group, s, s, t, ctx)) goto err; | ||
738 | if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; | ||
739 | if (!BN_GF2m_add(x2, x2, &group->a)) goto err; | ||
740 | if (!BN_GF2m_add(x2, x2, s)) goto err; | ||
741 | if (!BN_GF2m_add(x2, x2, t)) goto err; | ||
742 | } | ||
743 | else | ||
744 | { | ||
745 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) | ||
746 | { | ||
747 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
748 | ret = 1; | ||
749 | goto err; | ||
750 | } | ||
751 | if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; | ||
752 | if (!BN_GF2m_add(s, s, x1)) goto err; | ||
753 | |||
754 | if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; | ||
755 | if (!BN_GF2m_add(x2, x2, s)) goto err; | ||
756 | if (!BN_GF2m_add(x2, x2, &group->a)) goto err; | ||
757 | } | ||
758 | |||
759 | if (!BN_GF2m_add(y2, x1, x2)) goto err; | ||
760 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; | ||
761 | if (!BN_GF2m_add(y2, y2, x2)) goto err; | ||
762 | if (!BN_GF2m_add(y2, y2, y1)) goto err; | ||
763 | |||
764 | if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err; | ||
765 | |||
766 | ret = 1; | ||
767 | |||
768 | err: | ||
769 | BN_CTX_end(ctx); | ||
770 | if (new_ctx != NULL) | ||
771 | BN_CTX_free(new_ctx); | ||
772 | return ret; | ||
773 | } | ||
774 | |||
775 | |||
776 | /* Computes 2 * a and stores the result in r. r could be a. | ||
777 | * Uses algorithm A.10.2 of IEEE P1363. | ||
778 | */ | ||
779 | int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
780 | { | ||
781 | return ec_GF2m_simple_add(group, r, a, a, ctx); | ||
782 | } | ||
783 | |||
784 | |||
785 | int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
786 | { | ||
787 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) | ||
788 | /* point is its own inverse */ | ||
789 | return 1; | ||
790 | |||
791 | if (!EC_POINT_make_affine(group, point, ctx)) return 0; | ||
792 | return BN_GF2m_add(&point->Y, &point->X, &point->Y); | ||
793 | } | ||
794 | |||
795 | |||
796 | /* Indicates whether the given point is the point at infinity. */ | ||
797 | int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
798 | { | ||
799 | return BN_is_zero(&point->Z); | ||
800 | } | ||
801 | |||
802 | |||
803 | /* Determines whether the given EC_POINT is an actual point on the curve defined | ||
804 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: | ||
805 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
806 | */ | ||
807 | int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
808 | { | ||
809 | int ret = -1; | ||
810 | BN_CTX *new_ctx = NULL; | ||
811 | BIGNUM *lh, *y2; | ||
812 | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
813 | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
814 | |||
815 | if (EC_POINT_is_at_infinity(group, point)) | ||
816 | return 1; | ||
817 | |||
818 | field_mul = group->meth->field_mul; | ||
819 | field_sqr = group->meth->field_sqr; | ||
820 | |||
821 | /* only support affine coordinates */ | ||
822 | if (!point->Z_is_one) goto err; | ||
823 | |||
824 | if (ctx == NULL) | ||
825 | { | ||
826 | ctx = new_ctx = BN_CTX_new(); | ||
827 | if (ctx == NULL) | ||
828 | return -1; | ||
829 | } | ||
830 | |||
831 | BN_CTX_start(ctx); | ||
832 | y2 = BN_CTX_get(ctx); | ||
833 | lh = BN_CTX_get(ctx); | ||
834 | if (lh == NULL) goto err; | ||
835 | |||
836 | /* We have a curve defined by a Weierstrass equation | ||
837 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
838 | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 | ||
839 | * <=> ((x + a) * x + y ) * x + b + y^2 = 0 | ||
840 | */ | ||
841 | if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err; | ||
842 | if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; | ||
843 | if (!BN_GF2m_add(lh, lh, &point->Y)) goto err; | ||
844 | if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; | ||
845 | if (!BN_GF2m_add(lh, lh, &group->b)) goto err; | ||
