diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec_mult.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec_mult.c | 886 |
1 files changed, 0 insertions, 886 deletions
diff --git a/src/lib/libcrypto/ec/ec_mult.c b/src/lib/libcrypto/ec/ec_mult.c deleted file mode 100644 index e428ac586b..0000000000 --- a/src/lib/libcrypto/ec/ec_mult.c +++ /dev/null | |||
@@ -1,886 +0,0 @@ | |||
1 | /* $OpenBSD: ec_mult.c,v 1.19 2015/09/10 15:56:25 jsing Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
61 | * and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/err.h> | ||
67 | |||
68 | #include "ec_lcl.h" | ||
69 | |||
70 | |||
71 | /* | ||
72 | * This file implements the wNAF-based interleaving multi-exponentation method | ||
73 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>); | ||
74 | * for multiplication with precomputation, we use wNAF splitting | ||
75 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>). | ||
76 | */ | ||
77 | |||
78 | |||
79 | |||
80 | |||
81 | /* structure for precomputed multiples of the generator */ | ||
82 | typedef struct ec_pre_comp_st { | ||
83 | const EC_GROUP *group; /* parent EC_GROUP object */ | ||
84 | size_t blocksize; /* block size for wNAF splitting */ | ||
85 | size_t numblocks; /* max. number of blocks for which we have | ||
86 | * precomputation */ | ||
87 | size_t w; /* window size */ | ||
88 | EC_POINT **points; /* array with pre-calculated multiples of | ||
89 | * generator: 'num' pointers to EC_POINT | ||
90 | * objects followed by a NULL */ | ||
91 | size_t num; /* numblocks * 2^(w-1) */ | ||
92 | int references; | ||
93 | } EC_PRE_COMP; | ||
94 | |||
95 | /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */ | ||
96 | static void *ec_pre_comp_dup(void *); | ||
97 | static void ec_pre_comp_free(void *); | ||
98 | static void ec_pre_comp_clear_free(void *); | ||
99 | |||
100 | static EC_PRE_COMP * | ||
101 | ec_pre_comp_new(const EC_GROUP * group) | ||
102 | { | ||
103 | EC_PRE_COMP *ret = NULL; | ||
104 | |||
105 | if (!group) | ||
106 | return NULL; | ||
107 | |||
108 | ret = malloc(sizeof(EC_PRE_COMP)); | ||
109 | if (!ret) { | ||
110 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
111 | return ret; | ||
112 | } | ||
113 | ret->group = group; | ||
114 | ret->blocksize = 8; /* default */ | ||
115 | ret->numblocks = 0; | ||
116 | ret->w = 4; /* default */ | ||
117 | ret->points = NULL; | ||
118 | ret->num = 0; | ||
119 | ret->references = 1; | ||
120 | return ret; | ||
121 | } | ||
122 | |||
123 | static void * | ||
124 | ec_pre_comp_dup(void *src_) | ||
125 | { | ||
126 | EC_PRE_COMP *src = src_; | ||
127 | |||
128 | /* no need to actually copy, these objects never change! */ | ||
129 | |||
130 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
131 | |||
132 | return src_; | ||
133 | } | ||
134 | |||
135 | static void | ||
136 | ec_pre_comp_free(void *pre_) | ||
137 | { | ||
138 | int i; | ||
139 | EC_PRE_COMP *pre = pre_; | ||
140 | |||
141 | if (!pre) | ||
142 | return; | ||
143 | |||
144 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
145 | if (i > 0) | ||
146 | return; | ||
147 | |||
148 | if (pre->points) { | ||
149 | EC_POINT **p; | ||
150 | |||
151 | for (p = pre->points; *p != NULL; p++) | ||
152 | EC_POINT_free(*p); | ||
153 | free(pre->points); | ||
154 | } | ||
155 | free(pre); | ||
156 | } | ||
157 | |||
158 | static void | ||
