diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_smpl.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_smpl.c | 1042 |
1 files changed, 0 insertions, 1042 deletions
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c deleted file mode 100644 index 03deae6674..0000000000 --- a/src/lib/libcrypto/ec/ec2_smpl.c +++ /dev/null | |||
@@ -1,1042 +0,0 @@ | |||
1 | /* crypto/ec/ec2_smpl.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/err.h> | ||
71 | |||
72 | #include "ec_lcl.h" | ||
73 | |||
74 | |||
75 | const EC_METHOD *EC_GF2m_simple_method(void) | ||
76 | { | ||
77 | static const EC_METHOD ret = { | ||
78 | NID_X9_62_characteristic_two_field, | ||
79 | ec_GF2m_simple_group_init, | ||
80 | ec_GF2m_simple_group_finish, | ||
81 | ec_GF2m_simple_group_clear_finish, | ||
82 | ec_GF2m_simple_group_copy, | ||
83 | ec_GF2m_simple_group_set_curve, | ||
84 | ec_GF2m_simple_group_get_curve, | ||
85 | ec_GF2m_simple_group_get_degree, | ||
86 | ec_GF2m_simple_group_check_discriminant, | ||
87 | ec_GF2m_simple_point_init, | ||
88 | ec_GF2m_simple_point_finish, | ||
89 | ec_GF2m_simple_point_clear_finish, | ||
90 | ec_GF2m_simple_point_copy, | ||
91 | ec_GF2m_simple_point_set_to_infinity, | ||
92 | 0 /* set_Jprojective_coordinates_GFp */, | ||
93 | 0 /* get_Jprojective_coordinates_GFp */, | ||
94 | ec_GF2m_simple_point_set_affine_coordinates, | ||
95 | ec_GF2m_simple_point_get_affine_coordinates, | ||
96 | ec_GF2m_simple_set_compressed_coordinates, | ||
97 | ec_GF2m_simple_point2oct, | ||
98 | ec_GF2m_simple_oct2point, | ||
99 | ec_GF2m_simple_add, | ||
100 | ec_GF2m_simple_dbl, | ||
101 | ec_GF2m_simple_invert, | ||
102 | ec_GF2m_simple_is_at_infinity, | ||
103 | ec_GF2m_simple_is_on_curve, | ||
104 | ec_GF2m_simple_cmp, | ||
105 | ec_GF2m_simple_make_affine, | ||
106 | ec_GF2m_simple_points_make_affine, | ||
107 | |||
108 | /* the following three method functions are defined in ec2_mult.c */ | ||
109 | ec_GF2m_simple_mul, | ||
110 | ec_GF2m_precompute_mult, | ||
111 | ec_GF2m_have_precompute_mult, | ||
112 | |||
113 | ec_GF2m_simple_field_mul, | ||
114 | ec_GF2m_simple_field_sqr, | ||
115 | ec_GF2m_simple_field_div, | ||
116 | 0 /* field_encode */, | ||
117 | 0 /* field_decode */, | ||
118 | 0 /* field_set_to_one */ }; | ||
119 | |||
120 | return &ret; | ||
121 | } | ||
122 | |||
123 | |||
124 | /* Initialize a GF(2^m)-based EC_GROUP structure. | ||
125 | * Note that all other members are handled by EC_GROUP_new. | ||
126 | */ | ||
127 | int ec_GF2m_simple_group_init(EC_GROUP *group) | ||
128 | { | ||
129 | BN_init(&group->field); | ||
130 | BN_init(&group->a); | ||
131 | BN_init(&group->b); | ||
132 | return 1; | ||
133 | } | ||
134 | |||
135 | |||
136 | /* Free a GF(2^m)-based EC_GROUP structure. | ||
137 | * Note that all other members are handled by EC_GROUP_free. | ||
138 | */ | ||
139 | void ec_GF2m_simple_group_finish(EC_GROUP *group) | ||
140 | { | ||
141 | BN_free(&group->field); | ||
142 | BN_free(&group->a); | ||
143 | BN_free(&group->b); | ||
144 | } | ||
145 | |||
146 | |||
147 | /* Clear and free a GF(2^m)-based EC_GROUP structure. | ||
148 | * Note that all other members are handled by EC_GROUP_clear_free. | ||
149 | */ | ||
150 | void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) | ||
151 | { | ||
152 | BN_clear_free(&group->field); | ||
153 | BN_clear_free(&group->a); | ||
154 | BN_clear_free(&group->b); | ||
155 | group->poly[0] = 0; | ||
156 | group->poly[1] = 0; | ||
157 | group->poly[2] = 0; | ||
158 | group->poly[3] = 0; | ||
159 | group->poly[4] = 0; | ||
160 | group->poly[5] = -1; | ||
161 | } | ||
162 | |||
163 | |||
164 | /* Copy a GF(2^m)-based EC_GROUP structure. | ||
165 | * Note that all other members are handled by EC_GROUP_copy. | ||
166 | */ | ||
167 | int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | ||
168 | { | ||
169 | int i; | ||
170 | if (!BN_copy(&dest->field, &src->field)) return 0; | ||
