diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_smpl.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_smpl.c | 787 |
1 files changed, 0 insertions, 787 deletions
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c deleted file mode 100644 index 43f0afd5ae..0000000000 --- a/src/lib/libcrypto/ec/ec2_smpl.c +++ /dev/null | |||
@@ -1,787 +0,0 @@ | |||
1 | /* $OpenBSD: ec2_smpl.c,v 1.14 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/opensslconf.h> | ||
71 | |||
72 | #include <openssl/err.h> | ||
73 | |||
74 | #include "ec_lcl.h" | ||
75 | |||
76 | #ifndef OPENSSL_NO_EC2M | ||
77 | |||
78 | const EC_METHOD * | ||
79 | EC_GF2m_simple_method(void) | ||
80 | { | ||
81 | static const EC_METHOD ret = { | ||
82 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
83 | .field_type = NID_X9_62_characteristic_two_field, | ||
84 | .group_init = ec_GF2m_simple_group_init, | ||
85 | .group_finish = ec_GF2m_simple_group_finish, | ||
86 | .group_clear_finish = ec_GF2m_simple_group_clear_finish, | ||
87 | .group_copy = ec_GF2m_simple_group_copy, | ||
88 | .group_set_curve = ec_GF2m_simple_group_set_curve, | ||
89 | .group_get_curve = ec_GF2m_simple_group_get_curve, | ||
90 | .group_get_degree = ec_GF2m_simple_group_get_degree, | ||
91 | .group_check_discriminant = | ||
92 | ec_GF2m_simple_group_check_discriminant, | ||
93 | .point_init = ec_GF2m_simple_point_init, | ||
94 | .point_finish = ec_GF2m_simple_point_finish, | ||
95 | .point_clear_finish = ec_GF2m_simple_point_clear_finish, | ||
96 | .point_copy = ec_GF2m_simple_point_copy, | ||
97 | .point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity, | ||
98 | .point_set_affine_coordinates = | ||
99 | ec_GF2m_simple_point_set_affine_coordinates, | ||
100 | .point_get_affine_coordinates = | ||
101 | ec_GF2m_simple_point_get_affine_coordinates, | ||
102 | .add = ec_GF2m_simple_add, | ||
103 | .dbl = ec_GF2m_simple_dbl, | ||
104 | .invert = ec_GF2m_simple_invert, | ||
105 | .is_at_infinity = ec_GF2m_simple_is_at_infinity, | ||
106 | .is_on_curve = ec_GF2m_simple_is_on_curve, | ||
107 | .point_cmp = ec_GF2m_simple_cmp, | ||
108 | .make_affine = ec_GF2m_simple_make_affine, | ||
109 | .points_make_affine = ec_GF2m_simple_points_make_affine, | ||
110 | |||
111 | /* | ||
112 | * the following three method functions are defined in | ||
113 | * ec2_mult.c | ||
114 | */ | ||
115 | .mul = ec_GF2m_simple_mul, | ||
116 | .precompute_mult = ec_GF2m_precompute_mult, | ||
117 | .have_precompute_mult = ec_GF2m_have_precompute_mult, | ||
118 | |||
119 | .field_mul = ec_GF2m_simple_field_mul, | ||
120 | .field_sqr = ec_GF2m_simple_field_sqr, | ||
121 | .field_div = ec_GF2m_simple_field_div, | ||
122 | }; | ||
123 | |||
124 | return &ret; | ||
125 | } | ||
126 | |||
127 | |||
128 | /* Initialize a GF(2^m)-based EC_GROUP structure. | ||
129 | * Note that all other members are handled by EC_GROUP_new. | ||
130 | */ | ||
131 | int | ||
132 | ec_GF2m_simple_group_init(EC_GROUP * group) | ||
133 | { | ||
134 | BN_init(&group->field); | ||
135 | BN_init(&group->a); | ||
136 | BN_init(&group->b); | ||
137 | return 1; | ||
138 | } | ||
139 | |||
140 | |||
141 | /* Free a GF(2^m)-based EC_GROUP structure. | ||
142 | * Note that all other members are handled by EC_GROUP_free. | ||
143 | */ | ||
144 | void | ||
