diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_smpl.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ec2_smpl.c | 787 |
1 files changed, 0 insertions, 787 deletions
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c deleted file mode 100644 index 43f0afd5ae..0000000000 --- a/src/lib/libcrypto/ec/ec2_smpl.c +++ /dev/null | |||
| @@ -1,787 +0,0 @@ | |||
| 1 | /* $OpenBSD: ec2_smpl.c,v 1.14 2015/02/09 15:49:22 jsing Exp $ */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 4 | * | ||
| 5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
| 6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
| 7 | * to the OpenSSL project. | ||
| 8 | * | ||
| 9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
| 10 | * license provided below. | ||
| 11 | * | ||
| 12 | * The software is originally written by Sheueling Chang Shantz and | ||
| 13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
| 14 | * | ||
| 15 | */ | ||
| 16 | /* ==================================================================== | ||
| 17 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
| 18 | * | ||
| 19 | * Redistribution and use in source and binary forms, with or without | ||
| 20 | * modification, are permitted provided that the following conditions | ||
| 21 | * are met: | ||
| 22 | * | ||
| 23 | * 1. Redistributions of source code must retain the above copyright | ||
| 24 | * notice, this list of conditions and the following disclaimer. | ||
| 25 | * | ||
| 26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer in | ||
| 28 | * the documentation and/or other materials provided with the | ||
| 29 | * distribution. | ||
| 30 | * | ||
| 31 | * 3. All advertising materials mentioning features or use of this | ||
| 32 | * software must display the following acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 37 | * endorse or promote products derived from this software without | ||
| 38 | * prior written permission. For written permission, please contact | ||
| 39 | * openssl-core@openssl.org. | ||
| 40 | * | ||
| 41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 42 | * nor may "OpenSSL" appear in their names without prior written | ||
| 43 | * permission of the OpenSSL Project. | ||
| 44 | * | ||
| 45 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 46 | * acknowledgment: | ||
| 47 | * "This product includes software developed by the OpenSSL Project | ||
| 48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 49 | * | ||
| 50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 62 | * ==================================================================== | ||
| 63 | * | ||
| 64 | * This product includes cryptographic software written by Eric Young | ||
| 65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 66 | * Hudson (tjh@cryptsoft.com). | ||
| 67 | * | ||
| 68 | */ | ||
| 69 | |||
| 70 | #include <openssl/opensslconf.h> | ||
| 71 | |||
| 72 | #include <openssl/err.h> | ||
| 73 | |||
| 74 | #include "ec_lcl.h" | ||
| 75 | |||
| 76 | #ifndef OPENSSL_NO_EC2M | ||
| 77 | |||
| 78 | const EC_METHOD * | ||
| 79 | EC_GF2m_simple_method(void) | ||
| 80 | { | ||
| 81 | static const EC_METHOD ret = { | ||
| 82 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
| 83 | .field_type = NID_X9_62_characteristic_two_field, | ||
| 84 | .group_init = ec_GF2m_simple_group_init, | ||