846 | if (!field_sqr(group, y2, &point->Y, ctx)) goto err; | ||
847 | if (!BN_GF2m_add(lh, lh, y2)) goto err; | ||
848 | ret = BN_is_zero(lh); | ||
849 | err: | ||
850 | if (ctx) BN_CTX_end(ctx); | ||
851 | if (new_ctx) BN_CTX_free(new_ctx); | ||
852 | return ret; | ||
853 | } | ||
854 | |||
855 | |||
856 | /* Indicates whether two points are equal. | ||
857 | * Return values: | ||
858 | * -1 error | ||
859 | * 0 equal (in affine coordinates) | ||
860 | * 1 not equal | ||
861 | */ | ||
862 | int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
863 | { | ||
864 | BIGNUM *aX, *aY, *bX, *bY; | ||
865 | BN_CTX *new_ctx = NULL; | ||
866 | int ret = -1; | ||
867 | |||
868 | if (EC_POINT_is_at_infinity(group, a)) | ||
869 | { | ||
870 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; | ||
871 | } | ||
872 | |||
873 | if (a->Z_is_one && b->Z_is_one) | ||
874 | { | ||
875 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
876 | } | ||
877 | |||
878 | if (ctx == NULL) | ||
879 | { | ||
880 | ctx = new_ctx = BN_CTX_new(); | ||
881 | if (ctx == NULL) | ||
882 | return -1; | ||
883 | } | ||
884 | |||
885 | BN_CTX_start(ctx); | ||
886 | aX = BN_CTX_get(ctx); | ||
887 | aY = BN_CTX_get(ctx); | ||
888 | bX = BN_CTX_get(ctx); | ||
889 | bY = BN_CTX_get(ctx); | ||
890 | if (bY == NULL) goto err; | ||
891 | |||
892 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err; | ||
893 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err; | ||
894 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; | ||
895 | |||
896 | err: | ||
897 | if (ctx) BN_CTX_end(ctx); | ||
898 | if (new_ctx) BN_CTX_free(new_ctx); | ||
899 | return ret; | ||
900 | } | ||
901 | |||
902 | |||
903 | /* Forces the given EC_POINT to internally use affine coordinates. */ | ||
904 | int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
905 | { | ||
906 | BN_CTX *new_ctx = NULL; | ||
907 | BIGNUM *x, *y; | ||
908 | int ret = 0; | ||
909 | |||
910 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) | ||
911 | return 1; | ||
912 | |||
913 | if (ctx == NULL) | ||
914 | { | ||
915 | ctx = new_ctx = BN_CTX_new(); | ||
916 | if (ctx == NULL) | ||
917 | return 0; | ||
918 | } | ||
919 | |||
920 | BN_CTX_start(ctx); | ||
921 | x = BN_CTX_get(ctx); | ||
922 | y = BN_CTX_get(ctx); | ||
923 | if (y == NULL) goto err; | ||
924 | |||
925 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
926 | if (!BN_copy(&point->X, x)) goto err; | ||
927 | if (!BN_copy(&point->Y, y)) goto err; | ||
928 | if (!BN_one(&point->Z)) goto err; | ||
929 | |||
930 | ret = 1; | ||
931 | |||
932 | err: | ||
933 | if (ctx) BN_CTX_end(ctx); | ||
934 | if (new_ctx) BN_CTX_free(new_ctx); | ||
935 | return ret; | ||
936 | } | ||
937 | |||
938 | |||
939 | /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ | ||
940 | int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) | ||
941 | { | ||
942 | size_t i; | ||
943 | |||
944 | for (i = 0; i < num; i++) | ||
945 | { | ||
946 | if (!group->meth->make_affine(group, points[i], ctx)) return 0; | ||
947 | } | ||
948 | |||
949 | return 1; | ||
950 | } | ||
951 | |||
952 | |||
953 | /* Wrapper to simple binary polynomial field multiplication implementation. */ | ||
954 | int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
955 | { | ||
956 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); | ||
957 | } | ||
958 | |||
959 | |||
960 | /* Wrapper to simple binary polynomial field squaring implementation. */ | ||
961 | int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
962 | { | ||
963 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); | ||
964 | } | ||
965 | |||
966 | |||
967 | /* Wrapper to simple binary polynomial field division implementation. */ | ||
968 | int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
969 | { | ||
970 | return BN_GF2m_mod_div(r, a, b, &group->field, ctx); | ||
971 | } | ||