159 | ec_pre_comp_clear_free(void *pre_) | ||
160 | { | ||
161 | int i; | ||
162 | EC_PRE_COMP *pre = pre_; | ||
163 | |||
164 | if (!pre) | ||
165 | return; | ||
166 | |||
167 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
168 | if (i > 0) | ||
169 | return; | ||
170 | |||
171 | if (pre->points) { | ||
172 | EC_POINT **p; | ||
173 | |||
174 | for (p = pre->points; *p != NULL; p++) { | ||
175 | EC_POINT_clear_free(*p); | ||
176 | explicit_bzero(p, sizeof *p); | ||
177 | } | ||
178 | free(pre->points); | ||
179 | } | ||
180 | explicit_bzero(pre, sizeof *pre); | ||
181 | free(pre); | ||
182 | } | ||
183 | |||
184 | |||
185 | |||
186 | |||
187 | /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. | ||
188 | * This is an array r[] of values that are either zero or odd with an | ||
189 | * absolute value less than 2^w satisfying | ||
190 | * scalar = \sum_j r[j]*2^j | ||
191 | * where at most one of any w+1 consecutive digits is non-zero | ||
192 | * with the exception that the most significant digit may be only | ||
193 | * w-1 zeros away from that next non-zero digit. | ||
194 | */ | ||
195 | static signed char * | ||
196 | compute_wNAF(const BIGNUM * scalar, int w, size_t * ret_len) | ||
197 | { | ||
198 | int window_val; | ||
199 | int ok = 0; | ||
200 | signed char *r = NULL; | ||
201 | int sign = 1; | ||
202 | int bit, next_bit, mask; | ||
203 | size_t len = 0, j; | ||
204 | |||
205 | if (BN_is_zero(scalar)) { | ||
206 | r = malloc(1); | ||
207 | if (!r) { | ||
208 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
209 | goto err; | ||
210 | } | ||
211 | r[0] = 0; | ||
212 | *ret_len = 1; | ||
213 | return r; | ||
214 | } | ||
215 | if (w <= 0 || w > 7) { | ||
216 | /* 'signed char' can represent integers with | ||
217 | * absolute values less than 2^7 */ | ||
218 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
219 | goto err; | ||
220 | } | ||
221 | bit = 1 << w; /* at most 128 */ | ||
222 | next_bit = bit << 1; /* at most 256 */ | ||
223 | mask = next_bit - 1; /* at most 255 */ | ||
224 | |||
225 | if (BN_is_negative(scalar)) { | ||
226 | sign = -1; | ||
227 | } | ||
228 | if (scalar->d == NULL || scalar->top == 0) { | ||
229 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
230 | goto err; | ||
231 | } | ||
232 | len = BN_num_bits(scalar); | ||
233 | r = malloc(len + 1); /* modified wNAF may be one digit longer than | ||
234 | * binary representation (*ret_len will be | ||
235 | * set to the actual length, i.e. at most | ||
236 | * BN_num_bits(scalar) + 1) */ | ||
237 | if (r == NULL) { | ||
238 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
239 | goto err; | ||
240 | } | ||
241 | window_val = scalar->d[0] & mask; | ||
242 | j = 0; | ||
243 | while ((window_val != 0) || (j + w + 1 < len)) { | ||
244 | /* if j+w+1 >= len, window_val will not increase */ | ||
245 | int digit = 0; | ||
246 | |||
247 | /* 0 <= window_val <= 2^(w+1) */ | ||
248 | if (window_val & 1) { | ||
249 | /* 0 < window_val < 2^(w+1) */ | ||
250 | if (window_val & bit) { | ||
251 | digit = window_val - next_bit; /* -2^w < digit < 0 */ | ||
252 | |||
253 | #if 1 /* modified wNAF */ | ||
254 | if (j + w + 1 >= len) { | ||
255 | /* | ||
256 | * special case for generating | ||
257 | * modified wNAFs: no new bits will | ||
258 | * be added into window_val, so using | ||
259 | * a positive digit here will | ||