| 85 | .group_finish = ec_GF2m_simple_group_finish, | ||
| 86 | .group_clear_finish = ec_GF2m_simple_group_clear_finish, | ||
| 87 | .group_copy = ec_GF2m_simple_group_copy, | ||
| 88 | .group_set_curve = ec_GF2m_simple_group_set_curve, | ||
| 89 | .group_get_curve = ec_GF2m_simple_group_get_curve, | ||
| 90 | .group_get_degree = ec_GF2m_simple_group_get_degree, | ||
| 91 | .group_check_discriminant = | ||
| 92 | ec_GF2m_simple_group_check_discriminant, | ||
| 93 | .point_init = ec_GF2m_simple_point_init, | ||
| 94 | .point_finish = ec_GF2m_simple_point_finish, | ||
| 95 | .point_clear_finish = ec_GF2m_simple_point_clear_finish, | ||
| 96 | .point_copy = ec_GF2m_simple_point_copy, | ||
| 97 | .point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity, | ||
| 98 | .point_set_affine_coordinates = | ||
| 99 | ec_GF2m_simple_point_set_affine_coordinates, | ||
| 100 | .point_get_affine_coordinates = | ||
| 101 | ec_GF2m_simple_point_get_affine_coordinates, | ||
| 102 | .add = ec_GF2m_simple_add, | ||
| 103 | .dbl = ec_GF2m_simple_dbl, | ||
| 104 | .invert = ec_GF2m_simple_invert, | ||
| 105 | .is_at_infinity = ec_GF2m_simple_is_at_infinity, | ||
| 106 | .is_on_curve = ec_GF2m_simple_is_on_curve, | ||
| 107 | .point_cmp = ec_GF2m_simple_cmp, | ||
| 108 | .make_affine = ec_GF2m_simple_make_affine, | ||
| 109 | .points_make_affine = ec_GF2m_simple_points_make_affine, | ||
| 110 | |||
| 111 | /* | ||
| 112 | * the following three method functions are defined in | ||
| 113 | * ec2_mult.c | ||
| 114 | */ | ||
| 115 | .mul = ec_GF2m_simple_mul, | ||
| 116 | .precompute_mult = ec_GF2m_precompute_mult, | ||
| 117 | .have_precompute_mult = ec_GF2m_have_precompute_mult, | ||
| 118 | |||
| 119 | .field_mul = ec_GF2m_simple_field_mul, | ||
| 120 | .field_sqr = ec_GF2m_simple_field_sqr, | ||
| 121 | .field_div = ec_GF2m_simple_field_div, | ||
| 122 | }; | ||
| 123 | |||
| 124 | return &ret; | ||
| 125 | } | ||
| 126 | |||
| 127 | |||
| 128 | /* Initialize a GF(2^m)-based EC_GROUP structure. | ||
| 129 | * Note that all other members are handled by EC_GROUP_new. | ||
| 130 | */ | ||
| 131 | int | ||
| 132 | ec_GF2m_simple_group_init(EC_GROUP * group) | ||
| 133 | { | ||
| 134 | BN_init(&group->field); | ||
| 135 | BN_init(&group->a); | ||
| 136 | BN_init(&group->b); | ||
| 137 | return 1; | ||
| 138 | } | ||
| 139 | |||
| 140 | |||
| 141 | /* Free a GF(2^m)-based EC_GROUP structure. | ||
| 142 | * Note that all other members are handled by EC_GROUP_free. | ||
| 143 | */ | ||
| 144 | void | ||
| 145 | ec_GF2m_simple_group_finish(EC_GROUP * group) | ||
| 146 | { | ||
| 147 | BN_free(&group->field); | ||
| 148 | BN_free(&group->a); | ||
| 149 | BN_free(&group->b); | ||
| 150 | } | ||
| 151 | |||
| 152 | |||
| 153 | /* Clear and free a GF(2^m)-based EC_GROUP structure. | ||
| 154 | * Note that all other members are handled by EC_GROUP_clear_free. | ||
| 155 | */ | ||
| 156 | void | ||
| 157 | ec_GF2m_simple_group_clear_finish(EC_GROUP * group) | ||
| 158 | { | ||
| 159 | BN_clear_free(&group->field); | ||
| 160 | BN_clear_free(&group->a); | ||
| 161 | BN_clear_free(&group->b); | ||
| 162 | group->poly[0] = 0; | ||
| 163 | group->poly[1] = 0; | ||
| 164 | group->poly[2] = 0; | ||
| 165 | group->poly[3] = 0; | ||
| 166 | group->poly[4] = 0; | ||
| 167 | group->poly[5] = -1; | ||
| 168 | } | ||
| 169 | |||
| 170 | |||
| 171 | /* Copy a GF(2^m)-based EC_GROUP structure. | ||