145 | ec_GF2m_simple_group_finish(EC_GROUP * group) | ||
146 | { | ||
147 | BN_free(&group->field); | ||
148 | BN_free(&group->a); | ||
149 | BN_free(&group->b); | ||
150 | } | ||
151 | |||
152 | |||
153 | /* Clear and free a GF(2^m)-based EC_GROUP structure. | ||
154 | * Note that all other members are handled by EC_GROUP_clear_free. | ||
155 | */ | ||
156 | void | ||
157 | ec_GF2m_simple_group_clear_finish(EC_GROUP * group) | ||
158 | { | ||
159 | BN_clear_free(&group->field); | ||
160 | BN_clear_free(&group->a); | ||
161 | BN_clear_free(&group->b); | ||
162 | group->poly[0] = 0; | ||
163 | group->poly[1] = 0; | ||
164 | group->poly[2] = 0; | ||
165 | group->poly[3] = 0; | ||
166 | group->poly[4] = 0; | ||
167 | group->poly[5] = -1; | ||
168 | } | ||
169 | |||
170 | |||
171 | /* Copy a GF(2^m)-based EC_GROUP structure. | ||
172 | * Note that all other members are handled by EC_GROUP_copy. | ||
173 | */ | ||
174 | int | ||
175 | ec_GF2m_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
176 | { | ||
177 | int i; | ||
178 | |||
179 | if (!BN_copy(&dest->field, &src->field)) | ||
180 | return 0; | ||
181 | if (!BN_copy(&dest->a, &src->a)) | ||
182 | return 0; | ||
183 | if (!BN_copy(&dest->b, &src->b)) | ||
184 | return 0; | ||
185 | dest->poly[0] = src->poly[0]; | ||
186 | dest->poly[1] = src->poly[1]; | ||
187 | dest->poly[2] = src->poly[2]; | ||
188 | dest->poly[3] = src->poly[3]; | ||
189 | dest->poly[4] = src->poly[4]; | ||
190 | dest->poly[5] = src->poly[5]; | ||
191 | if (bn_wexpand(&dest->a, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
192 | return 0; | ||
193 | if (bn_wexpand(&dest->b, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
194 | return 0; | ||
195 | for (i = dest->a.top; i < dest->a.dmax; i++) | ||
196 | dest->a.d[i] = 0; | ||
197 | for (i = dest->b.top; i < dest->b.dmax; i++) | ||
198 | dest->b.d[i] = 0; | ||
199 | return 1; | ||
200 | } | ||
201 | |||
202 | |||
203 | /* Set the curve parameters of an EC_GROUP structure. */ | ||
204 | int | ||
205 | ec_GF2m_simple_group_set_curve(EC_GROUP * group, | ||
206 | const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
207 | { | ||
208 | int ret = 0, i; | ||
209 | |||
210 | /* group->field */ | ||
211 | if (!BN_copy(&group->field, p)) | ||
212 | goto err; | ||
213 | i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; | ||
214 | if ((i != 5) && (i != 3)) { | ||
215 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); | ||
216 | goto err; | ||
217 | } | ||
218 | /* group->a */ | ||
219 | if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) | ||
220 | goto err; | ||
221 | if (bn_wexpand(&group->a, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
222 | goto err; | ||
223 | for (i = group->a.top; i < group->a.dmax; i++) | ||
224 | group->a.d[i] = 0; | ||
225 | |||
226 | /* group->b */ | ||
227 | if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) | ||
228 | goto err; | ||
229 | if (bn_wexpand(&group->b, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
230 | goto err; | ||
231 | for (i = group->b.top; i < group->b.dmax; i++) | ||
232 | group->b.d[i] = 0; | ||
233 | |||
234 | ret = 1; | ||
235 | err: | ||
236 | return ret; | ||
237 | } | ||
238 | |||
239 | |||
240 | /* Get the curve parameters of an EC_GROUP structure. | ||