260 | * decrease the total length of the | ||
261 | * representation | ||
262 | */ | ||
263 | |||
264 | digit = window_val & (mask >> 1); /* 0 < digit < 2^w */ | ||
265 | } | ||
266 | #endif | ||
267 | } else { | ||
268 | digit = window_val; /* 0 < digit < 2^w */ | ||
269 | } | ||
270 | |||
271 | if (digit <= -bit || digit >= bit || !(digit & 1)) { | ||
272 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
273 | goto err; | ||
274 | } | ||
275 | window_val -= digit; | ||
276 | |||
277 | /* | ||
278 | * now window_val is 0 or 2^(w+1) in standard wNAF | ||
279 | * generation; for modified window NAFs, it may also | ||
280 | * be 2^w | ||
281 | */ | ||
282 | if (window_val != 0 && window_val != next_bit && window_val != bit) { | ||
283 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
284 | goto err; | ||
285 | } | ||
286 | } | ||
287 | r[j++] = sign * digit; | ||
288 | |||
289 | window_val >>= 1; | ||
290 | window_val += bit * BN_is_bit_set(scalar, j + w); | ||
291 | |||
292 | if (window_val > next_bit) { | ||
293 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
294 | goto err; | ||
295 | } | ||
296 | } | ||
297 | |||
298 | if (j > len + 1) { | ||
299 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
300 | goto err; | ||
301 | } | ||
302 | len = j; | ||
303 | ok = 1; | ||
304 | |||
305 | err: | ||
306 | if (!ok) { | ||
307 | free(r); | ||
308 | r = NULL; | ||
309 | } | ||
310 | if (ok) | ||
311 | *ret_len = len; | ||
312 | return r; | ||
313 | } | ||
314 | |||
315 | |||
316 | /* TODO: table should be optimised for the wNAF-based implementation, | ||
317 | * sometimes smaller windows will give better performance | ||
318 | * (thus the boundaries should be increased) | ||
319 | */ | ||
320 | #define EC_window_bits_for_scalar_size(b) \ | ||
321 | ((size_t) \ | ||
322 | ((b) >= 2000 ? 6 : \ | ||
323 | (b) >= 800 ? 5 : \ | ||
324 | (b) >= 300 ? 4 : \ | ||
325 | (b) >= 70 ? 3 : \ | ||
326 | (b) >= 20 ? 2 : \ | ||
327 | 1)) | ||
328 | |||
329 | /* Compute | ||
330 | * \sum scalars[i]*points[i], | ||
331 | * also including | ||
332 | * scalar*generator | ||
333 | * in the addition if scalar != NULL | ||
334 | */ | ||
335 | int | ||
336 | ec_wNAF_mul(const EC_GROUP * group, EC_POINT * r, const BIGNUM * scalar, | ||
337 | size_t num, const EC_POINT * points[], const BIGNUM * scalars[], BN_CTX * ctx) | ||
338 | { | ||
339 | BN_CTX *new_ctx = NULL; | ||
340 | const EC_POINT *generator = NULL; | ||
341 | EC_POINT *tmp = NULL; | ||
342 | size_t totalnum; | ||
343 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ | ||
344 | size_t pre_points_per_block = 0; | ||
345 | size_t i, j; | ||
346 | int k; | ||
347 | int r_is_inverted = 0; | ||
348 | int r_is_at_infinity = 1; | ||
349 | size_t *wsize = NULL; /* individual window sizes */ | ||
350 | signed char **wNAF = NULL; /* individual wNAFs */ | ||
351 | signed char *tmp_wNAF = NULL; | ||
352 | size_t *wNAF_len = NULL; | ||
353 | size_t max_len = 0; | ||
354 | size_t num_val; | ||
355 | EC_POINT **val = NULL; /* precomputation */ | ||
356 | EC_POINT **v; | ||
357 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or | ||
358 | * 'pre_comp->points' */ | ||
359 | const EC_PRE_COMP *pre_comp = NULL; | ||
360 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be | ||
361 | * treated like other scalars, i.e. | ||
362 | * precomputation is not available */ | ||
363 | int ret = 0; | ||
364 | |||
