diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec_mult.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec_mult.c | 938 |
1 files changed, 0 insertions, 938 deletions
diff --git a/src/lib/libcrypto/ec/ec_mult.c b/src/lib/libcrypto/ec/ec_mult.c deleted file mode 100644 index 2ba173ef36..0000000000 --- a/src/lib/libcrypto/ec/ec_mult.c +++ /dev/null | |||
@@ -1,938 +0,0 @@ | |||
1 | /* crypto/ec/ec_mult.c */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
61 | * and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/err.h> | ||
67 | |||
68 | #include "ec_lcl.h" | ||
69 | |||
70 | |||
71 | /* | ||
72 | * This file implements the wNAF-based interleaving multi-exponentation method | ||
73 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>); | ||
74 | * for multiplication with precomputation, we use wNAF splitting | ||
75 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>). | ||
76 | */ | ||
77 | |||
78 | |||
79 | |||
80 | |||
81 | /* structure for precomputed multiples of the generator */ | ||
82 | typedef struct ec_pre_comp_st { | ||
83 | const EC_GROUP *group; /* parent EC_GROUP object */ | ||
84 | size_t blocksize; /* block size for wNAF splitting */ | ||
85 | size_t numblocks; /* max. number of blocks for which we have precomputation */ | ||
86 | size_t w; /* window size */ | ||
87 | EC_POINT **points; /* array with pre-calculated multiples of generator: | ||
88 | * 'num' pointers to EC_POINT objects followed by a NULL */ | ||
89 | size_t num; /* numblocks * 2^(w-1) */ | ||
90 | int references; | ||
91 | } EC_PRE_COMP; | ||
92 | |||
93 | /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */ | ||
94 | static void *ec_pre_comp_dup(void *); | ||
95 | static void ec_pre_comp_free(void *); | ||
96 | static void ec_pre_comp_clear_free(void *); | ||
97 | |||
98 | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) | ||
99 | { | ||
100 | EC_PRE_COMP *ret = NULL; | ||
101 | |||
102 | if (!group) | ||
103 | return NULL; | ||
104 | |||
105 | ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP)); | ||
106 | if (!ret) | ||
107 | { | ||
108 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
109 | return ret; | ||
110 | } | ||
111 | ret->group = group; | ||
112 | ret->blocksize = 8; /* default */ | ||
113 | ret->numblocks = 0; | ||
114 | ret->w = 4; /* default */ | ||
115 | ret->points = NULL; | ||
116 | ret->num = 0; | ||
117 | ret->references = 1; | ||
118 | return ret; | ||
119 | } | ||
120 | |||
121 | static void *ec_pre_comp_dup(void *src_) | ||
122 | { | ||
123 | EC_PRE_COMP *src = src_; | ||
124 | |||
125 | /* no need to actually copy, these objects never change! */ | ||
126 | |||
127 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
128 | |||
129 | return src_; | ||
130 | } | ||
131 | |||
132 | static void ec_pre_comp_free(void *pre_) | ||
133 | { | ||
134 | int i; | ||
135 | EC_PRE_COMP *pre = pre_; | ||
136 | |||
137 | if (!pre) | ||
138 | return; | ||
139 | |||
140 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
141 | if (i > 0) | ||
142 | return; | ||
143 | |||
144 | if (pre->points) | ||
145 | { | ||
146 | EC_POINT **p; | ||
147 | |||
148 | for (p = pre->points; *p != NULL; p++) | ||
149 | EC_POINT_free(*p); | ||
150 | OPENSSL_free(pre->points); | ||
151 | } | ||
152 | OPENSSL_free(pre); | ||
153 | } | ||
154 | |||
155 | static void ec_pre_comp_clear_free(void *pre_) | ||
156 | { | ||
157 | int i; | ||