241 | * If p, a, or b are NULL then there values will not be set but the method will return with success. | ||
242 | */ | ||
243 | int | ||
244 | ec_GF2m_simple_group_get_curve(const EC_GROUP *group, | ||
245 | BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
246 | { | ||
247 | int ret = 0; | ||
248 | |||
249 | if (p != NULL) { | ||
250 | if (!BN_copy(p, &group->field)) | ||
251 | return 0; | ||
252 | } | ||
253 | if (a != NULL) { | ||
254 | if (!BN_copy(a, &group->a)) | ||
255 | goto err; | ||
256 | } | ||
257 | if (b != NULL) { | ||
258 | if (!BN_copy(b, &group->b)) | ||
259 | goto err; | ||
260 | } | ||
261 | ret = 1; | ||
262 | |||
263 | err: | ||
264 | return ret; | ||
265 | } | ||
266 | |||
267 | |||
268 | /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ | ||
269 | int | ||
270 | ec_GF2m_simple_group_get_degree(const EC_GROUP * group) | ||
271 | { | ||
272 | return BN_num_bits(&group->field) - 1; | ||
273 | } | ||
274 | |||
275 | |||
276 | /* Checks the discriminant of the curve. | ||
277 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
278 | */ | ||
279 | int | ||
280 | ec_GF2m_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) | ||
281 | { | ||
282 | int ret = 0; | ||
283 | BIGNUM *b; | ||
284 | BN_CTX *new_ctx = NULL; | ||
285 | |||
286 | if (ctx == NULL) { | ||
287 | ctx = new_ctx = BN_CTX_new(); | ||
288 | if (ctx == NULL) { | ||
289 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
290 | goto err; | ||
291 | } | ||
292 | } | ||
293 | BN_CTX_start(ctx); | ||
294 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
295 | goto err; | ||
296 | |||
297 | if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) | ||
298 | goto err; | ||
299 | |||
300 | /* | ||
301 | * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic | ||
302 | * curve <=> b != 0 (mod p) | ||
303 | */ | ||
304 | if (BN_is_zero(b)) | ||
305 | goto err; | ||
306 | |||
307 | ret = 1; | ||
308 | |||
309 | err: | ||
310 | if (ctx != NULL) | ||
311 | BN_CTX_end(ctx); | ||
312 | BN_CTX_free(new_ctx); | ||
313 | return ret; | ||
314 | } | ||
315 | |||
316 | |||
317 | /* Initializes an EC_POINT. */ | ||
318 | int | ||
319 | ec_GF2m_simple_point_init(EC_POINT * point) | ||
320 | { | ||
321 | BN_init(&point->X); | ||
322 | BN_init(&point->Y); | ||
323 | BN_init(&point->Z); | ||
324 | return 1; | ||
325 | } | ||
326 | |||
327 | |||
328 | /* Frees an EC_POINT. */ | ||
329 | void | ||
330 | ec_GF2m_simple_point_finish(EC_POINT * point) | ||
331 | { | ||
332 | BN_free(&point->X); | ||
333 | BN_free(&point->Y); | ||
334 | BN_free(&point->Z); | ||
335 | } | ||
336 | |||
337 | |||
338 | /* Clears and frees an EC_POINT. */ | ||
339 | void | ||
340 | ec_GF2m_simple_point_clear_finish(EC_POINT * point) | ||
341 | { | ||
342 | BN_clear_free(&point->X); | ||
343 | BN_clear_free(&point->Y); | ||
344 | BN_clear_free(&point->Z); | ||
345 | point->Z_is_one = 0; | ||
346 | } | ||
347 | |||
348 | |||
349 | /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ | ||
350 | int | ||
351 | ec_GF2m_simple_point_copy(EC_POINT * dest, const EC_POINT * src) | ||
352 | { | ||
353 | if (!BN_copy(&dest->X, &src->X)) | ||
354 | return 0; | ||
355 | if (!BN_copy(&dest->Y, &src->Y)) | ||
356 | return 0; | ||
357 | if (!BN_copy(&dest->Z, &src->Z)) | ||
358 | return 0; | ||