171 | if (!BN_copy(&dest->a, &src->a)) return 0; | ||
172 | if (!BN_copy(&dest->b, &src->b)) return 0; | ||
173 | dest->poly[0] = src->poly[0]; | ||
174 | dest->poly[1] = src->poly[1]; | ||
175 | dest->poly[2] = src->poly[2]; | ||
176 | dest->poly[3] = src->poly[3]; | ||
177 | dest->poly[4] = src->poly[4]; | ||
178 | dest->poly[5] = src->poly[5]; | ||
179 | if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; | ||
180 | if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; | ||
181 | for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0; | ||
182 | for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0; | ||
183 | return 1; | ||
184 | } | ||
185 | |||
186 | |||
187 | /* Set the curve parameters of an EC_GROUP structure. */ | ||
188 | int ec_GF2m_simple_group_set_curve(EC_GROUP *group, | ||
189 | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
190 | { | ||
191 | int ret = 0, i; | ||
192 | |||
193 | /* group->field */ | ||
194 | if (!BN_copy(&group->field, p)) goto err; | ||
195 | i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; | ||
196 | if ((i != 5) && (i != 3)) | ||
197 | { | ||
198 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); | ||
199 | goto err; | ||
200 | } | ||
201 | |||
202 | /* group->a */ | ||
203 | if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err; | ||
204 | if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; | ||
205 | for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0; | ||
206 | |||
207 | /* group->b */ | ||
208 | if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err; | ||
209 | if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; | ||
210 | for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0; | ||
211 | |||
212 | ret = 1; | ||
213 | err: | ||
214 | return ret; | ||
215 | } | ||
216 | |||
217 | |||
218 | /* Get the curve parameters of an EC_GROUP structure. | ||
219 | * If p, a, or b are NULL then there values will not be set but the method will return with success. | ||
220 | */ | ||
221 | int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
222 | { | ||
223 | int ret = 0; | ||
224 | |||
225 | if (p != NULL) | ||
226 | { | ||
227 | if (!BN_copy(p, &group->field)) return 0; | ||
228 | } | ||
229 | |||
230 | if (a != NULL) | ||
231 | { | ||
232 | if (!BN_copy(a, &group->a)) goto err; | ||
233 | } | ||
234 | |||
235 | if (b != NULL) | ||
236 | { | ||
237 | if (!BN_copy(b, &group->b)) goto err; | ||
238 | } | ||
239 | |||
240 | ret = 1; | ||
241 | |||
242 | err: | ||
243 | return ret; | ||
244 | } | ||
245 | |||
246 | |||
247 | /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ | ||
248 | int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) | ||
249 | { | ||
250 | return BN_num_bits(&group->field)-1; | ||
251 | } | ||
252 | |||
253 | |||
254 | /* Checks the discriminant of the curve. | ||
255 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
256 | */ | ||
257 | int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) | ||
258 | { | ||
259 | int ret = 0; | ||
260 | BIGNUM *b; | ||
261 | BN_CTX *new_ctx = NULL; | ||
262 | |||
263 | if (ctx == NULL) | ||
264 | { | ||
265 | ctx = new_ctx = BN_CTX_new(); | ||
266 | if (ctx == NULL) | ||
267 | { | ||
268 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
269 | goto err; | ||
270 | } | ||
271 | } | ||
272 | BN_CTX_start(ctx); | ||
273 | b = BN_CTX_get(ctx); | ||
274 | if (b == NULL) goto err; | ||
275 | |||
276 | if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err; | ||
277 | |||
278 | /* check the discriminant: | ||
279 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
280 | */ | ||
281 | if (BN_is_zero(b)) goto err; | ||
282 | |||
283 | ret = 1; | ||
284 | |||
285 | err: | ||
286 | if (ctx != NULL) | ||
287 | BN_CTX_end(ctx); | ||
288 | if (new_ctx != NULL) | ||
289 | BN_CTX_free(new_ctx); | ||
290 | return ret; | ||
291 | } | ||
292 | |||
293 | |||