158 | EC_PRE_COMP *pre = pre_; | ||
159 | |||
160 | if (!pre) | ||
161 | return; | ||
162 | |||
163 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
164 | if (i > 0) | ||
165 | return; | ||
166 | |||
167 | if (pre->points) | ||
168 | { | ||
169 | EC_POINT **p; | ||
170 | |||
171 | for (p = pre->points; *p != NULL; p++) | ||
172 | EC_POINT_clear_free(*p); | ||
173 | OPENSSL_cleanse(pre->points, sizeof pre->points); | ||
174 | OPENSSL_free(pre->points); | ||
175 | } | ||
176 | OPENSSL_cleanse(pre, sizeof pre); | ||
177 | OPENSSL_free(pre); | ||
178 | } | ||
179 | |||
180 | |||
181 | |||
182 | |||
183 | /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. | ||
184 | * This is an array r[] of values that are either zero or odd with an | ||
185 | * absolute value less than 2^w satisfying | ||
186 | * scalar = \sum_j r[j]*2^j | ||
187 | * where at most one of any w+1 consecutive digits is non-zero | ||
188 | * with the exception that the most significant digit may be only | ||
189 | * w-1 zeros away from that next non-zero digit. | ||
190 | */ | ||
191 | static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) | ||
192 | { | ||
193 | int window_val; | ||
194 | int ok = 0; | ||
195 | signed char *r = NULL; | ||
196 | int sign = 1; | ||
197 | int bit, next_bit, mask; | ||
198 | size_t len = 0, j; | ||
199 | |||
200 | if (BN_is_zero(scalar)) | ||
201 | { | ||
202 | r = OPENSSL_malloc(1); | ||
203 | if (!r) | ||
204 | { | ||
205 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
206 | goto err; | ||
207 | } | ||
208 | r[0] = 0; | ||
209 | *ret_len = 1; | ||
210 | return r; | ||
211 | } | ||
212 | |||
213 | if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */ | ||
214 | { | ||
215 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
216 | goto err; | ||
217 | } | ||
218 | bit = 1 << w; /* at most 128 */ | ||
219 | next_bit = bit << 1; /* at most 256 */ | ||
220 | mask = next_bit - 1; /* at most 255 */ | ||
221 | |||
222 | if (BN_is_negative(scalar)) | ||
223 | { | ||
224 | sign = -1; | ||
225 | } | ||
226 | |||
227 | len = BN_num_bits(scalar); | ||
228 | r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation | ||
229 | * (*ret_len will be set to the actual length, i.e. at most | ||
230 | * BN_num_bits(scalar) + 1) */ | ||
231 | if (r == NULL) | ||
232 | { | ||
233 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
234 | goto err; | ||
235 | } | ||
236 | |||
237 | if (scalar->d == NULL || scalar->top == 0) | ||
238 | { | ||
239 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
240 | goto err; | ||
241 | } | ||
242 | window_val = scalar->d[0] & mask; | ||
243 | j = 0; | ||
244 | while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */ | ||
245 | { | ||
246 | int digit = 0; | ||
247 | |||
248 | /* 0 <= window_val <= 2^(w+1) */ | ||
249 | |||
250 | if (window_val & 1) | ||
251 | { | ||
252 | /* 0 < window_val < 2^(w+1) */ | ||
253 | |||
254 | if (window_val & bit) | ||
255 | { | ||
256 | digit = window_val - next_bit; /* -2^w < digit < 0 */ | ||
257 | |||
258 | #if 1 /* modified wNAF */ | ||
259 | if (j + w + 1 >= len) | ||
260 | { | ||
261 | /* special case for generating modified wNAFs: | ||
262 | * no new bits will be added into window_val, | ||
263 | * so using a positive digit here will decrease | ||
264 | * the total length of the representation */ | ||
265 | |||
266 | digit = window_val & (mask >> 1); /* 0 < digit < 2^w */ | ||
267 | } | ||
268 | #endif | ||
