diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_hp_methods.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_hp_methods.c | 943 |
1 files changed, 943 insertions, 0 deletions
diff --git a/src/lib/libcrypto/ec/ecp_hp_methods.c b/src/lib/libcrypto/ec/ecp_hp_methods.c new file mode 100644 index 0000000000..0b34a55b9d --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_hp_methods.c | |||
| @@ -0,0 +1,943 @@ | |||
| 1 | /* $OpenBSD: ecp_hp_methods.c,v 1.5 2025/08/03 15:44:00 jsing Exp $ */ | ||
| 2 | /* | ||
| 3 | * Copyright (c) 2024-2025 Joel Sing <jsing@openbsd.org> | ||
| 4 | * | ||
| 5 | * Permission to use, copy, modify, and distribute this software for any | ||
| 6 | * purpose with or without fee is hereby granted, provided that the above | ||
| 7 | * copyright notice and this permission notice appear in all copies. | ||
| 8 | * | ||
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 16 | */ | ||
| 17 | |||
| 18 | #include <string.h> | ||
| 19 | |||
| 20 | #include <openssl/bn.h> | ||
| 21 | #include <openssl/ec.h> | ||
| 22 | #include <openssl/err.h> | ||
| 23 | |||
| 24 | #include "bn_internal.h" | ||
| 25 | #include "crypto_internal.h" | ||
| 26 | #include "ec_local.h" | ||
| 27 | #include "ec_internal.h" | ||
| 28 | #include "err_local.h" | ||
| 29 | |||
| 30 | static int | ||
| 31 | ec_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, | ||
| 32 | const BIGNUM *b, BN_CTX *ctx) | ||
| 33 | { | ||
| 34 | BIGNUM *t; | ||
| 35 | int ret = 0; | ||
| 36 | |||
| 37 | BN_CTX_start(ctx); | ||
| 38 | |||
| 39 | /* XXX - p must be a prime > 3. */ | ||
| 40 | |||
| 41 | if (!bn_copy(group->p, p)) | ||
| 42 | goto err; | ||
| 43 | if (!bn_copy(group->a, a)) | ||
| 44 | goto err; | ||
| 45 | if (!bn_copy(group->b, b)) | ||
| 46 | goto err; | ||
| 47 | |||
| 48 | /* XXX */ | ||
| 49 | BN_set_negative(group->p, 0); | ||
| 50 | |||
| 51 | /* XXX */ | ||
| 52 | if (!BN_nnmod(group->a, group->a, group->p, ctx)) | ||
| 53 | goto err; | ||
| 54 | if (!BN_nnmod(group->b, group->b, group->p, ctx)) | ||
| 55 | goto err; | ||
| 56 | |||
| 57 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
| 58 | goto err; | ||
| 59 | if (!BN_set_word(t, 3)) | ||
| 60 | goto err; | ||
| 61 | if (!BN_mod_add(t, t, a, group->p, ctx)) | ||
| 62 | goto err; | ||
| 63 | |||
| 64 | group->a_is_minus3 = BN_is_zero(t); | ||
| 65 | |||
| 66 | if (!ec_field_modulus_from_bn(&group->fm, group->p, ctx)) | ||
| 67 | goto err; | ||
| 68 | if (!ec_field_element_from_bn(&group->fm, group, &group->fe_a, group->a, ctx)) | ||
| 69 | goto err; | ||
| 70 | if (!ec_field_element_from_bn(&group->fm, group, &group->fe_b, group->b, ctx)) | ||
| 71 | goto err; | ||
| 72 | |||
| 73 | ret = 1; | ||
| 74 | |||
| 75 | err: | ||
| 76 | BN_CTX_end(ctx); | ||
| 77 | |||
| 78 | return ret; | ||
| 79 | } | ||
| 80 | |||
| 81 | static int | ||
| 82 | ec_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, | ||
| 83 | BIGNUM *b, BN_CTX *ctx) | ||
| 84 | { | ||
| 85 | if (p != NULL) { | ||
| 86 | if (!bn_copy(p, group->p)) | ||
| 87 | return 0; | ||
| 88 | } | ||
| 89 | if (a != NULL) { | ||
| 90 | if (!bn_copy(a, group->a)) | ||
| 91 | return 0; | ||
| 92 | } | ||
| 93 | if (b != NULL) { | ||
| 94 | if (!bn_copy(b, group->b)) | ||
| 95 | return 0; | ||
| 96 | } | ||
| 97 | return 1; | ||
| 98 | } | ||
| 99 | |||
| 100 | static int | ||
| 101 | ec_point_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
| 102 | { | ||