365 | if (group->meth != r->meth) { | ||
366 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
367 | return 0; | ||
368 | } | ||
369 | if ((scalar == NULL) && (num == 0)) { | ||
370 | return EC_POINT_set_to_infinity(group, r); | ||
371 | } | ||
372 | for (i = 0; i < num; i++) { | ||
373 | if (group->meth != points[i]->meth) { | ||
374 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
375 | return 0; | ||
376 | } | ||
377 | } | ||
378 | |||
379 | if (ctx == NULL) { | ||
380 | ctx = new_ctx = BN_CTX_new(); | ||
381 | if (ctx == NULL) | ||
382 | goto err; | ||
383 | } | ||
384 | if (scalar != NULL) { | ||
385 | generator = EC_GROUP_get0_generator(group); | ||
386 | if (generator == NULL) { | ||
387 | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); | ||
388 | goto err; | ||
389 | } | ||
390 | /* look if we can use precomputed multiples of generator */ | ||
391 | |||
392 | pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
393 | |||
394 | if (pre_comp && pre_comp->numblocks && | ||
395 | (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) { | ||
396 | blocksize = pre_comp->blocksize; | ||
397 | |||
398 | /* | ||
399 | * determine maximum number of blocks that wNAF | ||
400 | * splitting may yield (NB: maximum wNAF length is | ||
401 | * bit length plus one) | ||
402 | */ | ||
403 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; | ||
404 | |||
405 | /* | ||
406 | * we cannot use more blocks than we have | ||
407 | * precomputation for | ||
408 | */ | ||
409 | if (numblocks > pre_comp->numblocks) | ||
410 | numblocks = pre_comp->numblocks; | ||
411 | |||
412 | pre_points_per_block = (size_t) 1 << (pre_comp->w - 1); | ||
413 | |||
414 | /* check that pre_comp looks sane */ | ||
415 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { | ||
416 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
417 | goto err; | ||
418 | } | ||
419 | } else { | ||
420 | /* can't use precomputation */ | ||
421 | pre_comp = NULL; | ||
422 | numblocks = 1; | ||
423 | num_scalar = 1; /* treat 'scalar' like 'num'-th | ||
424 | * element of 'scalars' */ | ||
425 | } | ||
426 | } | ||
427 | totalnum = num + numblocks; | ||
428 | |||
429 | /* includes space for pivot */ | ||
430 | wNAF = reallocarray(NULL, (totalnum + 1), sizeof wNAF[0]); | ||
431 | if (wNAF == NULL) { | ||
432 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
433 | goto err; | ||
434 | } | ||
435 | |||
436 | wNAF[0] = NULL; /* preliminary pivot */ | ||
437 | |||
438 | wsize = reallocarray(NULL, totalnum, sizeof wsize[0]); | ||
439 | wNAF_len = reallocarray(NULL, totalnum, sizeof wNAF_len[0]); | ||
440 | val_sub = reallocarray(NULL, totalnum, sizeof val_sub[0]); | ||
441 | |||
442 | if (wsize == NULL || wNAF_len == NULL || val_sub == NULL) { | ||
443 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
444 | goto err; | ||
445 | } | ||
446 | |||
447 | /* num_val will be the total number of temporarily precomputed points */ | ||
448 | num_val = 0; | ||
449 | |||
450 | for (i = 0; i < num + num_scalar; i++) { | ||
451 | size_t bits; | ||
452 | |||
453 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); | ||
454 | wsize[i] = EC_window_bits_for_scalar_size(bits); | ||
455 | num_val += (size_t) 1 << (wsize[i] - 1); | ||
456 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ | ||
457 | wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]); | ||
