diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_smpl.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_smpl.c | 719 |
1 files changed, 0 insertions, 719 deletions
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c deleted file mode 100644 index e0e59c7d82..0000000000 --- a/src/lib/libcrypto/ec/ec2_smpl.c +++ /dev/null | |||
@@ -1,719 +0,0 @@ | |||
1 | /* crypto/ec/ec2_smpl.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/err.h> | ||
71 | |||
72 | #include "ec_lcl.h" | ||
73 | |||
74 | #ifndef OPENSSL_NO_EC2M | ||
75 | |||
76 | #ifdef OPENSSL_FIPS | ||
77 | #include <openssl/fips.h> | ||
78 | #endif | ||
79 | |||
80 | |||
81 | const EC_METHOD *EC_GF2m_simple_method(void) | ||
82 | { | ||
83 | #ifdef OPENSSL_FIPS | ||
84 | return fips_ec_gf2m_simple_method(); | ||
85 | #else | ||
86 | static const EC_METHOD ret = { | ||
87 | EC_FLAGS_DEFAULT_OCT, | ||
88 | NID_X9_62_characteristic_two_field, | ||
89 | ec_GF2m_simple_group_init, | ||
90 | ec_GF2m_simple_group_finish, | ||
91 | ec_GF2m_simple_group_clear_finish, | ||
92 | ec_GF2m_simple_group_copy, | ||
93 | ec_GF2m_simple_group_set_curve, | ||
94 | ec_GF2m_simple_group_get_curve, | ||
95 | ec_GF2m_simple_group_get_degree, | ||
96 | ec_GF2m_simple_group_check_discriminant, | ||
97 | ec_GF2m_simple_point_init, | ||
98 | ec_GF2m_simple_point_finish, | ||
99 | ec_GF2m_simple_point_clear_finish, | ||
100 | ec_GF2m_simple_point_copy, | ||
101 | ec_GF2m_simple_point_set_to_infinity, | ||
102 | 0 /* set_Jprojective_coordinates_GFp */, | ||
103 | 0 /* get_Jprojective_coordinates_GFp */, | ||
104 | ec_GF2m_simple_point_set_affine_coordinates, | ||
105 | ec_GF2m_simple_point_get_affine_coordinates, | ||
106 | 0,0,0, | ||
107 | ec_GF2m_simple_add, | ||
108 | ec_GF2m_simple_dbl, | ||
109 | ec_GF2m_simple_invert, | ||
110 | ec_GF2m_simple_is_at_infinity, | ||
111 | ec_GF2m_simple_is_on_curve, | ||
112 | ec_GF2m_simple_cmp, | ||
113 | ec_GF2m_simple_make_affine, | ||
114 | ec_GF2m_simple_points_make_affine, | ||
115 | |||
116 | /* the following three method functions are defined in ec2_mult.c */ | ||
117 | ec_GF2m_simple_mul, | ||
118 | ec_GF2m_precompute_mult, | ||
119 | ec_GF2m_have_precompute_mult, | ||
120 | |||
121 | ec_GF2m_simple_field_mul, | ||
122 | ec_GF2m_simple_field_sqr, | ||
123 | ec_GF2m_simple_field_div, | ||
124 | 0 /* field_encode */, | ||
125 | 0 /* field_decode */, | ||
126 | 0 /* field_set_to_one */ }; | ||
127 | |||
128 | return &ret; | ||
129 | #endif | ||
130 | } | ||
131 | |||
132 | |||
133 | /* Initialize a GF(2^m)-based EC_GROUP structure. | ||
134 | * Note that all other members are handled by EC_GROUP_new. | ||
135 | */ | ||
136 | int ec_GF2m_simple_group_init(EC_GROUP *group) | ||
137 | { | ||
138 | BN_init(&group->field); | ||
139 | BN_init(&group->a); | ||
140 | BN_init(&group->b); | ||
141 | return 1; | ||
142 | } | ||
143 | |||
144 | |||
145 | /* Free a GF(2^m)-based EC_GROUP structure. | ||
146 | * Note that all other members are handled by EC_GROUP_free. | ||
147 | */ | ||
148 | void ec_GF2m_simple_group_finish(EC_GROUP *group) | ||
149 | { | ||
150 | BN_free(&group->field); | ||
151 | BN_free(&group->a); | ||
152 | BN_free(&group->b); | ||
153 | } | ||
154 | |||
155 | |||
156 | /* Clear and free a GF(2^m)-based EC_GROUP structure. | ||
157 | * Note that all other members are handled by EC_GROUP_clear_free. | ||
158 | */ | ||
159 | void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) | ||
160 | { | ||
161 | BN_clear_free(&group->field); | ||
162 | BN_clear_free(&group->a); | ||