294 | /* Initializes an EC_POINT. */ | ||
295 | int ec_GF2m_simple_point_init(EC_POINT *point) | ||
296 | { | ||
297 | BN_init(&point->X); | ||
298 | BN_init(&point->Y); | ||
299 | BN_init(&point->Z); | ||
300 | return 1; | ||
301 | } | ||
302 | |||
303 | |||
304 | /* Frees an EC_POINT. */ | ||
305 | void ec_GF2m_simple_point_finish(EC_POINT *point) | ||
306 | { | ||
307 | BN_free(&point->X); | ||
308 | BN_free(&point->Y); | ||
309 | BN_free(&point->Z); | ||
310 | } | ||
311 | |||
312 | |||
313 | /* Clears and frees an EC_POINT. */ | ||
314 | void ec_GF2m_simple_point_clear_finish(EC_POINT *point) | ||
315 | { | ||
316 | BN_clear_free(&point->X); | ||
317 | BN_clear_free(&point->Y); | ||
318 | BN_clear_free(&point->Z); | ||
319 | point->Z_is_one = 0; | ||
320 | } | ||
321 | |||
322 | |||
323 | /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ | ||
324 | int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | ||
325 | { | ||
326 | if (!BN_copy(&dest->X, &src->X)) return 0; | ||
327 | if (!BN_copy(&dest->Y, &src->Y)) return 0; | ||
328 | if (!BN_copy(&dest->Z, &src->Z)) return 0; | ||
329 | dest->Z_is_one = src->Z_is_one; | ||
330 | |||
331 | return 1; | ||
332 | } | ||
333 | |||
334 | |||
335 | /* Set an EC_POINT to the point at infinity. | ||
336 | * A point at infinity is represented by having Z=0. | ||
337 | */ | ||
338 | int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
339 | { | ||
340 | point->Z_is_one = 0; | ||
341 | BN_zero(&point->Z); | ||
342 | return 1; | ||
343 | } | ||
344 | |||
345 | |||
346 | /* Set the coordinates of an EC_POINT using affine coordinates. | ||
347 | * Note that the simple implementation only uses affine coordinates. | ||
348 | */ | ||
349 | int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
350 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
351 | { | ||
352 | int ret = 0; | ||
353 | if (x == NULL || y == NULL) | ||
354 | { | ||
355 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
356 | return 0; | ||
357 | } | ||
358 | |||
359 | if (!BN_copy(&point->X, x)) goto err; | ||
360 | BN_set_negative(&point->X, 0); | ||
361 | if (!BN_copy(&point->Y, y)) goto err; | ||
362 | BN_set_negative(&point->Y, 0); | ||
363 | if (!BN_copy(&point->Z, BN_value_one())) goto err; | ||
364 | BN_set_negative(&point->Z, 0); | ||
365 | point->Z_is_one = 1; | ||
366 | ret = 1; | ||
367 | |||
368 | err: | ||
369 | return ret; | ||
370 | } | ||
371 | |||
372 | |||
373 | /* Gets the affine coordinates of an EC_POINT. | ||
374 | * Note that the simple implementation only uses affine coordinates. | ||
375 | */ | ||
376 | int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | ||
377 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
378 | { | ||
379 | int ret = 0; | ||
380 | |||
381 | if (EC_POINT_is_at_infinity(group, point)) | ||
382 | { | ||
383 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
384 | return 0; | ||
385 | } | ||
386 | |||
387 | if (BN_cmp(&point->Z, BN_value_one())) | ||
388 | { | ||
389 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
390 | return 0; | ||
391 | } | ||
392 | if (x != NULL) | ||
393 | { | ||
394 | if (!BN_copy(x, &point->X)) goto err; | ||
395 | BN_set_negative(x, 0); | ||
396 | } | ||
397 | if (y != NULL) | ||
398 | { | ||
399 | if (!BN_copy(y, &point->Y)) goto err; | ||
400 | BN_set_negative(y, 0); | ||
401 | } | ||
402 | ret = 1; | ||
403 | |||
404 | err: | ||
405 | return ret; | ||
406 | } | ||
407 | |||
408 | |||
409 | /* Calculates and sets the affine coordinates of an EC_POINT from the given | ||
410 | * compressed coordinates. Uses algorithm 2.3.4 of SEC 1. | ||
411 | * Note that the simple implementation only uses affine coordinates. | ||
412 | * | ||
413 | * The method is from the following publication: | ||
414 | * | ||
415 | * Harper, Menezes, Vanstone: | ||
416 | * "Public-Key Cryptosystems with Very Small Key Lengths", | ||