269 | } | ||
270 | else | ||
271 | { | ||
272 | digit = window_val; /* 0 < digit < 2^w */ | ||
273 | } | ||
274 | |||
275 | if (digit <= -bit || digit >= bit || !(digit & 1)) | ||
276 | { | ||
277 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
278 | goto err; | ||
279 | } | ||
280 | |||
281 | window_val -= digit; | ||
282 | |||
283 | /* now window_val is 0 or 2^(w+1) in standard wNAF generation; | ||
284 | * for modified window NAFs, it may also be 2^w | ||
285 | */ | ||
286 | if (window_val != 0 && window_val != next_bit && window_val != bit) | ||
287 | { | ||
288 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
289 | goto err; | ||
290 | } | ||
291 | } | ||
292 | |||
293 | r[j++] = sign * digit; | ||
294 | |||
295 | window_val >>= 1; | ||
296 | window_val += bit * BN_is_bit_set(scalar, j + w); | ||
297 | |||
298 | if (window_val > next_bit) | ||
299 | { | ||
300 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
301 | goto err; | ||
302 | } | ||
303 | } | ||
304 | |||
305 | if (j > len + 1) | ||
306 | { | ||
307 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
308 | goto err; | ||
309 | } | ||
310 | len = j; | ||
311 | ok = 1; | ||
312 | |||
313 | err: | ||
314 | if (!ok) | ||
315 | { | ||
316 | OPENSSL_free(r); | ||
317 | r = NULL; | ||
318 | } | ||
319 | if (ok) | ||
320 | *ret_len = len; | ||
321 | return r; | ||
322 | } | ||
323 | |||
324 | |||
325 | /* TODO: table should be optimised for the wNAF-based implementation, | ||
326 | * sometimes smaller windows will give better performance | ||
327 | * (thus the boundaries should be increased) | ||
328 | */ | ||
329 | #define EC_window_bits_for_scalar_size(b) \ | ||
330 | ((size_t) \ | ||
331 | ((b) >= 2000 ? 6 : \ | ||
332 | (b) >= 800 ? 5 : \ | ||
333 | (b) >= 300 ? 4 : \ | ||
334 | (b) >= 70 ? 3 : \ | ||
335 | (b) >= 20 ? 2 : \ | ||
336 | 1)) | ||
337 | |||
338 | /* Compute | ||
339 | * \sum scalars[i]*points[i], | ||
340 | * also including | ||
341 | * scalar*generator | ||
342 | * in the addition if scalar != NULL | ||
343 | */ | ||
344 | int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
345 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
346 | { | ||
347 | BN_CTX *new_ctx = NULL; | ||
348 | const EC_POINT *generator = NULL; | ||
349 | EC_POINT *tmp = NULL; | ||
350 | size_t totalnum; | ||
351 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ | ||
352 | size_t pre_points_per_block = 0; | ||
353 | size_t i, j; | ||
354 | int k; | ||
355 | int r_is_inverted = 0; | ||
356 | int r_is_at_infinity = 1; | ||
357 | size_t *wsize = NULL; /* individual window sizes */ | ||
358 | signed char **wNAF = NULL; /* individual wNAFs */ | ||
359 | size_t *wNAF_len = NULL; | ||
360 | size_t max_len = 0; | ||
361 | size_t num_val; | ||
362 | EC_POINT **val = NULL; /* precomputation */ | ||
363 | EC_POINT **v; | ||
364 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */ | ||
365 | const EC_PRE_COMP *pre_comp = NULL; | ||
366 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars, | ||
367 | * i.e. precomputation is not available */ | ||
368 | int ret = 0; | ||
369 | |||
370 | if (group->meth != r->meth) | ||
371 | { | ||
372 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
373 | return 0; | ||
374 | } | ||
375 | |||
376 | if ((scalar == NULL) && (num == 0)) | ||
377 | { | ||
378 | return EC_POINT_set_to_infinity(group, r); | ||
379 | } | ||
380 | |||
381 | for (i = 0; i < num; i++) | ||