163 | BN_clear_free(&group->b); | ||
164 | group->poly[0] = 0; | ||
165 | group->poly[1] = 0; | ||
166 | group->poly[2] = 0; | ||
167 | group->poly[3] = 0; | ||
168 | group->poly[4] = 0; | ||
169 | group->poly[5] = -1; | ||
170 | } | ||
171 | |||
172 | |||
173 | /* Copy a GF(2^m)-based EC_GROUP structure. | ||
174 | * Note that all other members are handled by EC_GROUP_copy. | ||
175 | */ | ||
176 | int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | ||
177 | { | ||
178 | int i; | ||
179 | if (!BN_copy(&dest->field, &src->field)) return 0; | ||
180 | if (!BN_copy(&dest->a, &src->a)) return 0; | ||
181 | if (!BN_copy(&dest->b, &src->b)) return 0; | ||
182 | dest->poly[0] = src->poly[0]; | ||
183 | dest->poly[1] = src->poly[1]; | ||
184 | dest->poly[2] = src->poly[2]; | ||
185 | dest->poly[3] = src->poly[3]; | ||
186 | dest->poly[4] = src->poly[4]; | ||
187 | dest->poly[5] = src->poly[5]; | ||
188 | if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; | ||
189 | if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; | ||
190 | for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0; | ||
191 | for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0; | ||
192 | return 1; | ||
193 | } | ||
194 | |||
195 | |||
196 | /* Set the curve parameters of an EC_GROUP structure. */ | ||
197 | int ec_GF2m_simple_group_set_curve(EC_GROUP *group, | ||
198 | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
199 | { | ||
200 | int ret = 0, i; | ||
201 | |||
202 | /* group->field */ | ||
203 | if (!BN_copy(&group->field, p)) goto err; | ||
204 | i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; | ||
205 | if ((i != 5) && (i != 3)) | ||
206 | { | ||
207 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); | ||
208 | goto err; | ||
209 | } | ||
210 | |||
211 | /* group->a */ | ||
212 | if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err; | ||
213 | if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; | ||
214 | for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0; | ||
215 | |||
216 | /* group->b */ | ||
217 | if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err; | ||
218 | if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; | ||
219 | for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0; | ||
220 | |||
221 | ret = 1; | ||
222 | err: | ||
223 | return ret; | ||
224 | } | ||
225 | |||
226 | |||
227 | /* Get the curve parameters of an EC_GROUP structure. | ||
228 | * If p, a, or b are NULL then there values will not be set but the method will return with success. | ||
229 | */ | ||
230 | int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
231 | { | ||
232 | int ret = 0; | ||
233 | |||
234 | if (p != NULL) | ||
235 | { | ||
236 | if (!BN_copy(p, &group->field)) return 0; | ||
237 | } | ||
238 | |||
239 | if (a != NULL) | ||
240 | { | ||
241 | if (!BN_copy(a, &group->a)) goto err; | ||
242 | } | ||
243 | |||
244 | if (b != NULL) | ||
245 | { | ||
246 | if (!BN_copy(b, &group->b)) goto err; | ||
247 | } | ||
248 | |||
249 | ret = 1; | ||
250 | |||
251 | err: | ||
252 | return ret; | ||
253 | } | ||
254 | |||
255 | |||
256 | /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ | ||
257 | int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) | ||
258 | { | ||
259 | return BN_num_bits(&group->field)-1; | ||
260 | } | ||
261 | |||
262 | |||
263 | /* Checks the discriminant of the curve. | ||
264 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
265 | */ | ||
266 | int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) | ||