| 103 | /* Check if Z is equal to zero. */ | ||
| 104 | return ec_field_element_is_zero(&group->fm, &point->fe_z); | ||
| 105 | } | ||
| 106 | |||
| 107 | static int | ||
| 108 | ec_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
| 109 | { | ||
| 110 | /* Infinity is (x = 0, y = 1, z = 0). */ | ||
| 111 | |||
| 112 | memset(&point->fe_x, 0, sizeof(point->fe_x)); | ||
| 113 | memset(&point->fe_y, 0, sizeof(point->fe_y)); | ||
| 114 | memset(&point->fe_z, 0, sizeof(point->fe_z)); | ||
| 115 | |||
| 116 | point->fe_y.w[0] = 1; | ||
| 117 | |||
| 118 | return 1; | ||
| 119 | } | ||
| 120 | |||
| 121 | static int | ||
| 122 | ec_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
| 123 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
| 124 | { | ||
| 125 | if (x == NULL || y == NULL) { | ||
| 126 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
| 127 | return 0; | ||
| 128 | } | ||
| 129 | |||
| 130 | if (!bn_copy(point->X, x)) | ||
| 131 | return 0; | ||
| 132 | if (!bn_copy(point->Y, y)) | ||
| 133 | return 0; | ||
| 134 | if (!BN_one(point->Z)) | ||
| 135 | return 0; | ||
| 136 | |||
| 137 | /* XXX */ | ||
| 138 | if (!BN_nnmod(point->X, point->X, group->p, ctx)) | ||
| 139 | return 0; | ||
| 140 | if (!BN_nnmod(point->Y, point->Y, group->p, ctx)) | ||
| 141 | return 0; | ||
| 142 | |||
| 143 | if (!ec_field_element_from_bn(&group->fm, group, &point->fe_x, point->X, ctx)) | ||
| 144 | return 0; | ||
| 145 | if (!ec_field_element_from_bn(&group->fm, group, &point->fe_y, point->Y, ctx)) | ||
| 146 | return 0; | ||
| 147 | if (!ec_field_element_from_bn(&group->fm, group, &point->fe_z, point->Z, ctx)) | ||
| 148 | return 0; | ||
| 149 | |||
| 150 | return 1; | ||
| 151 | } | ||
| 152 | |||
| 153 | static int | ||
| 154 | ec_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | ||
| 155 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 156 | { | ||
| 157 | BIGNUM *zinv; | ||
| 158 | int ret = 0; | ||
| 159 | |||
| 160 | /* | ||
| 161 | * Convert homogeneous projective coordinates (XZ, YZ, Z) to affine | ||
| 162 | * coordinates (x = X/Z, y = Y/Z). | ||
| 163 | */ | ||
| 164 | if (!ec_field_element_to_bn(&group->fm, &point->fe_x, point->X, ctx)) | ||
| 165 | return 0; | ||
| 166 | if (!ec_field_element_to_bn(&group->fm, &point->fe_y, point->Y, ctx)) | ||
| 167 | return 0; | ||
| 168 | if (!ec_field_element_to_bn(&group->fm, &point->fe_z, point->Z, ctx)) | ||
| 169 | return 0; | ||
| 170 | |||
| 171 | BN_CTX_start(ctx); | ||
| 172 | |||
| 173 | if ((zinv = BN_CTX_get(ctx)) == NULL) | ||
| 174 | goto err; | ||
| 175 | |||
| 176 | if (BN_mod_inverse_ct(zinv, point->Z, group->p, ctx) == NULL) | ||
| 177 | goto err; | ||
| 178 | |||
| 179 | if (x != NULL) { | ||
| 180 | if (!BN_mod_mul(x, point->X, zinv, group->p, ctx)) | ||
| 181 | goto err; | ||
| 182 | } | ||
| 183 | if (y != NULL) { | ||
| 184 | if (!BN_mod_mul(y, point->Y, zinv, group->p, ctx)) | ||
| 185 | goto err; | ||
| 186 | } | ||
| 187 | |||
| 188 | ret = 1; | ||
| 189 | |||
| 190 | err: | ||
| 191 | BN_CTX_end(ctx); | ||
| 192 | |||
| 193 | return ret; | ||
| 194 | } | ||
| 195 | |||
| 196 | static int | ||
| 197 | ec_point_add_a1(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 198 | const EC_POINT *b, BN_CTX *ctx) | ||
| 199 | { | ||
| 200 | EC_FIELD_ELEMENT X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3; | ||
| 201 | EC_FIELD_ELEMENT b3, t0, t1, t2, t3, t4, t5; | ||
| 202 | EC_FIELD_ELEMENT ga, gb; | ||
| 203 | |||