359 | dest->Z_is_one = src->Z_is_one; | ||
360 | |||
361 | return 1; | ||
362 | } | ||
363 | |||
364 | |||
365 | /* Set an EC_POINT to the point at infinity. | ||
366 | * A point at infinity is represented by having Z=0. | ||
367 | */ | ||
368 | int | ||
369 | ec_GF2m_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) | ||
370 | { | ||
371 | point->Z_is_one = 0; | ||
372 | BN_zero(&point->Z); | ||
373 | return 1; | ||
374 | } | ||
375 | |||
376 | |||
377 | /* Set the coordinates of an EC_POINT using affine coordinates. | ||
378 | * Note that the simple implementation only uses affine coordinates. | ||
379 | */ | ||
380 | int | ||
381 | ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point, | ||
382 | const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx) | ||
383 | { | ||
384 | int ret = 0; | ||
385 | if (x == NULL || y == NULL) { | ||
386 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
387 | return 0; | ||
388 | } | ||
389 | if (!BN_copy(&point->X, x)) | ||
390 | goto err; | ||
391 | BN_set_negative(&point->X, 0); | ||
392 | if (!BN_copy(&point->Y, y)) | ||
393 | goto err; | ||
394 | BN_set_negative(&point->Y, 0); | ||
395 | if (!BN_copy(&point->Z, BN_value_one())) | ||
396 | goto err; | ||
397 | BN_set_negative(&point->Z, 0); | ||
398 | point->Z_is_one = 1; | ||
399 | ret = 1; | ||
400 | |||
401 | err: | ||
402 | return ret; | ||
403 | } | ||
404 | |||
405 | |||
406 | /* Gets the affine coordinates of an EC_POINT. | ||
407 | * Note that the simple implementation only uses affine coordinates. | ||
408 | */ | ||
409 | int | ||
410 | ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, | ||
411 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
412 | { | ||
413 | int ret = 0; | ||
414 | |||
415 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
416 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
417 | return 0; | ||
418 | } | ||
419 | if (BN_cmp(&point->Z, BN_value_one())) { | ||
420 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
421 | return 0; | ||
422 | } | ||
423 | if (x != NULL) { | ||
424 | if (!BN_copy(x, &point->X)) | ||
425 | goto err; | ||
426 | BN_set_negative(x, 0); | ||
427 | } | ||
428 | if (y != NULL) { | ||
429 | if (!BN_copy(y, &point->Y)) | ||
430 | goto err; | ||
431 | BN_set_negative(y, 0); | ||
432 | } | ||
433 | ret = 1; | ||
434 | |||
435 | err: | ||
436 | return ret; | ||
437 | } | ||
438 | |||
439 | /* Computes a + b and stores the result in r. r could be a or b, a could be b. | ||
440 | * Uses algorithm A.10.2 of IEEE P1363. | ||
441 | */ | ||
442 | int | ||
443 | ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
444 | const EC_POINT *b, BN_CTX *ctx) | ||
445 | { | ||
446 | BN_CTX *new_ctx = NULL; | ||
447 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; | ||
448 | int ret = 0; | ||
449 | |||
450 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
451 | if (!EC_POINT_copy(r, b)) | ||
452 | return 0; | ||
453 | return 1; | ||
454 | } | ||
455 | if (EC_POINT_is_at_infinity(group, b) > 0) { | ||
456 | if (!EC_POINT_copy(r, a)) | ||
457 | return 0; | ||
458 | return 1; | ||
459 | } | ||
460 | if (ctx == NULL) { | ||
461 | ctx = new_ctx = BN_CTX_new(); | ||
462 | if (ctx == NULL) | ||
463 | return 0; | ||
464 | } | ||
465 | BN_CTX_start(ctx); | ||
466 | if ((x0 = BN_CTX_get(ctx)) == NULL) | ||