382 | { | ||
383 | if (group->meth != points[i]->meth) | ||
384 | { | ||
385 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
386 | return 0; | ||
387 | } | ||
388 | } | ||
389 | |||
390 | if (ctx == NULL) | ||
391 | { | ||
392 | ctx = new_ctx = BN_CTX_new(); | ||
393 | if (ctx == NULL) | ||
394 | goto err; | ||
395 | } | ||
396 | |||
397 | if (scalar != NULL) | ||
398 | { | ||
399 | generator = EC_GROUP_get0_generator(group); | ||
400 | if (generator == NULL) | ||
401 | { | ||
402 | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); | ||
403 | goto err; | ||
404 | } | ||
405 | |||
406 | /* look if we can use precomputed multiples of generator */ | ||
407 | |||
408 | pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
409 | |||
410 | if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) | ||
411 | { | ||
412 | blocksize = pre_comp->blocksize; | ||
413 | |||
414 | /* determine maximum number of blocks that wNAF splitting may yield | ||
415 | * (NB: maximum wNAF length is bit length plus one) */ | ||
416 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; | ||
417 | |||
418 | /* we cannot use more blocks than we have precomputation for */ | ||
419 | if (numblocks > pre_comp->numblocks) | ||
420 | numblocks = pre_comp->numblocks; | ||
421 | |||
422 | pre_points_per_block = 1u << (pre_comp->w - 1); | ||
423 | |||
424 | /* check that pre_comp looks sane */ | ||
425 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) | ||
426 | { | ||
427 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
428 | goto err; | ||
429 | } | ||
430 | } | ||
431 | else | ||
432 | { | ||
433 | /* can't use precomputation */ | ||
434 | pre_comp = NULL; | ||
435 | numblocks = 1; | ||
436 | num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */ | ||
437 | } | ||
438 | } | ||
439 | |||
440 | totalnum = num + numblocks; | ||
441 | |||
442 | wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]); | ||
443 | wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]); | ||
444 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */ | ||
445 | val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]); | ||
446 | |||
447 | if (!wsize || !wNAF_len || !wNAF || !val_sub) | ||
448 | { | ||
449 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
450 | goto err; | ||
451 | } | ||
452 | |||
453 | wNAF[0] = NULL; /* preliminary pivot */ | ||
454 | |||
455 | /* num_val will be the total number of temporarily precomputed points */ | ||
456 | num_val = 0; | ||
457 | |||
458 | for (i = 0; i < num + num_scalar; i++) | ||
459 | { | ||
460 | size_t bits; | ||
461 | |||
462 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); | ||
463 | wsize[i] = EC_window_bits_for_scalar_size(bits); | ||
464 | num_val += 1u << (wsize[i] - 1); | ||
465 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ | ||
466 | wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]); | ||
467 | if (wNAF[i] == NULL) | ||
468 | goto err; | ||
469 | if (wNAF_len[i] > max_len) | ||
470 | max_len = wNAF_len[i]; | ||
471 | } | ||
472 | |||
473 | if (numblocks) | ||
474 | { | ||
475 | /* we go here iff scalar != NULL */ | ||
476 | |||
477 | if (pre_comp == NULL) | ||
478 | { | ||
479 | if (num_scalar != 1) | ||
480 | { | ||
481 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
482 | goto err; | ||
483 | } | ||
484 | /* we have already generated a wNAF for 'scalar' */ | ||
485 | } | ||
486 | else | ||