458 | if (wNAF[i] == NULL) | ||
459 | goto err; | ||
460 | if (wNAF_len[i] > max_len) | ||
461 | max_len = wNAF_len[i]; | ||
462 | } | ||
463 | |||
464 | if (numblocks) { | ||
465 | /* we go here iff scalar != NULL */ | ||
466 | |||
467 | if (pre_comp == NULL) { | ||
468 | if (num_scalar != 1) { | ||
469 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
470 | goto err; | ||
471 | } | ||
472 | /* we have already generated a wNAF for 'scalar' */ | ||
473 | } else { | ||
474 | size_t tmp_len = 0; | ||
475 | |||
476 | if (num_scalar != 0) { | ||
477 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
478 | goto err; | ||
479 | } | ||
480 | /* | ||
481 | * use the window size for which we have | ||
482 | * precomputation | ||
483 | */ | ||
484 | wsize[num] = pre_comp->w; | ||
485 | tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len); | ||
486 | if (tmp_wNAF == NULL) | ||
487 | goto err; | ||
488 | |||
489 | if (tmp_len <= max_len) { | ||
490 | /* | ||
491 | * One of the other wNAFs is at least as long | ||
492 | * as the wNAF belonging to the generator, so | ||
493 | * wNAF splitting will not buy us anything. | ||
494 | */ | ||
495 | |||
496 | numblocks = 1; | ||
497 | totalnum = num + 1; /* don't use wNAF | ||
498 | * splitting */ | ||
499 | wNAF[num] = tmp_wNAF; | ||
500 | tmp_wNAF = NULL; | ||
501 | wNAF[num + 1] = NULL; | ||
502 | wNAF_len[num] = tmp_len; | ||
503 | if (tmp_len > max_len) | ||
504 | max_len = tmp_len; | ||
505 | /* | ||
506 | * pre_comp->points starts with the points | ||
507 | * that we need here: | ||
508 | */ | ||
509 | val_sub[num] = pre_comp->points; | ||
510 | } else { | ||
511 | /* | ||
512 | * don't include tmp_wNAF directly into wNAF | ||
513 | * array - use wNAF splitting and include the | ||
514 | * blocks | ||
515 | */ | ||
516 | |||
517 | signed char *pp; | ||
518 | EC_POINT **tmp_points; | ||
519 | |||
520 | if (tmp_len < numblocks * blocksize) { | ||
521 | /* | ||
522 | * possibly we can do with fewer | ||
523 | * blocks than estimated | ||
524 | */ | ||
525 | numblocks = (tmp_len + blocksize - 1) / blocksize; | ||
526 | if (numblocks > pre_comp->numblocks) { | ||
527 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
528 | goto err; | ||
529 | } | ||
530 | totalnum = num + numblocks; | ||
531 | } | ||
532 | /* split wNAF in 'numblocks' parts */ | ||
533 | pp = tmp_wNAF; | ||
534 | tmp_points = pre_comp->points; | ||
535 | |||
536 | for (i = num; i < totalnum; i++) { | ||
537 | if (i < totalnum - 1) { | ||
538 | wNAF_len[i] = blocksize; | ||
539 | if (tmp_len < blocksize) { | ||
540 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
541 | goto err; | ||
542 | } | ||
543 | tmp_len -= blocksize; | ||
544 | } else | ||
545 | /* | ||
546 | * last block gets whatever | ||
547 | * is left (this could be | ||
548 | * more or less than | ||
549 | * 'blocksize'!) | ||
550 | */ | ||
551 | wNAF_len[i] = tmp_len; | ||
552 | |||
553 | wNAF[i + 1] = NULL; | ||
554 | wNAF[i] = malloc(wNAF_len[i]); | ||
555 | if (wNAF[i] == NULL) { | ||
556 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
557 | goto err; | ||
558 | } | ||
559 | memcpy(wNAF[i], pp, wNAF_len[i]); | ||
560 | if (wNAF_len[i] > max_len) | ||
561 | max_len = wNAF_len[i]; | ||
562 | |||
563 | if (*tmp_points == NULL) { | ||
564 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
565 | goto err; | ||
566 | } | ||