467 | goto err; | ||
468 | if ((y0 = BN_CTX_get(ctx)) == NULL) | ||
469 | goto err; | ||
470 | if ((x1 = BN_CTX_get(ctx)) == NULL) | ||
471 | goto err; | ||
472 | if ((y1 = BN_CTX_get(ctx)) == NULL) | ||
473 | goto err; | ||
474 | if ((x2 = BN_CTX_get(ctx)) == NULL) | ||
475 | goto err; | ||
476 | if ((y2 = BN_CTX_get(ctx)) == NULL) | ||
477 | goto err; | ||
478 | if ((s = BN_CTX_get(ctx)) == NULL) | ||
479 | goto err; | ||
480 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
481 | goto err; | ||
482 | |||
483 | if (a->Z_is_one) { | ||
484 | if (!BN_copy(x0, &a->X)) | ||
485 | goto err; | ||
486 | if (!BN_copy(y0, &a->Y)) | ||
487 | goto err; | ||
488 | } else { | ||
489 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) | ||
490 | goto err; | ||
491 | } | ||
492 | if (b->Z_is_one) { | ||
493 | if (!BN_copy(x1, &b->X)) | ||
494 | goto err; | ||
495 | if (!BN_copy(y1, &b->Y)) | ||
496 | goto err; | ||
497 | } else { | ||
498 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) | ||
499 | goto err; | ||
500 | } | ||
501 | |||
502 | |||
503 | if (BN_GF2m_cmp(x0, x1)) { | ||
504 | if (!BN_GF2m_add(t, x0, x1)) | ||
505 | goto err; | ||
506 | if (!BN_GF2m_add(s, y0, y1)) | ||
507 | goto err; | ||
508 | if (!group->meth->field_div(group, s, s, t, ctx)) | ||
509 | goto err; | ||
510 | if (!group->meth->field_sqr(group, x2, s, ctx)) | ||
511 | goto err; | ||
512 | if (!BN_GF2m_add(x2, x2, &group->a)) | ||
513 | goto err; | ||
514 | if (!BN_GF2m_add(x2, x2, s)) | ||
515 | goto err; | ||
516 | if (!BN_GF2m_add(x2, x2, t)) | ||
517 | goto err; | ||
518 | } else { | ||
519 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { | ||
520 | if (!EC_POINT_set_to_infinity(group, r)) | ||
521 | goto err; | ||
522 | ret = 1; | ||
523 | goto err; | ||
524 | } | ||
525 | if (!group->meth->field_div(group, s, y1, x1, ctx)) | ||
526 | goto err; | ||
527 | if (!BN_GF2m_add(s, s, x1)) | ||
528 | goto err; | ||
529 | |||
530 | if (!group->meth->field_sqr(group, x2, s, ctx)) | ||
531 | goto err; | ||
532 | if (!BN_GF2m_add(x2, x2, s)) | ||
533 | goto err; | ||
534 | if (!BN_GF2m_add(x2, x2, &group->a)) | ||
535 | goto err; | ||
536 | } | ||
537 | |||
538 | if (!BN_GF2m_add(y2, x1, x2)) | ||
539 | goto err; | ||
540 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) | ||
541 | goto err; | ||
542 | if (!BN_GF2m_add(y2, y2, x2)) | ||
543 | goto err; | ||
544 | if (!BN_GF2m_add(y2, y2, y1)) | ||
545 | goto err; | ||
546 | |||
547 | if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) | ||
548 | goto err; | ||
549 | |||
550 | ret = 1; | ||
551 | |||
552 | err: | ||
553 | BN_CTX_end(ctx); | ||
554 | BN_CTX_free(new_ctx); | ||
555 | return ret; | ||
556 | } | ||
557 | |||
558 | |||
559 | /* Computes 2 * a and stores the result in r. r could be a. | ||
560 | * Uses algorithm A.10.2 of IEEE P1363. | ||
561 | */ | ||
562 | int | ||
563 | ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
564 | BN_CTX *ctx) | ||
565 | { | ||
566 | return ec_GF2m_simple_add(group, r, a, a, ctx); | ||
567 | } | ||
568 | |||
569 | int | ||
570 | ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
571 | { | ||
572 | if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) | ||
573 | /* point is its own inverse */ | ||
574 | return 1; | ||
575 | |||