| 172 | * Note that all other members are handled by EC_GROUP_copy. | ||
| 173 | */ | ||
| 174 | int | ||
| 175 | ec_GF2m_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
| 176 | { | ||
| 177 | int i; | ||
| 178 | |||
| 179 | if (!BN_copy(&dest->field, &src->field)) | ||
| 180 | return 0; | ||
| 181 | if (!BN_copy(&dest->a, &src->a)) | ||
| 182 | return 0; | ||
| 183 | if (!BN_copy(&dest->b, &src->b)) | ||
| 184 | return 0; | ||
| 185 | dest->poly[0] = src->poly[0]; | ||
| 186 | dest->poly[1] = src->poly[1]; | ||
| 187 | dest->poly[2] = src->poly[2]; | ||
| 188 | dest->poly[3] = src->poly[3]; | ||
| 189 | dest->poly[4] = src->poly[4]; | ||
| 190 | dest->poly[5] = src->poly[5]; | ||
| 191 | if (bn_wexpand(&dest->a, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
| 192 | return 0; | ||
| 193 | if (bn_wexpand(&dest->b, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
| 194 | return 0; | ||
| 195 | for (i = dest->a.top; i < dest->a.dmax; i++) | ||
| 196 | dest->a.d[i] = 0; | ||
| 197 | for (i = dest->b.top; i < dest->b.dmax; i++) | ||
| 198 | dest->b.d[i] = 0; | ||
| 199 | return 1; | ||
| 200 | } | ||
| 201 | |||
| 202 | |||
| 203 | /* Set the curve parameters of an EC_GROUP structure. */ | ||
| 204 | int | ||
| 205 | ec_GF2m_simple_group_set_curve(EC_GROUP * group, | ||
| 206 | const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
| 207 | { | ||
| 208 | int ret = 0, i; | ||
| 209 | |||
| 210 | /* group->field */ | ||
| 211 | if (!BN_copy(&group->field, p)) | ||
| 212 | goto err; | ||
| 213 | i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; | ||
| 214 | if ((i != 5) && (i != 3)) { | ||
| 215 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); | ||
| 216 | goto err; | ||
| 217 | } | ||
| 218 | /* group->a */ | ||
| 219 | if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) | ||
| 220 | goto err; | ||
| 221 | if (bn_wexpand(&group->a, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
| 222 | goto err; | ||
| 223 | for (i = group->a.top; i < group->a.dmax; i++) | ||
| 224 | group->a.d[i] = 0; | ||
| 225 | |||
| 226 | /* group->b */ | ||
| 227 | if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) | ||
| 228 | goto err; | ||
| 229 | if (bn_wexpand(&group->b, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
| 230 | goto err; | ||
| 231 | for (i = group->b.top; i < group->b.dmax; i++) | ||
| 232 | group->b.d[i] = 0; | ||
| 233 | |||
| 234 | ret = 1; | ||
| 235 | err: | ||
| 236 | return ret; | ||
| 237 | } | ||
| 238 | |||
| 239 | |||
| 240 | /* Get the curve parameters of an EC_GROUP structure. | ||
| 241 | * If p, a, or b are NULL then there values will not be set but the method will return with success. | ||
| 242 | */ | ||
| 243 | int | ||
| 244 | ec_GF2m_simple_group_get_curve(const EC_GROUP *group, | ||
| 245 | BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
| 246 | { | ||
| 247 | int ret = 0; | ||
| 248 | |||
| 249 | if (p != NULL) { | ||
| 250 | if (!BN_copy(p, &group->field)) | ||
| 251 | return 0; | ||
| 252 | } | ||
| 253 | if (a != NULL) { | ||
| 254 | if (!BN_copy(a, &group->a)) | ||
| 255 | goto err; | ||
| 256 | } | ||
| 257 | if (b != NULL) { | ||
| 258 | if (!BN_copy(b, &group->b)) | ||
| 259 | goto err; | ||
| 260 | } | ||
| 261 | ret = 1; | ||
| 262 | |||
| 263 | err: | ||
| 264 | return ret; | ||
| 265 | } | ||
| 266 | |||