267 | { | ||
268 | int ret = 0; | ||
269 | BIGNUM *b; | ||
270 | BN_CTX *new_ctx = NULL; | ||
271 | |||
272 | if (ctx == NULL) | ||
273 | { | ||
274 | ctx = new_ctx = BN_CTX_new(); | ||
275 | if (ctx == NULL) | ||
276 | { | ||
277 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
278 | goto err; | ||
279 | } | ||
280 | } | ||
281 | BN_CTX_start(ctx); | ||
282 | b = BN_CTX_get(ctx); | ||
283 | if (b == NULL) goto err; | ||
284 | |||
285 | if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err; | ||
286 | |||
287 | /* check the discriminant: | ||
288 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
289 | */ | ||
290 | if (BN_is_zero(b)) goto err; | ||
291 | |||
292 | ret = 1; | ||
293 | |||
294 | err: | ||
295 | if (ctx != NULL) | ||
296 | BN_CTX_end(ctx); | ||
297 | if (new_ctx != NULL) | ||
298 | BN_CTX_free(new_ctx); | ||
299 | return ret; | ||
300 | } | ||
301 | |||
302 | |||
303 | /* Initializes an EC_POINT. */ | ||
304 | int ec_GF2m_simple_point_init(EC_POINT *point) | ||
305 | { | ||
306 | BN_init(&point->X); | ||
307 | BN_init(&point->Y); | ||
308 | BN_init(&point->Z); | ||
309 | return 1; | ||
310 | } | ||
311 | |||
312 | |||
313 | /* Frees an EC_POINT. */ | ||
314 | void ec_GF2m_simple_point_finish(EC_POINT *point) | ||
315 | { | ||
316 | BN_free(&point->X); | ||
317 | BN_free(&point->Y); | ||
318 | BN_free(&point->Z); | ||
319 | } | ||
320 | |||
321 | |||
322 | /* Clears and frees an EC_POINT. */ | ||
323 | void ec_GF2m_simple_point_clear_finish(EC_POINT *point) | ||
324 | { | ||
325 | BN_clear_free(&point->X); | ||
326 | BN_clear_free(&point->Y); | ||
327 | BN_clear_free(&point->Z); | ||
328 | point->Z_is_one = 0; | ||
329 | } | ||
330 | |||
331 | |||
332 | /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ | ||
333 | int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | ||
334 | { | ||
335 | if (!BN_copy(&dest->X, &src->X)) return 0; | ||
336 | if (!BN_copy(&dest->Y, &src->Y)) return 0; | ||
337 | if (!BN_copy(&dest->Z, &src->Z)) return 0; | ||
338 | dest->Z_is_one = src->Z_is_one; | ||
339 | |||
340 | return 1; | ||
341 | } | ||
342 | |||
343 | |||
344 | /* Set an EC_POINT to the point at infinity. | ||
345 | * A point at infinity is represented by having Z=0. | ||
346 | */ | ||
347 | int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
348 | { | ||
349 | point->Z_is_one = 0; | ||
350 | BN_zero(&point->Z); | ||
351 | return 1; | ||
352 | } | ||
353 | |||
354 | |||
355 | /* Set the coordinates of an EC_POINT using affine coordinates. | ||
356 | * Note that the simple implementation only uses affine coordinates. | ||
357 | */ | ||
358 | int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
359 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
360 | { | ||
361 | int ret = 0; | ||
362 | if (x == NULL || y == NULL) | ||
363 | { | ||
364 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
365 | return 0; | ||
366 | } | ||
367 | |||
368 | if (!BN_copy(&point->X, x)) goto err; | ||
369 | BN_set_negative(&point->X, 0); | ||
370 | if (!BN_copy(&point->Y, y)) goto err; | ||
371 | BN_set_negative(&point->Y, 0); | ||
372 | if (!BN_copy(&point->Z, BN_value_one())) goto err; | ||
373 | BN_set_negative(&point->Z, 0); | ||
374 | point->Z_is_one = 1; | ||
375 | ret = 1; | ||
376 | |||
377 | err: | ||
378 | return ret; | ||
379 | } | ||
380 | |||
381 | |||
382 | /* Gets the affine coordinates of an EC_POINT. | ||
383 | * Note that the simple implementation only uses affine coordinates. | ||
384 | */ | ||