417 | * EUROCRYPT '92, Springer-Verlag LNCS 658, | ||
418 | * published February 1993 | ||
419 | * | ||
420 | * US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe | ||
421 | * the same method, but claim no priority date earlier than July 29, 1994 | ||
422 | * (and additionally fail to cite the EUROCRYPT '92 publication as prior art). | ||
423 | */ | ||
424 | int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
425 | const BIGNUM *x_, int y_bit, BN_CTX *ctx) | ||
426 | { | ||
427 | BN_CTX *new_ctx = NULL; | ||
428 | BIGNUM *tmp, *x, *y, *z; | ||
429 | int ret = 0, z0; | ||
430 | |||
431 | /* clear error queue */ | ||
432 | ERR_clear_error(); | ||
433 | |||
434 | if (ctx == NULL) | ||
435 | { | ||
436 | ctx = new_ctx = BN_CTX_new(); | ||
437 | if (ctx == NULL) | ||
438 | return 0; | ||
439 | } | ||
440 | |||
441 | y_bit = (y_bit != 0) ? 1 : 0; | ||
442 | |||
443 | BN_CTX_start(ctx); | ||
444 | tmp = BN_CTX_get(ctx); | ||
445 | x = BN_CTX_get(ctx); | ||
446 | y = BN_CTX_get(ctx); | ||
447 | z = BN_CTX_get(ctx); | ||
448 | if (z == NULL) goto err; | ||
449 | |||
450 | if (!BN_GF2m_mod_arr(x, x_, group->poly)) goto err; | ||
451 | if (BN_is_zero(x)) | ||
452 | { | ||
453 | if (!BN_GF2m_mod_sqrt_arr(y, &group->b, group->poly, ctx)) goto err; | ||
454 | } | ||
455 | else | ||
456 | { | ||
457 | if (!group->meth->field_sqr(group, tmp, x, ctx)) goto err; | ||
458 | if (!group->meth->field_div(group, tmp, &group->b, tmp, ctx)) goto err; | ||
459 | if (!BN_GF2m_add(tmp, &group->a, tmp)) goto err; | ||
460 | if (!BN_GF2m_add(tmp, x, tmp)) goto err; | ||
461 | if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) | ||
462 | { | ||
463 | unsigned long err = ERR_peek_last_error(); | ||
464 | |||
465 | if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NO_SOLUTION) | ||
466 | { | ||
467 | ERR_clear_error(); | ||
468 | ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); | ||
469 | } | ||
470 | else | ||
471 | ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB); | ||
472 | goto err; | ||
473 | } | ||
474 | z0 = (BN_is_odd(z)) ? 1 : 0; | ||
475 | if (!group->meth->field_mul(group, y, x, z, ctx)) goto err; | ||
476 | if (z0 != y_bit) | ||
477 | { | ||
478 | if (!BN_GF2m_add(y, y, x)) goto err; | ||
479 | } | ||
480 | } | ||
481 | |||
482 | if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
483 | |||
484 | ret = 1; | ||
485 | |||
486 | err: | ||
487 | BN_CTX_end(ctx); | ||
488 | if (new_ctx != NULL) | ||
489 | BN_CTX_free(new_ctx); | ||
490 | return ret; | ||
491 | } | ||
492 | |||
493 | |||
494 | /* Converts an EC_POINT to an octet string. | ||
495 | * If buf is NULL, the encoded length will be returned. | ||
496 | * If the length len of buf is smaller than required an error will be returned. | ||
497 | */ | ||
498 | size_t ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, | ||
499 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
500 | { | ||
501 | size_t ret; | ||
502 | BN_CTX *new_ctx = NULL; | ||
503 | int used_ctx = 0; | ||
504 | BIGNUM *x, *y, *yxi; | ||
505 | size_t field_len, i, skip; | ||
506 | |||
507 | if ((form != POINT_CONVERSION_COMPRESSED) | ||
508 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
509 | && (form != POINT_CONVERSION_HYBRID)) | ||
510 | { | ||
511 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); | ||
512 | goto err; | ||
513 | } | ||
514 | |||
515 | if (EC_POINT_is_at_infinity(group, point)) | ||
516 | { | ||
517 | /* encodes to a single 0 octet */ | ||
518 | if (buf != NULL) | ||
519 | { | ||
520 | if (len < 1) | ||
521 | { | ||
522 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
523 | return 0; | ||
524 | } | ||
525 | buf[0] = 0; | ||
526 | } | ||
527 | return 1; | ||
528 | } | ||
529 | |||
530 | |||
531 | /* ret := required output buffer length */ | ||
532 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
533 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
534 | |||