| 267 | |||
| 268 | /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ | ||
| 269 | int | ||
| 270 | ec_GF2m_simple_group_get_degree(const EC_GROUP * group) | ||
| 271 | { | ||
| 272 | return BN_num_bits(&group->field) - 1; | ||
| 273 | } | ||
| 274 | |||
| 275 | |||
| 276 | /* Checks the discriminant of the curve. | ||
| 277 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
| 278 | */ | ||
| 279 | int | ||
| 280 | ec_GF2m_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) | ||
| 281 | { | ||
| 282 | int ret = 0; | ||
| 283 | BIGNUM *b; | ||
| 284 | BN_CTX *new_ctx = NULL; | ||
| 285 | |||
| 286 | if (ctx == NULL) { | ||
| 287 | ctx = new_ctx = BN_CTX_new(); | ||
| 288 | if (ctx == NULL) { | ||
| 289 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
| 290 | goto err; | ||
| 291 | } | ||
| 292 | } | ||
| 293 | BN_CTX_start(ctx); | ||
| 294 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
| 295 | goto err; | ||
| 296 | |||
| 297 | if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) | ||
| 298 | goto err; | ||
| 299 | |||
| 300 | /* | ||
| 301 | * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic | ||
| 302 | * curve <=> b != 0 (mod p) | ||
| 303 | */ | ||
| 304 | if (BN_is_zero(b)) | ||
| 305 | goto err; | ||
| 306 | |||
| 307 | ret = 1; | ||
| 308 | |||
| 309 | err: | ||
| 310 | if (ctx != NULL) | ||
| 311 | BN_CTX_end(ctx); | ||
| 312 | BN_CTX_free(new_ctx); | ||
| 313 | return ret; | ||
| 314 | } | ||
| 315 | |||
| 316 | |||
| 317 | /* Initializes an EC_POINT. */ | ||
| 318 | int | ||
| 319 | ec_GF2m_simple_point_init(EC_POINT * point) | ||
| 320 | { | ||
| 321 | BN_init(&point->X); | ||
| 322 | BN_init(&point->Y); | ||
| 323 | BN_init(&point->Z); | ||
| 324 | return 1; | ||
| 325 | } | ||
| 326 | |||
| 327 | |||
| 328 | /* Frees an EC_POINT. */ | ||
| 329 | void | ||
| 330 | ec_GF2m_simple_point_finish(EC_POINT * point) | ||
| 331 | { | ||
| 332 | BN_free(&point->X); | ||
| 333 | BN_free(&point->Y); | ||
| 334 | BN_free(&point->Z); | ||
| 335 | } | ||
| 336 | |||
| 337 | |||
| 338 | /* Clears and frees an EC_POINT. */ | ||
| 339 | void | ||
| 340 | ec_GF2m_simple_point_clear_finish(EC_POINT * point) | ||
| 341 | { | ||
| 342 | BN_clear_free(&point->X); | ||
| 343 | BN_clear_free(&point->Y); | ||
| 344 | BN_clear_free(&point->Z); | ||
| 345 | point->Z_is_one = 0; | ||
| 346 | } | ||
| 347 | |||
| 348 | |||
| 349 | /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ | ||
| 350 | int | ||
| 351 | ec_GF2m_simple_point_copy(EC_POINT * dest, const EC_POINT * src) | ||
| 352 | { | ||
| 353 | if (!BN_copy(&dest->X, &src->X)) | ||
| 354 | return 0; | ||
| 355 | if (!BN_copy(&dest->Y, &src->Y)) | ||
| 356 | return 0; | ||
| 357 | if (!BN_copy(&dest->Z, &src->Z)) | ||
| 358 | return 0; | ||
| 359 | dest->Z_is_one = src->Z_is_one; | ||
| 360 | |||
| 361 | return 1; | ||
| 362 | } | ||
| 363 | |||
| 364 | |||
| 365 | /* Set an EC_POINT to the point at infinity. | ||
| 366 | * A point at infinity is represented by having Z=0. | ||
| 367 | */ | ||
| 368 | int | ||
| 369 | ec_GF2m_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) | ||
| 370 | { | ||
| 371 | point->Z_is_one = 0; | ||
| 372 | BN_zero(&point->Z); | ||
| 373 | return 1; | ||
| 374 | } | ||
| 375 | |||
| 376 | |||
| 377 | /* Set the coordinates of an EC_POINT using affine coordinates. | ||