385 | int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | ||
386 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
387 | { | ||
388 | int ret = 0; | ||
389 | |||
390 | if (EC_POINT_is_at_infinity(group, point)) | ||
391 | { | ||
392 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
393 | return 0; | ||
394 | } | ||
395 | |||
396 | if (BN_cmp(&point->Z, BN_value_one())) | ||
397 | { | ||
398 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
399 | return 0; | ||
400 | } | ||
401 | if (x != NULL) | ||
402 | { | ||
403 | if (!BN_copy(x, &point->X)) goto err; | ||
404 | BN_set_negative(x, 0); | ||
405 | } | ||
406 | if (y != NULL) | ||
407 | { | ||
408 | if (!BN_copy(y, &point->Y)) goto err; | ||
409 | BN_set_negative(y, 0); | ||
410 | } | ||
411 | ret = 1; | ||
412 | |||
413 | err: | ||
414 | return ret; | ||
415 | } | ||
416 | |||
417 | /* Computes a + b and stores the result in r. r could be a or b, a could be b. | ||
418 | * Uses algorithm A.10.2 of IEEE P1363. | ||
419 | */ | ||
420 | int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
421 | { | ||
422 | BN_CTX *new_ctx = NULL; | ||
423 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; | ||
424 | int ret = 0; | ||
425 | |||
426 | if (EC_POINT_is_at_infinity(group, a)) | ||
427 | { | ||
428 | if (!EC_POINT_copy(r, b)) return 0; | ||
429 | return 1; | ||
430 | } | ||
431 | |||
432 | if (EC_POINT_is_at_infinity(group, b)) | ||
433 | { | ||
434 | if (!EC_POINT_copy(r, a)) return 0; | ||
435 | return 1; | ||
436 | } | ||
437 | |||
438 | if (ctx == NULL) | ||
439 | { | ||
440 | ctx = new_ctx = BN_CTX_new(); | ||
441 | if (ctx == NULL) | ||
442 | return 0; | ||
443 | } | ||
444 | |||
445 | BN_CTX_start(ctx); | ||
446 | x0 = BN_CTX_get(ctx); | ||
447 | y0 = BN_CTX_get(ctx); | ||
448 | x1 = BN_CTX_get(ctx); | ||
449 | y1 = BN_CTX_get(ctx); | ||
450 | x2 = BN_CTX_get(ctx); | ||
451 | y2 = BN_CTX_get(ctx); | ||
452 | s = BN_CTX_get(ctx); | ||
453 | t = BN_CTX_get(ctx); | ||
454 | if (t == NULL) goto err; | ||
455 | |||
456 | if (a->Z_is_one) | ||
457 | { | ||
458 | if (!BN_copy(x0, &a->X)) goto err; | ||
459 | if (!BN_copy(y0, &a->Y)) goto err; | ||
460 | } | ||
461 | else | ||
462 | { | ||
463 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err; | ||
464 | } | ||
465 | if (b->Z_is_one) | ||
466 | { | ||
467 | if (!BN_copy(x1, &b->X)) goto err; | ||
468 | if (!BN_copy(y1, &b->Y)) goto err; | ||
469 | } | ||
470 | else | ||
471 | { | ||
472 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err; | ||
473 | } | ||
474 | |||
475 | |||
476 | if (BN_GF2m_cmp(x0, x1)) | ||
477 | { | ||
478 | if (!BN_GF2m_add(t, x0, x1)) goto err; | ||
479 | if (!BN_GF2m_add(s, y0, y1)) goto err; | ||
480 | if (!group->meth->field_div(group, s, s, t, ctx)) goto err; | ||
481 | if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; | ||
482 | if (!BN_GF2m_add(x2, x2, &group->a)) goto err; | ||
483 | if (!BN_GF2m_add(x2, x2, s)) goto err; | ||
484 | if (!BN_GF2m_add(x2, x2, t)) goto err; | ||
485 | } | ||
486 | else | ||
487 | { | ||
488 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) | ||
489 | { | ||
490 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
491 | ret = 1; | ||
492 | goto err; | ||
493 | } | ||
494 | if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; | ||
495 | if (!BN_GF2m_add(s, s, x1)) goto err; | ||
496 | |||
497 | if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; | ||
498 | if (!BN_GF2m_add(x2, x2, s)) goto err; | ||
499 | if (!BN_GF2m_add(x2, x2, &group->a)) goto err; | ||
500 | } | ||
501 | |||