535 | /* if 'buf' is NULL, just return required length */ | ||
536 | if (buf != NULL) | ||
537 | { | ||
538 | if (len < ret) | ||
539 | { | ||
540 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
541 | goto err; | ||
542 | } | ||
543 | |||
544 | if (ctx == NULL) | ||
545 | { | ||
546 | ctx = new_ctx = BN_CTX_new(); | ||
547 | if (ctx == NULL) | ||
548 | return 0; | ||
549 | } | ||
550 | |||
551 | BN_CTX_start(ctx); | ||
552 | used_ctx = 1; | ||
553 | x = BN_CTX_get(ctx); | ||
554 | y = BN_CTX_get(ctx); | ||
555 | yxi = BN_CTX_get(ctx); | ||
556 | if (yxi == NULL) goto err; | ||
557 | |||
558 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
559 | |||
560 | buf[0] = form; | ||
561 | if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) | ||
562 | { | ||
563 | if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; | ||
564 | if (BN_is_odd(yxi)) buf[0]++; | ||
565 | } | ||
566 | |||
567 | i = 1; | ||
568 | |||
569 | skip = field_len - BN_num_bytes(x); | ||
570 | if (skip > field_len) | ||
571 | { | ||
572 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
573 | goto err; | ||
574 | } | ||
575 | while (skip > 0) | ||
576 | { | ||
577 | buf[i++] = 0; | ||
578 | skip--; | ||
579 | } | ||
580 | skip = BN_bn2bin(x, buf + i); | ||
581 | i += skip; | ||
582 | if (i != 1 + field_len) | ||
583 | { | ||
584 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
585 | goto err; | ||
586 | } | ||
587 | |||
588 | if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) | ||
589 | { | ||
590 | skip = field_len - BN_num_bytes(y); | ||
591 | if (skip > field_len) | ||
592 | { | ||
593 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
594 | goto err; | ||
595 | } | ||
596 | while (skip > 0) | ||
597 | { | ||
598 | buf[i++] = 0; | ||
599 | skip--; | ||
600 | } | ||
601 | skip = BN_bn2bin(y, buf + i); | ||
602 | i += skip; | ||
603 | } | ||
604 | |||
605 | if (i != ret) | ||
606 | { | ||
607 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
608 | goto err; | ||
609 | } | ||
610 | } | ||
611 | |||
612 | if (used_ctx) | ||
613 | BN_CTX_end(ctx); | ||
614 | if (new_ctx != NULL) | ||
615 | BN_CTX_free(new_ctx); | ||
616 | return ret; | ||
617 | |||
618 | err: | ||
619 | if (used_ctx) | ||
620 | BN_CTX_end(ctx); | ||
621 | if (new_ctx != NULL) | ||
622 | BN_CTX_free(new_ctx); | ||
623 | return 0; | ||
624 | } | ||
625 | |||
626 | |||
627 | /* Converts an octet string representation to an EC_POINT. | ||
628 | * Note that the simple implementation only uses affine coordinates. | ||
629 | */ | ||
630 | int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
631 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
632 | { | ||
633 | point_conversion_form_t form; | ||
634 | int y_bit; | ||
635 | BN_CTX *new_ctx = NULL; | ||
636 | BIGNUM *x, *y, *yxi; | ||
637 | size_t field_len, enc_len; | ||
638 | int ret = 0; | ||
639 | |||
640 | if (len == 0) | ||
641 | { | ||
642 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); | ||
643 | return 0; | ||
644 | } | ||
645 | form = buf[0]; | ||
646 | y_bit = form & 1; | ||
647 | form = form & ~1U; | ||
648 | if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) | ||
649 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
650 | && (form != POINT_CONVERSION_HYBRID)) | ||
651 | { | ||
652 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
653 | return 0; | ||
654 | } | ||
655 | if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) | ||
656 | { | ||
657 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
658 | return 0; | ||
659 | } | ||
660 | |||
661 | if (form == 0) | ||
662 | { | ||
663 | if (len != 1) | ||
664 | { | ||
665 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
666 | return 0; | ||
667 | } | ||
668 | |||
669 | return EC_POINT_set_to_infinity(group, point); | ||
670 | } | ||
671 | |||
672 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
673 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