| 378 | * Note that the simple implementation only uses affine coordinates. | ||
| 379 | */ | ||
| 380 | int | ||
| 381 | ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point, | ||
| 382 | const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx) | ||
| 383 | { | ||
| 384 | int ret = 0; | ||
| 385 | if (x == NULL || y == NULL) { | ||
| 386 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
| 387 | return 0; | ||
| 388 | } | ||
| 389 | if (!BN_copy(&point->X, x)) | ||
| 390 | goto err; | ||
| 391 | BN_set_negative(&point->X, 0); | ||
| 392 | if (!BN_copy(&point->Y, y)) | ||
| 393 | goto err; | ||
| 394 | BN_set_negative(&point->Y, 0); | ||
| 395 | if (!BN_copy(&point->Z, BN_value_one())) | ||
| 396 | goto err; | ||
| 397 | BN_set_negative(&point->Z, 0); | ||
| 398 | point->Z_is_one = 1; | ||
| 399 | ret = 1; | ||
| 400 | |||
| 401 | err: | ||
| 402 | return ret; | ||
| 403 | } | ||
| 404 | |||
| 405 | |||
| 406 | /* Gets the affine coordinates of an EC_POINT. | ||
| 407 | * Note that the simple implementation only uses affine coordinates. | ||
| 408 | */ | ||
| 409 | int | ||
| 410 | ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, | ||
| 411 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 412 | { | ||
| 413 | int ret = 0; | ||
| 414 | |||
| 415 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
| 416 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
| 417 | return 0; | ||
| 418 | } | ||
| 419 | if (BN_cmp(&point->Z, BN_value_one())) { | ||
| 420 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 421 | return 0; | ||
| 422 | } | ||
| 423 | if (x != NULL) { | ||
| 424 | if (!BN_copy(x, &point->X)) | ||
| 425 | goto err; | ||
| 426 | BN_set_negative(x, 0); | ||
| 427 | } | ||
| 428 | if (y != NULL) { | ||
| 429 | if (!BN_copy(y, &point->Y)) | ||
| 430 | goto err; | ||
| 431 | BN_set_negative(y, 0); | ||
| 432 | } | ||
| 433 | ret = 1; | ||
| 434 | |||
| 435 | err: | ||
| 436 | return ret; | ||
| 437 | } | ||
| 438 | |||
| 439 | /* Computes a + b and stores the result in r. r could be a or b, a could be b. | ||
| 440 | * Uses algorithm A.10.2 of IEEE P1363. | ||
| 441 | */ | ||
| 442 | int | ||
| 443 | ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 444 | const EC_POINT *b, BN_CTX *ctx) | ||
| 445 | { | ||
| 446 | BN_CTX *new_ctx = NULL; | ||
| 447 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; | ||
| 448 | int ret = 0; | ||
| 449 | |||
| 450 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
| 451 | if (!EC_POINT_copy(r, b)) | ||
| 452 | return 0; | ||
| 453 | return 1; | ||
| 454 | } | ||
| 455 | if (EC_POINT_is_at_infinity(group, b) > 0) { | ||
| 456 | if (!EC_POINT_copy(r, a)) | ||
| 457 | return 0; | ||
| 458 | return 1; | ||
| 459 | } | ||
| 460 | if (ctx == NULL) { | ||
| 461 | ctx = new_ctx = BN_CTX_new(); | ||
| 462 | if (ctx == NULL) | ||
| 463 | return 0; | ||
| 464 | } | ||
| 465 | BN_CTX_start(ctx); | ||
| 466 | if ((x0 = BN_CTX_get(ctx)) == NULL) | ||
| 467 | goto err; | ||
| 468 | if ((y0 = BN_CTX_get(ctx)) == NULL) | ||
| 469 | goto err; | ||
| 470 | if ((x1 = BN_CTX_get(ctx)) == NULL) | ||
| 471 | goto err; | ||
| 472 | if ((y1 = BN_CTX_get(ctx)) == NULL) | ||
| 473 | goto err; | ||
| 474 | if ((x2 = BN_CTX_get(ctx)) == NULL) | ||
| 475 | goto err; | ||
| 476 | if ((y2 = BN_CTX_get(ctx)) == NULL) | ||
| 477 | goto err; | ||
| 478 | if ((s = BN_CTX_get(ctx)) == NULL) | ||