502 | if (!BN_GF2m_add(y2, x1, x2)) goto err; | ||
503 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; | ||
504 | if (!BN_GF2m_add(y2, y2, x2)) goto err; | ||
505 | if (!BN_GF2m_add(y2, y2, y1)) goto err; | ||
506 | |||
507 | if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err; | ||
508 | |||
509 | ret = 1; | ||
510 | |||
511 | err: | ||
512 | BN_CTX_end(ctx); | ||
513 | if (new_ctx != NULL) | ||
514 | BN_CTX_free(new_ctx); | ||
515 | return ret; | ||
516 | } | ||
517 | |||
518 | |||
519 | /* Computes 2 * a and stores the result in r. r could be a. | ||
520 | * Uses algorithm A.10.2 of IEEE P1363. | ||
521 | */ | ||
522 | int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
523 | { | ||
524 | return ec_GF2m_simple_add(group, r, a, a, ctx); | ||
525 | } | ||
526 | |||
527 | |||
528 | int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
529 | { | ||
530 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) | ||
531 | /* point is its own inverse */ | ||
532 | return 1; | ||
533 | |||
534 | if (!EC_POINT_make_affine(group, point, ctx)) return 0; | ||
535 | return BN_GF2m_add(&point->Y, &point->X, &point->Y); | ||
536 | } | ||
537 | |||
538 | |||
539 | /* Indicates whether the given point is the point at infinity. */ | ||
540 | int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
541 | { | ||
542 | return BN_is_zero(&point->Z); | ||
543 | } | ||
544 | |||
545 | |||
546 | /* Determines whether the given EC_POINT is an actual point on the curve defined | ||
547 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: | ||
548 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
549 | */ | ||
550 | int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
551 | { | ||
552 | int ret = -1; | ||
553 | BN_CTX *new_ctx = NULL; | ||
554 | BIGNUM *lh, *y2; | ||
555 | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
556 | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
557 | |||
558 | if (EC_POINT_is_at_infinity(group, point)) | ||
559 | return 1; | ||
560 | |||
561 | field_mul = group->meth->field_mul; | ||
562 | field_sqr = group->meth->field_sqr; | ||
563 | |||
564 | /* only support affine coordinates */ | ||
565 | if (!point->Z_is_one) return -1; | ||
566 | |||
567 | if (ctx == NULL) | ||
568 | { | ||
569 | ctx = new_ctx = BN_CTX_new(); | ||
570 | if (ctx == NULL) | ||
571 | return -1; | ||
572 | } | ||
573 | |||
574 | BN_CTX_start(ctx); | ||
575 | y2 = BN_CTX_get(ctx); | ||
576 | lh = BN_CTX_get(ctx); | ||
577 | if (lh == NULL) goto err; | ||
578 | |||
579 | /* We have a curve defined by a Weierstrass equation | ||
580 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
581 | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 | ||
582 | * <=> ((x + a) * x + y ) * x + b + y^2 = 0 | ||
583 | */ | ||
584 | if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err; | ||
585 | if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; | ||
586 | if (!BN_GF2m_add(lh, lh, &point->Y)) goto err; | ||
587 | if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; | ||
588 | if (!BN_GF2m_add(lh, lh, &group->b)) goto err; | ||
589 | if (!field_sqr(group, y2, &point->Y, ctx)) goto err; | ||
590 | if (!BN_GF2m_add(lh, lh, y2)) goto err; | ||
591 | ret = BN_is_zero(lh); | ||
592 | err: | ||
593 | if (ctx) BN_CTX_end(ctx); | ||
594 | if (new_ctx) BN_CTX_free(new_ctx); | ||
595 | return ret; | ||
596 | } | ||
597 | |||
598 | |||
599 | /* Indicates whether two points are equal. | ||
600 | * Return values: | ||
601 | * -1 error | ||
602 | * 0 equal (in affine coordinates) | ||