567 | val_sub[i] = tmp_points; | ||
568 | tmp_points += pre_points_per_block; | ||
569 | pp += blocksize; | ||
570 | } | ||
571 | } | ||
572 | } | ||
573 | } | ||
574 | /* | ||
575 | * All points we precompute now go into a single array 'val'. | ||
576 | * 'val_sub[i]' is a pointer to the subarray for the i-th point, or | ||
577 | * to a subarray of 'pre_comp->points' if we already have | ||
578 | * precomputation. | ||
579 | */ | ||
580 | val = reallocarray(NULL, (num_val + 1), sizeof val[0]); | ||
581 | if (val == NULL) { | ||
582 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
583 | goto err; | ||
584 | } | ||
585 | val[num_val] = NULL; /* pivot element */ | ||
586 | |||
587 | /* allocate points for precomputation */ | ||
588 | v = val; | ||
589 | for (i = 0; i < num + num_scalar; i++) { | ||
590 | val_sub[i] = v; | ||
591 | for (j = 0; j < ((size_t) 1 << (wsize[i] - 1)); j++) { | ||
592 | *v = EC_POINT_new(group); | ||
593 | if (*v == NULL) | ||
594 | goto err; | ||
595 | v++; | ||
596 | } | ||
597 | } | ||
598 | if (!(v == val + num_val)) { | ||
599 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
600 | goto err; | ||
601 | } | ||
602 | if (!(tmp = EC_POINT_new(group))) | ||
603 | goto err; | ||
604 | |||
605 | /* | ||
606 | * prepare precomputed values: val_sub[i][0] := points[i] | ||
607 | * val_sub[i][1] := 3 * points[i] val_sub[i][2] := 5 * points[i] ... | ||
608 | */ | ||
609 | for (i = 0; i < num + num_scalar; i++) { | ||
610 | if (i < num) { | ||
611 | if (!EC_POINT_copy(val_sub[i][0], points[i])) | ||
612 | goto err; | ||
613 | } else { | ||
614 | if (!EC_POINT_copy(val_sub[i][0], generator)) | ||
615 | goto err; | ||
616 | } | ||
617 | |||
618 | if (wsize[i] > 1) { | ||
619 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) | ||
620 | goto err; | ||
621 | for (j = 1; j < ((size_t) 1 << (wsize[i] - 1)); j++) { | ||
622 | if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) | ||
623 | goto err; | ||
624 | } | ||
625 | } | ||
626 | } | ||
627 | |||
628 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) | ||
629 | goto err; | ||
630 | |||
631 | r_is_at_infinity = 1; | ||
632 | |||
633 | for (k = max_len - 1; k >= 0; k--) { | ||
634 | if (!r_is_at_infinity) { | ||
635 | if (!EC_POINT_dbl(group, r, r, ctx)) | ||
636 | goto err; | ||
637 | } | ||
638 | for (i = 0; i < totalnum; i++) { | ||
639 | if (wNAF_len[i] > (size_t) k) { | ||
640 | int digit = wNAF[i][k]; | ||
641 | int is_neg; | ||
642 | |||
643 | if (digit) { | ||
644 | is_neg = digit < 0; | ||
645 | |||
646 | if (is_neg) | ||
647 | digit = -digit; | ||
648 | |||
649 | if (is_neg != r_is_inverted) { | ||
650 | if (!r_is_at_infinity) { | ||
651 | if (!EC_POINT_invert(group, r, ctx)) | ||
652 | goto err; | ||
653 | } | ||
654 | r_is_inverted = !r_is_inverted; | ||
655 | } | ||
656 | /* digit > 0 */ | ||
657 | |||
658 | if (r_is_at_infinity) { | ||
659 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) | ||
660 | goto err; | ||
661 | r_is_at_infinity = 0; | ||
662 | } else { | ||
663 | if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) | ||
664 | goto err; | ||
665 | } | ||
666 | } | ||
667 | } | ||
668 | } | ||
669 | } | ||
670 | |||
671 | if (r_is_at_infinity) { | ||
672 | if (!EC_POINT_set_to_infinity(group, r)) | ||
673 | goto err; | ||
674 | } else { | ||
675 | if (r_is_inverted) | ||
676 | if (!EC_POINT_invert(group, r, ctx)) | ||