| 479 | goto err; | ||
| 480 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
| 481 | goto err; | ||
| 482 | |||
| 483 | if (a->Z_is_one) { | ||
| 484 | if (!BN_copy(x0, &a->X)) | ||
| 485 | goto err; | ||
| 486 | if (!BN_copy(y0, &a->Y)) | ||
| 487 | goto err; | ||
| 488 | } else { | ||
| 489 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) | ||
| 490 | goto err; | ||
| 491 | } | ||
| 492 | if (b->Z_is_one) { | ||
| 493 | if (!BN_copy(x1, &b->X)) | ||
| 494 | goto err; | ||
| 495 | if (!BN_copy(y1, &b->Y)) | ||
| 496 | goto err; | ||
| 497 | } else { | ||
| 498 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) | ||
| 499 | goto err; | ||
| 500 | } | ||
| 501 | |||
| 502 | |||
| 503 | if (BN_GF2m_cmp(x0, x1)) { | ||
| 504 | if (!BN_GF2m_add(t, x0, x1)) | ||
| 505 | goto err; | ||
| 506 | if (!BN_GF2m_add(s, y0, y1)) | ||
| 507 | goto err; | ||
| 508 | if (!group->meth->field_div(group, s, s, t, ctx)) | ||
| 509 | goto err; | ||
| 510 | if (!group->meth->field_sqr(group, x2, s, ctx)) | ||
| 511 | goto err; | ||
| 512 | if (!BN_GF2m_add(x2, x2, &group->a)) | ||
| 513 | goto err; | ||
| 514 | if (!BN_GF2m_add(x2, x2, s)) | ||
| 515 | goto err; | ||
| 516 | if (!BN_GF2m_add(x2, x2, t)) | ||
| 517 | goto err; | ||
| 518 | } else { | ||
| 519 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { | ||
| 520 | if (!EC_POINT_set_to_infinity(group, r)) | ||
| 521 | goto err; | ||
| 522 | ret = 1; | ||
| 523 | goto err; | ||
| 524 | } | ||
| 525 | if (!group->meth->field_div(group, s, y1, x1, ctx)) | ||
| 526 | goto err; | ||
| 527 | if (!BN_GF2m_add(s, s, x1)) | ||
| 528 | goto err; | ||
| 529 | |||
| 530 | if (!group->meth->field_sqr(group, x2, s, ctx)) | ||
| 531 | goto err; | ||
| 532 | if (!BN_GF2m_add(x2, x2, s)) | ||
| 533 | goto err; | ||
| 534 | if (!BN_GF2m_add(x2, x2, &group->a)) | ||
| 535 | goto err; | ||
| 536 | } | ||
| 537 | |||
| 538 | if (!BN_GF2m_add(y2, x1, x2)) | ||
| 539 | goto err; | ||
| 540 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) | ||
| 541 | goto err; | ||
| 542 | if (!BN_GF2m_add(y2, y2, x2)) | ||
| 543 | goto err; | ||
| 544 | if (!BN_GF2m_add(y2, y2, y1)) | ||
| 545 | goto err; | ||
| 546 | |||
| 547 | if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) | ||
| 548 | goto err; | ||
| 549 | |||
| 550 | ret = 1; | ||
| 551 | |||
| 552 | err: | ||
| 553 | BN_CTX_end(ctx); | ||
| 554 | BN_CTX_free(new_ctx); | ||
| 555 | return ret; | ||
| 556 | } | ||
| 557 | |||
| 558 | |||
| 559 | /* Computes 2 * a and stores the result in r. r could be a. | ||
| 560 | * Uses algorithm A.10.2 of IEEE P1363. | ||
| 561 | */ | ||
| 562 | int | ||
| 563 | ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 564 | BN_CTX *ctx) | ||
| 565 | { | ||
| 566 | return ec_GF2m_simple_add(group, r, a, a, ctx); | ||
| 567 | } | ||
| 568 | |||
| 569 | int | ||
| 570 | ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 571 | { | ||
| 572 | if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) | ||
| 573 | /* point is its own inverse */ | ||
| 574 | return 1; | ||
| 575 | |||
| 576 | if (!EC_POINT_make_affine(group, point, ctx)) | ||
| 577 | return 0; | ||
| 578 | return BN_GF2m_add(&point->Y, &point->X, &point->Y); | ||
| 579 | } | ||
| 580 | |||
| 581 | |||
| 582 | /* Indicates whether the given point is the point at infinity. */ | ||
| 583 | int | ||