487 | { | ||
488 | signed char *tmp_wNAF = NULL; | ||
489 | size_t tmp_len = 0; | ||
490 | |||
491 | if (num_scalar != 0) | ||
492 | { | ||
493 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
494 | goto err; | ||
495 | } | ||
496 | |||
497 | /* use the window size for which we have precomputation */ | ||
498 | wsize[num] = pre_comp->w; | ||
499 | tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len); | ||
500 | if (!tmp_wNAF) | ||
501 | goto err; | ||
502 | |||
503 | if (tmp_len <= max_len) | ||
504 | { | ||
505 | /* One of the other wNAFs is at least as long | ||
506 | * as the wNAF belonging to the generator, | ||
507 | * so wNAF splitting will not buy us anything. */ | ||
508 | |||
509 | numblocks = 1; | ||
510 | totalnum = num + 1; /* don't use wNAF splitting */ | ||
511 | wNAF[num] = tmp_wNAF; | ||
512 | wNAF[num + 1] = NULL; | ||
513 | wNAF_len[num] = tmp_len; | ||
514 | if (tmp_len > max_len) | ||
515 | max_len = tmp_len; | ||
516 | /* pre_comp->points starts with the points that we need here: */ | ||
517 | val_sub[num] = pre_comp->points; | ||
518 | } | ||
519 | else | ||
520 | { | ||
521 | /* don't include tmp_wNAF directly into wNAF array | ||
522 | * - use wNAF splitting and include the blocks */ | ||
523 | |||
524 | signed char *pp; | ||
525 | EC_POINT **tmp_points; | ||
526 | |||
527 | if (tmp_len < numblocks * blocksize) | ||
528 | { | ||
529 | /* possibly we can do with fewer blocks than estimated */ | ||
530 | numblocks = (tmp_len + blocksize - 1) / blocksize; | ||
531 | if (numblocks > pre_comp->numblocks) | ||
532 | { | ||
533 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
534 | goto err; | ||
535 | } | ||
536 | totalnum = num + numblocks; | ||
537 | } | ||
538 | |||
539 | /* split wNAF in 'numblocks' parts */ | ||
540 | pp = tmp_wNAF; | ||
541 | tmp_points = pre_comp->points; | ||
542 | |||
543 | for (i = num; i < totalnum; i++) | ||
544 | { | ||
545 | if (i < totalnum - 1) | ||
546 | { | ||
547 | wNAF_len[i] = blocksize; | ||
548 | if (tmp_len < blocksize) | ||
549 | { | ||
550 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
551 | goto err; | ||
552 | } | ||
553 | tmp_len -= blocksize; | ||
554 | } | ||
555 | else | ||
556 | /* last block gets whatever is left | ||
557 | * (this could be more or less than 'blocksize'!) */ | ||
558 | wNAF_len[i] = tmp_len; | ||
559 | |||
560 | wNAF[i + 1] = NULL; | ||
561 | wNAF[i] = OPENSSL_malloc(wNAF_len[i]); | ||
562 | if (wNAF[i] == NULL) | ||
563 | { | ||
564 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
565 | OPENSSL_free(tmp_wNAF); | ||
566 | goto err; | ||
567 | } | ||
568 | memcpy(wNAF[i], pp, wNAF_len[i]); | ||
569 | if (wNAF_len[i] > max_len) | ||
570 | max_len = wNAF_len[i]; | ||
571 | |||
572 | if (*tmp_points == NULL) | ||
573 | { | ||
574 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
575 | OPENSSL_free(tmp_wNAF); | ||
576 | goto err; | ||
577 | } | ||
578 | val_sub[i] = tmp_points; | ||
579 | tmp_points += pre_points_per_block; | ||
580 | pp += blocksize; | ||
581 | } | ||
582 | OPENSSL_free(tmp_wNAF); | ||
583 | } | ||
584 | } | ||
585 | } | ||
586 | |||
587 | /* All points we precompute now go into a single array 'val'. | ||
588 | * 'val_sub[i]' is a pointer to the subarray for the i-th point, | ||
589 | * or to a subarray of 'pre_comp->points' if we already have precomputation. */ | ||
590 | val = OPENSSL_malloc((num_val + 1) * sizeof val[0]); | ||