677 | goto err; | ||
678 | } | ||
679 | |||
680 | ret = 1; | ||
681 | |||
682 | err: | ||
683 | BN_CTX_free(new_ctx); | ||
684 | EC_POINT_free(tmp); | ||
685 | free(wsize); | ||
686 | free(wNAF_len); | ||
687 | free(tmp_wNAF); | ||
688 | if (wNAF != NULL) { | ||
689 | signed char **w; | ||
690 | |||
691 | for (w = wNAF; *w != NULL; w++) | ||
692 | free(*w); | ||
693 | |||
694 | free(wNAF); | ||
695 | } | ||
696 | if (val != NULL) { | ||
697 | for (v = val; *v != NULL; v++) | ||
698 | EC_POINT_clear_free(*v); | ||
699 | free(val); | ||
700 | } | ||
701 | free(val_sub); | ||
702 | return ret; | ||
703 | } | ||
704 | |||
705 | |||
706 | /* ec_wNAF_precompute_mult() | ||
707 | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator | ||
708 | * for use with wNAF splitting as implemented in ec_wNAF_mul(). | ||
709 | * | ||
710 | * 'pre_comp->points' is an array of multiples of the generator | ||
711 | * of the following form: | ||
712 | * points[0] = generator; | ||
713 | * points[1] = 3 * generator; | ||
714 | * ... | ||
715 | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; | ||
716 | * points[2^(w-1)] = 2^blocksize * generator; | ||
717 | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; | ||
718 | * ... | ||
719 | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator | ||
720 | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator | ||
721 | * ... | ||
722 | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator | ||
723 | * points[2^(w-1)*numblocks] = NULL | ||
724 | */ | ||
725 | int | ||
726 | ec_wNAF_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
727 | { | ||
728 | const EC_POINT *generator; | ||
729 | EC_POINT *tmp_point = NULL, *base = NULL, **var; | ||
730 | BN_CTX *new_ctx = NULL; | ||
731 | BIGNUM *order; | ||
732 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, | ||
733 | num; | ||
734 | EC_POINT **points = NULL; | ||
735 | EC_PRE_COMP *pre_comp; | ||
736 | int ret = 0; | ||
737 | |||
738 | /* if there is an old EC_PRE_COMP object, throw it away */ | ||
739 | EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
740 | |||
741 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) | ||
742 | return 0; | ||
743 | |||
744 | generator = EC_GROUP_get0_generator(group); | ||
745 | if (generator == NULL) { | ||
746 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); | ||
747 | goto err; | ||
748 | } | ||
749 | if (ctx == NULL) { | ||
750 | ctx = new_ctx = BN_CTX_new(); | ||
751 | if (ctx == NULL) | ||
752 | goto err; | ||
753 | } | ||
754 | BN_CTX_start(ctx); | ||
755 | if ((order = BN_CTX_get(ctx)) == NULL) | ||
756 | goto err; | ||
757 | |||
758 | if (!EC_GROUP_get_order(group, order, ctx)) | ||
759 | goto err; | ||
760 | if (BN_is_zero(order)) { | ||
761 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); | ||
762 | goto err; | ||
763 | } | ||
764 | bits = BN_num_bits(order); | ||
765 | /* | ||
766 | * The following parameters mean we precompute (approximately) one | ||
767 | * point per bit. | ||
768 | * | ||
769 | * TBD: The combination 8, 4 is perfect for 160 bits; for other bit | ||
770 | * lengths, other parameter combinations might provide better | ||
771 | * efficiency. | ||
772 | */ | ||
773 | blocksize = 8; | ||
774 | w = 4; | ||
775 | if (EC_window_bits_for_scalar_size(bits) > w) { | ||
776 | /* let's not make the window too small ... */ | ||