| 584 | ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
| 585 | { | ||
| 586 | return BN_is_zero(&point->Z); | ||
| 587 | } | ||
| 588 | |||
| 589 | |||
| 590 | /* Determines whether the given EC_POINT is an actual point on the curve defined | ||
| 591 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: | ||
| 592 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
| 593 | */ | ||
| 594 | int | ||
| 595 | ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
| 596 | { | ||
| 597 | int ret = -1; | ||
| 598 | BN_CTX *new_ctx = NULL; | ||
| 599 | BIGNUM *lh, *y2; | ||
| 600 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 601 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 602 | |||
| 603 | if (EC_POINT_is_at_infinity(group, point) > 0) | ||
| 604 | return 1; | ||
| 605 | |||
| 606 | field_mul = group->meth->field_mul; | ||
| 607 | field_sqr = group->meth->field_sqr; | ||
| 608 | |||
| 609 | /* only support affine coordinates */ | ||
| 610 | if (!point->Z_is_one) | ||
| 611 | return -1; | ||
| 612 | |||
| 613 | if (ctx == NULL) { | ||
| 614 | ctx = new_ctx = BN_CTX_new(); | ||
| 615 | if (ctx == NULL) | ||
| 616 | return -1; | ||
| 617 | } | ||
| 618 | BN_CTX_start(ctx); | ||
| 619 | if ((y2 = BN_CTX_get(ctx)) == NULL) | ||
| 620 | goto err; | ||
| 621 | if ((lh = BN_CTX_get(ctx)) == NULL) | ||
| 622 | goto err; | ||
| 623 | |||
| 624 | /* | ||
| 625 | * We have a curve defined by a Weierstrass equation y^2 + x*y = x^3 | ||
| 626 | * + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x | ||
| 627 | * + y ) * x + b + y^2 = 0 | ||
| 628 | */ | ||
| 629 | if (!BN_GF2m_add(lh, &point->X, &group->a)) | ||
| 630 | goto err; | ||
| 631 | if (!field_mul(group, lh, lh, &point->X, ctx)) | ||
| 632 | goto err; | ||
| 633 | if (!BN_GF2m_add(lh, lh, &point->Y)) | ||
| 634 | goto err; | ||
| 635 | if (!field_mul(group, lh, lh, &point->X, ctx)) | ||
| 636 | goto err; | ||
| 637 | if (!BN_GF2m_add(lh, lh, &group->b)) | ||
| 638 | goto err; | ||
| 639 | if (!field_sqr(group, y2, &point->Y, ctx)) | ||
| 640 | goto err; | ||
| 641 | if (!BN_GF2m_add(lh, lh, y2)) | ||
| 642 | goto err; | ||
| 643 | ret = BN_is_zero(lh); | ||
| 644 | err: | ||
| 645 | if (ctx) | ||
| 646 | BN_CTX_end(ctx); | ||
| 647 | BN_CTX_free(new_ctx); | ||
| 648 | return ret; | ||
| 649 | } | ||
| 650 | |||
| 651 | |||
| 652 | /* Indicates whether two points are equal. | ||
| 653 | * Return values: | ||
| 654 | * -1 error | ||
| 655 | * 0 equal (in affine coordinates) | ||
| 656 | * 1 not equal | ||
| 657 | */ | ||
| 658 | int | ||
| 659 | ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, | ||
| 660 | const EC_POINT *b, BN_CTX *ctx) | ||
| 661 | { | ||
| 662 | BIGNUM *aX, *aY, *bX, *bY; | ||
| 663 | BN_CTX *new_ctx = NULL; | ||
| 664 | int ret = -1; | ||
| 665 | |||
| 666 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
| 667 | return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; | ||
| 668 | } | ||
| 669 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
| 670 | return 1; | ||
| 671 | |||
| 672 | if (a->Z_is_one && b->Z_is_one) { | ||
| 673 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
| 674 | } | ||
| 675 | if (ctx == NULL) { | ||
| 676 | ctx = new_ctx = BN_CTX_new(); | ||
| 677 | if (ctx == NULL) | ||
| 678 | return -1; | ||
| 679 | } | ||
| 680 | BN_CTX_start(ctx); | ||
| 681 | if ((aX = BN_CTX_get(ctx)) == NULL) | ||