591 | if (val == NULL) | ||
592 | { | ||
593 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
594 | goto err; | ||
595 | } | ||
596 | val[num_val] = NULL; /* pivot element */ | ||
597 | |||
598 | /* allocate points for precomputation */ | ||
599 | v = val; | ||
600 | for (i = 0; i < num + num_scalar; i++) | ||
601 | { | ||
602 | val_sub[i] = v; | ||
603 | for (j = 0; j < (1u << (wsize[i] - 1)); j++) | ||
604 | { | ||
605 | *v = EC_POINT_new(group); | ||
606 | if (*v == NULL) goto err; | ||
607 | v++; | ||
608 | } | ||
609 | } | ||
610 | if (!(v == val + num_val)) | ||
611 | { | ||
612 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
613 | goto err; | ||
614 | } | ||
615 | |||
616 | if (!(tmp = EC_POINT_new(group))) | ||
617 | goto err; | ||
618 | |||
619 | /* prepare precomputed values: | ||
620 | * val_sub[i][0] := points[i] | ||
621 | * val_sub[i][1] := 3 * points[i] | ||
622 | * val_sub[i][2] := 5 * points[i] | ||
623 | * ... | ||
624 | */ | ||
625 | for (i = 0; i < num + num_scalar; i++) | ||
626 | { | ||
627 | if (i < num) | ||
628 | { | ||
629 | if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err; | ||
630 | } | ||
631 | else | ||
632 | { | ||
633 | if (!EC_POINT_copy(val_sub[i][0], generator)) goto err; | ||
634 | } | ||
635 | |||
636 | if (wsize[i] > 1) | ||
637 | { | ||
638 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err; | ||
639 | for (j = 1; j < (1u << (wsize[i] - 1)); j++) | ||
640 | { | ||
641 | if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err; | ||
642 | } | ||
643 | } | ||
644 | } | ||
645 | |||
646 | #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */ | ||
647 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) | ||
648 | goto err; | ||
649 | #endif | ||
650 | |||
651 | r_is_at_infinity = 1; | ||
652 | |||
653 | for (k = max_len - 1; k >= 0; k--) | ||
654 | { | ||
655 | if (!r_is_at_infinity) | ||
656 | { | ||
657 | if (!EC_POINT_dbl(group, r, r, ctx)) goto err; | ||
658 | } | ||
659 | |||
660 | for (i = 0; i < totalnum; i++) | ||
661 | { | ||
662 | if (wNAF_len[i] > (size_t)k) | ||
663 | { | ||
664 | int digit = wNAF[i][k]; | ||
665 | int is_neg; | ||
666 | |||
667 | if (digit) | ||
668 | { | ||
669 | is_neg = digit < 0; | ||
670 | |||
671 | if (is_neg) | ||
672 | digit = -digit; | ||
673 | |||
674 | if (is_neg != r_is_inverted) | ||
675 | { | ||
676 | if (!r_is_at_infinity) | ||
677 | { | ||
678 | if (!EC_POINT_invert(group, r, ctx)) goto err; | ||
679 | } | ||
680 | r_is_inverted = !r_is_inverted; | ||
681 | } | ||
682 | |||
683 | /* digit > 0 */ | ||
684 | |||
685 | if (r_is_at_infinity) | ||
686 | { | ||
687 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err; | ||
688 | r_is_at_infinity = 0; | ||
689 | } | ||
690 | else | ||
691 | { | ||
692 | if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err; | ||
693 | } | ||
694 | } | ||
695 | } | ||
696 | } | ||
697 | } | ||
698 | |||
699 | if (r_is_at_infinity) | ||
700 | { | ||
701 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
702 | } | ||
703 | else | ||
704 | { | ||
705 | if (r_is_inverted) | ||
706 | if (!EC_POINT_invert(group, r, ctx)) goto err; | ||
707 | } | ||
708 | |||
709 | ret = 1; | ||
710 | |||
711 | err: | ||
712 | if (new_ctx != NULL) | ||
713 | BN_CTX_free(new_ctx); | ||
714 | if (tmp != NULL) | ||
715 | EC_POINT_free(tmp); | ||
716 | if (wsize != NULL) | ||
717 | OPENSSL_free(wsize); | ||
718 | if (wNAF_len != NULL) | ||