777 | w = EC_window_bits_for_scalar_size(bits); | ||
778 | } | ||
779 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks | ||
780 | * to use for wNAF | ||
781 | * splitting */ | ||
782 | |||
783 | pre_points_per_block = (size_t) 1 << (w - 1); | ||
784 | num = pre_points_per_block * numblocks; /* number of points to | ||
785 | * compute and store */ | ||
786 | |||
787 | points = reallocarray(NULL, (num + 1), sizeof(EC_POINT *)); | ||
788 | if (!points) { | ||
789 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
790 | goto err; | ||
791 | } | ||
792 | var = points; | ||
793 | var[num] = NULL; /* pivot */ | ||
794 | for (i = 0; i < num; i++) { | ||
795 | if ((var[i] = EC_POINT_new(group)) == NULL) { | ||
796 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
797 | goto err; | ||
798 | } | ||
799 | } | ||
800 | |||
801 | if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) { | ||
802 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
803 | goto err; | ||
804 | } | ||
805 | if (!EC_POINT_copy(base, generator)) | ||
806 | goto err; | ||
807 | |||
808 | /* do the precomputation */ | ||
809 | for (i = 0; i < numblocks; i++) { | ||
810 | size_t j; | ||
811 | |||
812 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) | ||
813 | goto err; | ||
814 | |||
815 | if (!EC_POINT_copy(*var++, base)) | ||
816 | goto err; | ||
817 | |||
818 | for (j = 1; j < pre_points_per_block; j++, var++) { | ||
819 | /* calculate odd multiples of the current base point */ | ||
820 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) | ||
821 | goto err; | ||
822 | } | ||
823 | |||
824 | if (i < numblocks - 1) { | ||
825 | /* | ||
826 | * get the next base (multiply current one by | ||
827 | * 2^blocksize) | ||
828 | */ | ||
829 | size_t k; | ||
830 | |||
831 | if (blocksize <= 2) { | ||
832 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); | ||
833 | goto err; | ||
834 | } | ||
835 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) | ||
836 | goto err; | ||
837 | for (k = 2; k < blocksize; k++) { | ||
838 | if (!EC_POINT_dbl(group, base, base, ctx)) | ||
839 | goto err; | ||
840 | } | ||
841 | } | ||
842 | } | ||
843 | |||
844 | if (!EC_POINTs_make_affine(group, num, points, ctx)) | ||
845 | goto err; | ||
846 | |||
847 | pre_comp->group = group; | ||
848 | pre_comp->blocksize = blocksize; | ||
849 | pre_comp->numblocks = numblocks; | ||
850 | pre_comp->w = w; | ||
851 | pre_comp->points = points; | ||
852 | points = NULL; | ||
853 | pre_comp->num = num; | ||
854 | |||
855 | if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp, | ||
856 | ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free)) | ||
857 | goto err; | ||
858 | pre_comp = NULL; | ||
859 | |||
860 | ret = 1; | ||
861 | err: | ||
862 | if (ctx != NULL) | ||
863 | BN_CTX_end(ctx); | ||
864 | BN_CTX_free(new_ctx); | ||
865 | ec_pre_comp_free(pre_comp); | ||
866 | if (points) { | ||
867 | EC_POINT **p; | ||
868 | |||
869 | for (p = points; *p != NULL; p++) | ||
870 | EC_POINT_free(*p); | ||
871 | free(points); | ||
872 | } | ||
873 | EC_POINT_free(tmp_point); | ||
874 | EC_POINT_free(base); | ||
875 | return ret; | ||
876 | } | ||
877 | |||
878 | |||
879 | int | ||
880 | ec_wNAF_have_precompute_mult(const EC_GROUP * group) | ||
881 | { | ||
882 | if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL) | ||
883 | return 1; | ||
884 | else | ||
885 | return 0; | ||
886 | } | ||