674 | |||
675 | if (len != enc_len) | ||
676 | { | ||
677 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
678 | return 0; | ||
679 | } | ||
680 | |||
681 | if (ctx == NULL) | ||
682 | { | ||
683 | ctx = new_ctx = BN_CTX_new(); | ||
684 | if (ctx == NULL) | ||
685 | return 0; | ||
686 | } | ||
687 | |||
688 | BN_CTX_start(ctx); | ||
689 | x = BN_CTX_get(ctx); | ||
690 | y = BN_CTX_get(ctx); | ||
691 | yxi = BN_CTX_get(ctx); | ||
692 | if (yxi == NULL) goto err; | ||
693 | |||
694 | if (!BN_bin2bn(buf + 1, field_len, x)) goto err; | ||
695 | if (BN_ucmp(x, &group->field) >= 0) | ||
696 | { | ||
697 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
698 | goto err; | ||
699 | } | ||
700 | |||
701 | if (form == POINT_CONVERSION_COMPRESSED) | ||
702 | { | ||
703 | if (!EC_POINT_set_compressed_coordinates_GF2m(group, point, x, y_bit, ctx)) goto err; | ||
704 | } | ||
705 | else | ||
706 | { | ||
707 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; | ||
708 | if (BN_ucmp(y, &group->field) >= 0) | ||
709 | { | ||
710 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
711 | goto err; | ||
712 | } | ||
713 | if (form == POINT_CONVERSION_HYBRID) | ||
714 | { | ||
715 | if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; | ||
716 | if (y_bit != BN_is_odd(yxi)) | ||
717 | { | ||
718 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
719 | goto err; | ||
720 | } | ||
721 | } | ||
722 | |||
723 | if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
724 | } | ||
725 | |||
726 | if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */ | ||
727 | { | ||
728 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); | ||
729 | goto err; | ||
730 | } | ||
731 | |||
732 | ret = 1; | ||
733 | |||
734 | err: | ||
735 | BN_CTX_end(ctx); | ||
736 | if (new_ctx != NULL) | ||
737 | BN_CTX_free(new_ctx); | ||
738 | return ret; | ||
739 | } | ||
740 | |||
741 | |||
742 | /* Computes a + b and stores the result in r. r could be a or b, a could be b. | ||
743 | * Uses algorithm A.10.2 of IEEE P1363. | ||
744 | */ | ||
745 | int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
746 | { | ||
747 | BN_CTX *new_ctx = NULL; | ||
748 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; | ||
749 | int ret = 0; | ||
750 | |||
751 | if (EC_POINT_is_at_infinity(group, a)) | ||
752 | { | ||
753 | if (!EC_POINT_copy(r, b)) return 0; | ||
754 | return 1; | ||
755 | } | ||
756 | |||
757 | if (EC_POINT_is_at_infinity(group, b)) | ||
758 | { | ||
759 | if (!EC_POINT_copy(r, a)) return 0; | ||
760 | return 1; | ||
761 | } | ||
762 | |||
763 | if (ctx == NULL) | ||
764 | { | ||
765 | ctx = new_ctx = BN_CTX_new(); | ||
766 | if (ctx == NULL) | ||
767 | return 0; | ||
768 | } | ||
769 | |||
770 | BN_CTX_start(ctx); | ||
771 | x0 = BN_CTX_get(ctx); | ||
772 | y0 = BN_CTX_get(ctx); | ||
773 | x1 = BN_CTX_get(ctx); | ||
774 | y1 = BN_CTX_get(ctx); | ||
775 | x2 = BN_CTX_get(ctx); | ||
776 | y2 = BN_CTX_get(ctx); | ||
777 | s = BN_CTX_get(ctx); | ||
778 | t = BN_CTX_get(ctx); | ||
779 | if (t == NULL) goto err; | ||
780 | |||
781 | if (a->Z_is_one) | ||
782 | { | ||
783 | if (!BN_copy(x0, &a->X)) goto err; | ||
784 | if (!BN_copy(y0, &a->Y)) goto err; | ||
785 | } | ||
786 | else | ||
787 | { | ||
788 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err; | ||
789 | } | ||
790 | if (b->Z_is_one) | ||
791 | { | ||
792 | if (!BN_copy(x1, &b->X)) goto err; | ||
793 | if (!BN_copy(y1, &b->Y)) goto err; | ||
794 | } | ||
795 | else | ||
796 | { | ||
797 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err; | ||
798 | } | ||
799 | |||
800 | |||
801 | if (BN_GF2m_cmp(x0, x1)) | ||
802 | { | ||
803 | if (!BN_GF2m_add(t, x0, x1)) goto err; | ||
804 | if (!BN_GF2m_add(s, y0, y1)) goto err; | ||
805 | if (!group->meth->field_div(group, s, s, t, ctx)) goto err; | ||
806 | if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; | ||