576 | if (!EC_POINT_make_affine(group, point, ctx)) | ||
577 | return 0; | ||
578 | return BN_GF2m_add(&point->Y, &point->X, &point->Y); | ||
579 | } | ||
580 | |||
581 | |||
582 | /* Indicates whether the given point is the point at infinity. */ | ||
583 | int | ||
584 | ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
585 | { | ||
586 | return BN_is_zero(&point->Z); | ||
587 | } | ||
588 | |||
589 | |||
590 | /* Determines whether the given EC_POINT is an actual point on the curve defined | ||
591 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: | ||
592 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
593 | */ | ||
594 | int | ||
595 | ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
596 | { | ||
597 | int ret = -1; | ||
598 | BN_CTX *new_ctx = NULL; | ||
599 | BIGNUM *lh, *y2; | ||
600 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
601 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
602 | |||
603 | if (EC_POINT_is_at_infinity(group, point) > 0) | ||
604 | return 1; | ||
605 | |||
606 | field_mul = group->meth->field_mul; | ||
607 | field_sqr = group->meth->field_sqr; | ||
608 | |||
609 | /* only support affine coordinates */ | ||
610 | if (!point->Z_is_one) | ||
611 | return -1; | ||
612 | |||
613 | if (ctx == NULL) { | ||
614 | ctx = new_ctx = BN_CTX_new(); | ||
615 | if (ctx == NULL) | ||
616 | return -1; | ||
617 | } | ||
618 | BN_CTX_start(ctx); | ||
619 | if ((y2 = BN_CTX_get(ctx)) == NULL) | ||
620 | goto err; | ||
621 | if ((lh = BN_CTX_get(ctx)) == NULL) | ||
622 | goto err; | ||
623 | |||
624 | /* | ||
625 | * We have a curve defined by a Weierstrass equation y^2 + x*y = x^3 | ||
626 | * + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x | ||
627 | * + y ) * x + b + y^2 = 0 | ||
628 | */ | ||
629 | if (!BN_GF2m_add(lh, &point->X, &group->a)) | ||
630 | goto err; | ||
631 | if (!field_mul(group, lh, lh, &point->X, ctx)) | ||
632 | goto err; | ||
633 | if (!BN_GF2m_add(lh, lh, &point->Y)) | ||
634 | goto err; | ||
635 | if (!field_mul(group, lh, lh, &point->X, ctx)) | ||
636 | goto err; | ||
637 | if (!BN_GF2m_add(lh, lh, &group->b)) | ||
638 | goto err; | ||
639 | if (!field_sqr(group, y2, &point->Y, ctx)) | ||
640 | goto err; | ||
641 | if (!BN_GF2m_add(lh, lh, y2)) | ||
642 | goto err; | ||
643 | ret = BN_is_zero(lh); | ||
644 | err: | ||
645 | if (ctx) | ||
646 | BN_CTX_end(ctx); | ||
647 | BN_CTX_free(new_ctx); | ||
648 | return ret; | ||
649 | } | ||
650 | |||
651 | |||
652 | /* Indicates whether two points are equal. | ||
653 | * Return values: | ||
654 | * -1 error | ||
655 | * 0 equal (in affine coordinates) | ||
656 | * 1 not equal | ||
657 | */ | ||
658 | int | ||
659 | ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, | ||
660 | const EC_POINT *b, BN_CTX *ctx) | ||
661 | { | ||
662 | BIGNUM *aX, *aY, *bX, *bY; | ||
663 | BN_CTX *new_ctx = NULL; | ||
664 | int ret = -1; | ||
665 | |||
666 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
667 | return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; | ||
668 | } | ||
669 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
670 | return 1; | ||
671 | |||
672 | if (a->Z_is_one && b->Z_is_one) { | ||
673 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
674 | } | ||
675 | if (ctx == NULL) { | ||
676 | ctx = new_ctx = BN_CTX_new(); | ||