| 682 | goto err; | ||
| 683 | if ((aY = BN_CTX_get(ctx)) == NULL) | ||
| 684 | goto err; | ||
| 685 | if ((bX = BN_CTX_get(ctx)) == NULL) | ||
| 686 | goto err; | ||
| 687 | if ((bY = BN_CTX_get(ctx)) == NULL) | ||
| 688 | goto err; | ||
| 689 | |||
| 690 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) | ||
| 691 | goto err; | ||
| 692 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) | ||
| 693 | goto err; | ||
| 694 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; | ||
| 695 | |||
| 696 | err: | ||
| 697 | if (ctx) | ||
| 698 | BN_CTX_end(ctx); | ||
| 699 | BN_CTX_free(new_ctx); | ||
| 700 | return ret; | ||
| 701 | } | ||
| 702 | |||
| 703 | |||
| 704 | /* Forces the given EC_POINT to internally use affine coordinates. */ | ||
| 705 | int | ||
| 706 | ec_GF2m_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
| 707 | { | ||
| 708 | BN_CTX *new_ctx = NULL; | ||
| 709 | BIGNUM *x, *y; | ||
| 710 | int ret = 0; | ||
| 711 | |||
| 712 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) | ||
| 713 | return 1; | ||
| 714 | |||
| 715 | if (ctx == NULL) { | ||
| 716 | ctx = new_ctx = BN_CTX_new(); | ||
| 717 | if (ctx == NULL) | ||
| 718 | return 0; | ||
| 719 | } | ||
| 720 | BN_CTX_start(ctx); | ||
| 721 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
| 722 | goto err; | ||
| 723 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
| 724 | goto err; | ||
| 725 | |||
| 726 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) | ||
| 727 | goto err; | ||
| 728 | if (!BN_copy(&point->X, x)) | ||
| 729 | goto err; | ||
| 730 | if (!BN_copy(&point->Y, y)) | ||
| 731 | goto err; | ||
| 732 | if (!BN_one(&point->Z)) | ||
| 733 | goto err; | ||
| 734 | |||
| 735 | ret = 1; | ||
| 736 | |||
| 737 | err: | ||
| 738 | if (ctx) | ||
| 739 | BN_CTX_end(ctx); | ||
| 740 | BN_CTX_free(new_ctx); | ||
| 741 | return ret; | ||
| 742 | } | ||
| 743 | |||
| 744 | |||
| 745 | /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ | ||
| 746 | int | ||
| 747 | ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, | ||
| 748 | EC_POINT *points[], BN_CTX *ctx) | ||
| 749 | { | ||
| 750 | size_t i; | ||
| 751 | |||
| 752 | for (i = 0; i < num; i++) { | ||
| 753 | if (!group->meth->make_affine(group, points[i], ctx)) | ||
| 754 | return 0; | ||
| 755 | } | ||
| 756 | |||
| 757 | return 1; | ||
| 758 | } | ||
| 759 | |||
| 760 | |||
| 761 | /* Wrapper to simple binary polynomial field multiplication implementation. */ | ||
| 762 | int | ||
| 763 | ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
| 764 | const BIGNUM *b, BN_CTX *ctx) | ||
| 765 | { | ||
| 766 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); | ||
| 767 | } | ||
| 768 | |||
| 769 | |||
| 770 | /* Wrapper to simple binary polynomial field squaring implementation. */ | ||
| 771 | int | ||
| 772 | ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
| 773 | BN_CTX *ctx) | ||
| 774 | { | ||
| 775 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); | ||
| 776 | } | ||
| 777 | |||
| 778 | |||
| 779 | /* Wrapper to simple binary polynomial field division implementation. */ | ||
| 780 | int | ||
| 781 | ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
| 782 | const BIGNUM *b, BN_CTX *ctx) | ||
| 783 | { | ||
| 784 | return BN_GF2m_mod_div(r, a, b, &group->field, ctx); | ||
| 785 | } | ||
| 786 | |||
| 787 | #endif | ||