807 | if (!BN_GF2m_add(x2, x2, &group->a)) goto err; | ||
808 | if (!BN_GF2m_add(x2, x2, s)) goto err; | ||
809 | if (!BN_GF2m_add(x2, x2, t)) goto err; | ||
810 | } | ||
811 | else | ||
812 | { | ||
813 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) | ||
814 | { | ||
815 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
816 | ret = 1; | ||
817 | goto err; | ||
818 | } | ||
819 | if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; | ||
820 | if (!BN_GF2m_add(s, s, x1)) goto err; | ||
821 | |||
822 | if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; | ||
823 | if (!BN_GF2m_add(x2, x2, s)) goto err; | ||
824 | if (!BN_GF2m_add(x2, x2, &group->a)) goto err; | ||
825 | } | ||
826 | |||
827 | if (!BN_GF2m_add(y2, x1, x2)) goto err; | ||
828 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; | ||
829 | if (!BN_GF2m_add(y2, y2, x2)) goto err; | ||
830 | if (!BN_GF2m_add(y2, y2, y1)) goto err; | ||
831 | |||
832 | if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err; | ||
833 | |||
834 | ret = 1; | ||
835 | |||
836 | err: | ||
837 | BN_CTX_end(ctx); | ||
838 | if (new_ctx != NULL) | ||
839 | BN_CTX_free(new_ctx); | ||
840 | return ret; | ||
841 | } | ||
842 | |||
843 | |||
844 | /* Computes 2 * a and stores the result in r. r could be a. | ||
845 | * Uses algorithm A.10.2 of IEEE P1363. | ||
846 | */ | ||
847 | int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
848 | { | ||
849 | return ec_GF2m_simple_add(group, r, a, a, ctx); | ||
850 | } | ||
851 | |||
852 | |||
853 | int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
854 | { | ||
855 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) | ||
856 | /* point is its own inverse */ | ||
857 | return 1; | ||
858 | |||
859 | if (!EC_POINT_make_affine(group, point, ctx)) return 0; | ||
860 | return BN_GF2m_add(&point->Y, &point->X, &point->Y); | ||
861 | } | ||
862 | |||
863 | |||
864 | /* Indicates whether the given point is the point at infinity. */ | ||
865 | int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
866 | { | ||
867 | return BN_is_zero(&point->Z); | ||
868 | } | ||
869 | |||
870 | |||
871 | /* Determines whether the given EC_POINT is an actual point on the curve defined | ||
872 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: | ||
873 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
874 | */ | ||
875 | int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
876 | { | ||
877 | int ret = -1; | ||
878 | BN_CTX *new_ctx = NULL; | ||
879 | BIGNUM *lh, *y2; | ||
880 | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
881 | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
882 | |||
883 | if (EC_POINT_is_at_infinity(group, point)) | ||
884 | return 1; | ||
885 | |||
886 | field_mul = group->meth->field_mul; | ||
887 | field_sqr = group->meth->field_sqr; | ||
888 | |||
889 | /* only support affine coordinates */ | ||
890 | if (!point->Z_is_one) return -1; | ||
891 | |||
892 | if (ctx == NULL) | ||
893 | { | ||
894 | ctx = new_ctx = BN_CTX_new(); | ||
895 | if (ctx == NULL) | ||
896 | return -1; | ||
897 | } | ||
898 | |||
899 | BN_CTX_start(ctx); | ||
900 | y2 = BN_CTX_get(ctx); | ||
901 | lh = BN_CTX_get(ctx); | ||
902 | if (lh == NULL) goto err; | ||
903 | |||
904 | /* We have a curve defined by a Weierstrass equation | ||
905 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
906 | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 | ||
907 | * <=> ((x + a) * x + y ) * x + b + y^2 = 0 | ||
908 | */ | ||
909 | if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err; | ||
910 | if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; | ||
911 | if (!BN_GF2m_add(lh, lh, &point->Y)) goto err; | ||
912 | if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; | ||
913 | if (!BN_GF2m_add(lh, lh, &group->b)) goto err; | ||
914 | if (!field_sqr(group, y2, &point->Y, ctx)) goto err; | ||