677 | if (ctx == NULL) | ||
678 | return -1; | ||
679 | } | ||
680 | BN_CTX_start(ctx); | ||
681 | if ((aX = BN_CTX_get(ctx)) == NULL) | ||
682 | goto err; | ||
683 | if ((aY = BN_CTX_get(ctx)) == NULL) | ||
684 | goto err; | ||
685 | if ((bX = BN_CTX_get(ctx)) == NULL) | ||
686 | goto err; | ||
687 | if ((bY = BN_CTX_get(ctx)) == NULL) | ||
688 | goto err; | ||
689 | |||
690 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) | ||
691 | goto err; | ||
692 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) | ||
693 | goto err; | ||
694 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; | ||
695 | |||
696 | err: | ||
697 | if (ctx) | ||
698 | BN_CTX_end(ctx); | ||
699 | BN_CTX_free(new_ctx); | ||
700 | return ret; | ||
701 | } | ||
702 | |||
703 | |||
704 | /* Forces the given EC_POINT to internally use affine coordinates. */ | ||
705 | int | ||
706 | ec_GF2m_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
707 | { | ||
708 | BN_CTX *new_ctx = NULL; | ||
709 | BIGNUM *x, *y; | ||
710 | int ret = 0; | ||
711 | |||
712 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) | ||
713 | return 1; | ||
714 | |||
715 | if (ctx == NULL) { | ||
716 | ctx = new_ctx = BN_CTX_new(); | ||
717 | if (ctx == NULL) | ||
718 | return 0; | ||
719 | } | ||
720 | BN_CTX_start(ctx); | ||
721 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
722 | goto err; | ||
723 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
724 | goto err; | ||
725 | |||
726 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) | ||
727 | goto err; | ||
728 | if (!BN_copy(&point->X, x)) | ||
729 | goto err; | ||
730 | if (!BN_copy(&point->Y, y)) | ||
731 | goto err; | ||
732 | if (!BN_one(&point->Z)) | ||
733 | goto err; | ||
734 | |||
735 | ret = 1; | ||
736 | |||
737 | err: | ||
738 | if (ctx) | ||
739 | BN_CTX_end(ctx); | ||
740 | BN_CTX_free(new_ctx); | ||
741 | return ret; | ||
742 | } | ||
743 | |||
744 | |||
745 | /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ | ||
746 | int | ||
747 | ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, | ||
748 | EC_POINT *points[], BN_CTX *ctx) | ||
749 | { | ||
750 | size_t i; | ||
751 | |||
752 | for (i = 0; i < num; i++) { | ||
753 | if (!group->meth->make_affine(group, points[i], ctx)) | ||
754 | return 0; | ||
755 | } | ||
756 | |||
757 | return 1; | ||
758 | } | ||
759 | |||
760 | |||
761 | /* Wrapper to simple binary polynomial field multiplication implementation. */ | ||
762 | int | ||
763 | ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
764 | const BIGNUM *b, BN_CTX *ctx) | ||
765 | { | ||
766 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); | ||
767 | } | ||
768 | |||
769 | |||
770 | /* Wrapper to simple binary polynomial field squaring implementation. */ | ||
771 | int | ||
772 | ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
773 | BN_CTX *ctx) | ||
774 | { | ||
775 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); | ||
776 | } | ||
777 | |||
778 | |||
779 | /* Wrapper to simple binary polynomial field division implementation. */ | ||
780 | int | ||
781 | ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
782 | const BIGNUM *b, BN_CTX *ctx) | ||
783 | { | ||
784 | return BN_GF2m_mod_div(r, a, b, &group->field, ctx); | ||
785 | } | ||
786 | |||
787 | #endif | ||