603 | * 1 not equal | ||
604 | */ | ||
605 | int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
606 | { | ||
607 | BIGNUM *aX, *aY, *bX, *bY; | ||
608 | BN_CTX *new_ctx = NULL; | ||
609 | int ret = -1; | ||
610 | |||
611 | if (EC_POINT_is_at_infinity(group, a)) | ||
612 | { | ||
613 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; | ||
614 | } | ||
615 | |||
616 | if (EC_POINT_is_at_infinity(group, b)) | ||
617 | return 1; | ||
618 | |||
619 | if (a->Z_is_one && b->Z_is_one) | ||
620 | { | ||
621 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
622 | } | ||
623 | |||
624 | if (ctx == NULL) | ||
625 | { | ||
626 | ctx = new_ctx = BN_CTX_new(); | ||
627 | if (ctx == NULL) | ||
628 | return -1; | ||
629 | } | ||
630 | |||
631 | BN_CTX_start(ctx); | ||
632 | aX = BN_CTX_get(ctx); | ||
633 | aY = BN_CTX_get(ctx); | ||
634 | bX = BN_CTX_get(ctx); | ||
635 | bY = BN_CTX_get(ctx); | ||
636 | if (bY == NULL) goto err; | ||
637 | |||
638 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err; | ||
639 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err; | ||
640 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; | ||
641 | |||
642 | err: | ||
643 | if (ctx) BN_CTX_end(ctx); | ||
644 | if (new_ctx) BN_CTX_free(new_ctx); | ||
645 | return ret; | ||
646 | } | ||
647 | |||
648 | |||
649 | /* Forces the given EC_POINT to internally use affine coordinates. */ | ||
650 | int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
651 | { | ||
652 | BN_CTX *new_ctx = NULL; | ||
653 | BIGNUM *x, *y; | ||
654 | int ret = 0; | ||
655 | |||
656 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) | ||
657 | return 1; | ||
658 | |||
659 | if (ctx == NULL) | ||
660 | { | ||
661 | ctx = new_ctx = BN_CTX_new(); | ||
662 | if (ctx == NULL) | ||
663 | return 0; | ||
664 | } | ||
665 | |||
666 | BN_CTX_start(ctx); | ||
667 | x = BN_CTX_get(ctx); | ||
668 | y = BN_CTX_get(ctx); | ||
669 | if (y == NULL) goto err; | ||
670 | |||
671 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
672 | if (!BN_copy(&point->X, x)) goto err; | ||
673 | if (!BN_copy(&point->Y, y)) goto err; | ||
674 | if (!BN_one(&point->Z)) goto err; | ||
675 | |||
676 | ret = 1; | ||
677 | |||
678 | err: | ||
679 | if (ctx) BN_CTX_end(ctx); | ||
680 | if (new_ctx) BN_CTX_free(new_ctx); | ||
681 | return ret; | ||
682 | } | ||
683 | |||
684 | |||
685 | /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ | ||
686 | int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) | ||
687 | { | ||
688 | size_t i; | ||
689 | |||
690 | for (i = 0; i < num; i++) | ||
691 | { | ||
692 | if (!group->meth->make_affine(group, points[i], ctx)) return 0; | ||
693 | } | ||
694 | |||
695 | return 1; | ||
696 | } | ||
697 | |||
698 | |||
699 | /* Wrapper to simple binary polynomial field multiplication implementation. */ | ||
700 | int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
701 | { | ||
702 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); | ||
703 | } | ||
704 | |||
705 | |||
706 | /* Wrapper to simple binary polynomial field squaring implementation. */ | ||
707 | int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
708 | { | ||
709 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); | ||
710 | } | ||
711 | |||
712 | |||
713 | /* Wrapper to simple binary polynomial field division implementation. */ | ||
714 | int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
715 | { | ||
716 | return BN_GF2m_mod_div(r, a, b, &group->field, ctx); | ||
717 | } | ||
718 | |||
719 | #endif | ||