719 | OPENSSL_free(wNAF_len); | ||
720 | if (wNAF != NULL) | ||
721 | { | ||
722 | signed char **w; | ||
723 | |||
724 | for (w = wNAF; *w != NULL; w++) | ||
725 | OPENSSL_free(*w); | ||
726 | |||
727 | OPENSSL_free(wNAF); | ||
728 | } | ||
729 | if (val != NULL) | ||
730 | { | ||
731 | for (v = val; *v != NULL; v++) | ||
732 | EC_POINT_clear_free(*v); | ||
733 | |||
734 | OPENSSL_free(val); | ||
735 | } | ||
736 | if (val_sub != NULL) | ||
737 | { | ||
738 | OPENSSL_free(val_sub); | ||
739 | } | ||
740 | return ret; | ||
741 | } | ||
742 | |||
743 | |||
744 | /* ec_wNAF_precompute_mult() | ||
745 | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator | ||
746 | * for use with wNAF splitting as implemented in ec_wNAF_mul(). | ||
747 | * | ||
748 | * 'pre_comp->points' is an array of multiples of the generator | ||
749 | * of the following form: | ||
750 | * points[0] = generator; | ||
751 | * points[1] = 3 * generator; | ||
752 | * ... | ||
753 | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; | ||
754 | * points[2^(w-1)] = 2^blocksize * generator; | ||
755 | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; | ||
756 | * ... | ||
757 | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator | ||
758 | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator | ||
759 | * ... | ||
760 | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator | ||
761 | * points[2^(w-1)*numblocks] = NULL | ||
762 | */ | ||
763 | int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
764 | { | ||
765 | const EC_POINT *generator; | ||
766 | EC_POINT *tmp_point = NULL, *base = NULL, **var; | ||
767 | BN_CTX *new_ctx = NULL; | ||
768 | BIGNUM *order; | ||
769 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; | ||
770 | EC_POINT **points = NULL; | ||
771 | EC_PRE_COMP *pre_comp; | ||
772 | int ret = 0; | ||
773 | |||
774 | /* if there is an old EC_PRE_COMP object, throw it away */ | ||
775 | EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
776 | |||
777 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) | ||
778 | return 0; | ||
779 | |||
780 | generator = EC_GROUP_get0_generator(group); | ||
781 | if (generator == NULL) | ||
782 | { | ||
783 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); | ||
784 | goto err; | ||
785 | } | ||
786 | |||
787 | if (ctx == NULL) | ||
788 | { | ||
789 | ctx = new_ctx = BN_CTX_new(); | ||
790 | if (ctx == NULL) | ||
791 | goto err; | ||
792 | } | ||
793 | |||
794 | BN_CTX_start(ctx); | ||
795 | order = BN_CTX_get(ctx); | ||
796 | if (order == NULL) goto err; | ||
797 | |||
798 | if (!EC_GROUP_get_order(group, order, ctx)) goto err; | ||
799 | if (BN_is_zero(order)) | ||
800 | { | ||
801 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); | ||
802 | goto err; | ||
803 | } | ||
804 | |||
805 | bits = BN_num_bits(order); | ||
806 | /* The following parameters mean we precompute (approximately) | ||
807 | * one point per bit. | ||
808 | * | ||
809 | * TBD: The combination 8, 4 is perfect for 160 bits; for other | ||
810 | * bit lengths, other parameter combinations might provide better | ||
811 | * efficiency. | ||
812 | */ | ||
813 | blocksize = 8; | ||
814 | w = 4; | ||
815 | if (EC_window_bits_for_scalar_size(bits) > w) | ||
816 | { | ||
817 | /* let's not make the window too small ... */ | ||
818 | w = EC_window_bits_for_scalar_size(bits); | ||
819 | } | ||
820 | |||
821 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */ | ||