915 | if (!BN_GF2m_add(lh, lh, y2)) goto err; | ||
916 | ret = BN_is_zero(lh); | ||
917 | err: | ||
918 | if (ctx) BN_CTX_end(ctx); | ||
919 | if (new_ctx) BN_CTX_free(new_ctx); | ||
920 | return ret; | ||
921 | } | ||
922 | |||
923 | |||
924 | /* Indicates whether two points are equal. | ||
925 | * Return values: | ||
926 | * -1 error | ||
927 | * 0 equal (in affine coordinates) | ||
928 | * 1 not equal | ||
929 | */ | ||
930 | int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
931 | { | ||
932 | BIGNUM *aX, *aY, *bX, *bY; | ||
933 | BN_CTX *new_ctx = NULL; | ||
934 | int ret = -1; | ||
935 | |||
936 | if (EC_POINT_is_at_infinity(group, a)) | ||
937 | { | ||
938 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; | ||
939 | } | ||
940 | |||
941 | if (EC_POINT_is_at_infinity(group, b)) | ||
942 | return 1; | ||
943 | |||
944 | if (a->Z_is_one && b->Z_is_one) | ||
945 | { | ||
946 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
947 | } | ||
948 | |||
949 | if (ctx == NULL) | ||
950 | { | ||
951 | ctx = new_ctx = BN_CTX_new(); | ||
952 | if (ctx == NULL) | ||
953 | return -1; | ||
954 | } | ||
955 | |||
956 | BN_CTX_start(ctx); | ||
957 | aX = BN_CTX_get(ctx); | ||
958 | aY = BN_CTX_get(ctx); | ||
959 | bX = BN_CTX_get(ctx); | ||
960 | bY = BN_CTX_get(ctx); | ||
961 | if (bY == NULL) goto err; | ||
962 | |||
963 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err; | ||
964 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err; | ||
965 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; | ||
966 | |||
967 | err: | ||
968 | if (ctx) BN_CTX_end(ctx); | ||
969 | if (new_ctx) BN_CTX_free(new_ctx); | ||
970 | return ret; | ||
971 | } | ||
972 | |||
973 | |||
974 | /* Forces the given EC_POINT to internally use affine coordinates. */ | ||
975 | int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
976 | { | ||
977 | BN_CTX *new_ctx = NULL; | ||
978 | BIGNUM *x, *y; | ||
979 | int ret = 0; | ||
980 | |||
981 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) | ||
982 | return 1; | ||
983 | |||
984 | if (ctx == NULL) | ||
985 | { | ||
986 | ctx = new_ctx = BN_CTX_new(); | ||
987 | if (ctx == NULL) | ||
988 | return 0; | ||
989 | } | ||
990 | |||
991 | BN_CTX_start(ctx); | ||
992 | x = BN_CTX_get(ctx); | ||
993 | y = BN_CTX_get(ctx); | ||
994 | if (y == NULL) goto err; | ||
995 | |||
996 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
997 | if (!BN_copy(&point->X, x)) goto err; | ||
998 | if (!BN_copy(&point->Y, y)) goto err; | ||
999 | if (!BN_one(&point->Z)) goto err; | ||
1000 | |||
1001 | ret = 1; | ||
1002 | |||
1003 | err: | ||
1004 | if (ctx) BN_CTX_end(ctx); | ||
1005 | if (new_ctx) BN_CTX_free(new_ctx); | ||
1006 | return ret; | ||
1007 | } | ||
1008 | |||
1009 | |||
1010 | /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ | ||
1011 | int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) | ||
1012 | { | ||
1013 | size_t i; | ||
1014 | |||
1015 | for (i = 0; i < num; i++) | ||
1016 | { | ||
1017 | if (!group->meth->make_affine(group, points[i], ctx)) return 0; | ||
1018 | } | ||
1019 | |||
1020 | return 1; | ||
1021 | } | ||
1022 | |||
1023 | |||
1024 | /* Wrapper to simple binary polynomial field multiplication implementation. */ | ||
1025 | int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
1026 | { | ||
1027 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); | ||
1028 | } | ||
1029 | |||
1030 | |||
1031 | /* Wrapper to simple binary polynomial field squaring implementation. */ | ||
1032 | int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
1033 | { | ||
1034 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); | ||
1035 | } | ||
1036 | |||
1037 | |||
1038 | /* Wrapper to simple binary polynomial field division implementation. */ | ||
1039 | int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
1040 | { | ||
1041 | return BN_GF2m_mod_div(r, a, b, &group->field, ctx); | ||
1042 | } | ||