822 | |||
823 | pre_points_per_block = 1u << (w - 1); | ||
824 | num = pre_points_per_block * numblocks; /* number of points to compute and store */ | ||
825 | |||
826 | points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1)); | ||
827 | if (!points) | ||
828 | { | ||
829 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
830 | goto err; | ||
831 | } | ||
832 | |||
833 | var = points; | ||
834 | var[num] = NULL; /* pivot */ | ||
835 | for (i = 0; i < num; i++) | ||
836 | { | ||
837 | if ((var[i] = EC_POINT_new(group)) == NULL) | ||
838 | { | ||
839 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
840 | goto err; | ||
841 | } | ||
842 | } | ||
843 | |||
844 | if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) | ||
845 | { | ||
846 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
847 | goto err; | ||
848 | } | ||
849 | |||
850 | if (!EC_POINT_copy(base, generator)) | ||
851 | goto err; | ||
852 | |||
853 | /* do the precomputation */ | ||
854 | for (i = 0; i < numblocks; i++) | ||
855 | { | ||
856 | size_t j; | ||
857 | |||
858 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) | ||
859 | goto err; | ||
860 | |||
861 | if (!EC_POINT_copy(*var++, base)) | ||
862 | goto err; | ||
863 | |||
864 | for (j = 1; j < pre_points_per_block; j++, var++) | ||
865 | { | ||
866 | /* calculate odd multiples of the current base point */ | ||
867 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) | ||
868 | goto err; | ||
869 | } | ||
870 | |||
871 | if (i < numblocks - 1) | ||
872 | { | ||
873 | /* get the next base (multiply current one by 2^blocksize) */ | ||
874 | size_t k; | ||
875 | |||
876 | if (blocksize <= 2) | ||
877 | { | ||
878 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); | ||
879 | goto err; | ||
880 | } | ||
881 | |||
882 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) | ||
883 | goto err; | ||
884 | for (k = 2; k < blocksize; k++) | ||
885 | { | ||
886 | if (!EC_POINT_dbl(group,base,base,ctx)) | ||
887 | goto err; | ||
888 | } | ||
889 | } | ||
890 | } | ||
891 | |||
892 | if (!EC_POINTs_make_affine(group, num, points, ctx)) | ||
893 | goto err; | ||
894 | |||
895 | pre_comp->group = group; | ||
896 | pre_comp->blocksize = blocksize; | ||
897 | pre_comp->numblocks = numblocks; | ||
898 | pre_comp->w = w; | ||
899 | pre_comp->points = points; | ||
900 | points = NULL; | ||
901 | pre_comp->num = num; | ||
902 | |||
903 | if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp, | ||
904 | ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free)) | ||
905 | goto err; | ||
906 | pre_comp = NULL; | ||
907 | |||
908 | ret = 1; | ||
909 | err: | ||
910 | if (ctx != NULL) | ||
911 | BN_CTX_end(ctx); | ||
912 | if (new_ctx != NULL) | ||
913 | BN_CTX_free(new_ctx); | ||
914 | if (pre_comp) | ||
915 | ec_pre_comp_free(pre_comp); | ||
916 | if (points) | ||
917 | { | ||
918 | EC_POINT **p; | ||
919 | |||
920 | for (p = points; *p != NULL; p++) | ||
921 | EC_POINT_free(*p); | ||
922 | OPENSSL_free(points); | ||
923 | } | ||
924 | if (tmp_point) | ||
925 | EC_POINT_free(tmp_point); | ||
926 | if (base) | ||
927 | EC_POINT_free(base); | ||
928 | return ret; | ||
929 | } | ||
930 | |||
931 | |||
932 | int ec_wNAF_have_precompute_mult(const EC_GROUP *group) | ||
933 | { | ||
934 | if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL) | ||
935 | return 1; | ||
936 | else | ||
937 | return 0; | ||
938 | } | ||