| 204 | /* | ||
| 205 | * Complete, projective point addition for arbitrary prime order short | ||
| 206 | * Weierstrass curves with arbitrary a - see | ||
| 207 | * https://eprint.iacr.org/2015/1060, algorithm 1 and appendix A.1. | ||
| 208 | */ | ||
| 209 | |||
| 210 | ec_field_element_copy(&ga, &group->fe_a); | ||
| 211 | ec_field_element_copy(&gb, &group->fe_b); | ||
| 212 | |||
| 213 | ec_field_element_copy(&X1, &a->fe_x); | ||
| 214 | ec_field_element_copy(&Y1, &a->fe_y); | ||
| 215 | ec_field_element_copy(&Z1, &a->fe_z); | ||
| 216 | |||
| 217 | ec_field_element_copy(&X2, &b->fe_x); | ||
| 218 | ec_field_element_copy(&Y2, &b->fe_y); | ||
| 219 | ec_field_element_copy(&Z2, &b->fe_z); | ||
| 220 | |||
| 221 | /* b3 := 3 * b ; */ | ||
| 222 | ec_field_element_add(&group->fm, &b3, &gb, &gb); | ||
| 223 | ec_field_element_add(&group->fm, &b3, &b3, &gb); | ||
| 224 | |||
| 225 | /* t0 := X1 * X2 ; t1 := Y1 * Y2 ; t2 := Z1 * Z2 ; */ | ||
| 226 | ec_field_element_mul(&group->fm, &t0, &X1, &X2); | ||
| 227 | ec_field_element_mul(&group->fm, &t1, &Y1, &Y2); | ||
| 228 | ec_field_element_mul(&group->fm, &t2, &Z1, &Z2); | ||
| 229 | |||
| 230 | /* t3 := X1 + Y1 ; t4 := X2 + Y2 ; t3 := t3 * t4 ; */ | ||
| 231 | ec_field_element_add(&group->fm, &t3, &X1, &Y1); | ||
| 232 | ec_field_element_add(&group->fm, &t4, &X2, &Y2); | ||
| 233 | ec_field_element_mul(&group->fm, &t3, &t3, &t4); | ||
| 234 | |||
| 235 | /* t4 := t0 + t1 ; t3 := t3 - t4 ; t4 := X1 + Z1 ; */ | ||
| 236 | ec_field_element_add(&group->fm, &t4, &t0, &t1); | ||
| 237 | ec_field_element_sub(&group->fm, &t3, &t3, &t4); | ||
| 238 | ec_field_element_add(&group->fm, &t4, &X1, &Z1); | ||
| 239 | |||
| 240 | /* t5 := X2 + Z2 ; t4 := t4 * t5 ; t5 := t0 + t2 ; */ | ||
| 241 | ec_field_element_add(&group->fm, &t5, &X2, &Z2); | ||
| 242 | ec_field_element_mul(&group->fm, &t4, &t4, &t5); | ||
| 243 | ec_field_element_add(&group->fm, &t5, &t0, &t2); | ||
| 244 | |||
| 245 | /* t4 := t4 - t5 ; t5 := Y1 + Z1 ; X3 := Y2 + Z2 ; */ | ||
| 246 | ec_field_element_sub(&group->fm, &t4, &t4, &t5); | ||
| 247 | ec_field_element_add(&group->fm, &t5, &Y1, &Z1); | ||
| 248 | ec_field_element_add(&group->fm, &X3, &Y2, &Z2); | ||
| 249 | |||
| 250 | /* t5 := t5 * X3 ; X3 := t1 + t2 ; t5 := t5 - X3 ; */ | ||
| 251 | ec_field_element_mul(&group->fm, &t5, &t5, &X3); | ||
| 252 | ec_field_element_add(&group->fm, &X3, &t1, &t2); | ||
| 253 | ec_field_element_sub(&group->fm, &t5, &t5, &X3); | ||
| 254 | |||
| 255 | /* Z3 := a * t4 ; X3 := b3 * t2 ; Z3 := X3 + Z3 ; */ | ||
| 256 | ec_field_element_mul(&group->fm, &Z3, &ga, &t4); | ||
| 257 | ec_field_element_mul(&group->fm, &X3, &b3, &t2); | ||
| 258 | ec_field_element_add(&group->fm, &Z3, &X3, &Z3); | ||
| 259 | |||
| 260 | /* X3 := t1 - Z3 ; Z3 := t1 + Z3 ; Y3 := X3 * Z3 ; */ | ||
| 261 | ec_field_element_sub(&group->fm, &X3, &t1, &Z3); | ||
| 262 | ec_field_element_add(&group->fm, &Z3, &t1, &Z3); | ||
| 263 | ec_field_element_mul(&group->fm, &Y3, &X3, &Z3); | ||
| 264 | |||
| 265 | /* t1 := t0 + t0 ; t1 := t1 + t0 ; t2 := a * t2 ; */ | ||
| 266 | ec_field_element_add(&group->fm, &t1, &t0, &t0); | ||
| 267 | ec_field_element_add(&group->fm, &t1, &t1, &t0); | ||
| 268 | ec_field_element_mul(&group->fm, &t2, &ga, &t2); | ||
| 269 | |||
| 270 | /* t4 := b3 * t4 ; t1 := t1 + t2 ; t2 := t0 - t2 ; */ | ||
| 271 | ec_field_element_mul(&group->fm, &t4, &b3, &t4); | ||
| 272 | ec_field_element_add(&group->fm, &t1, &t1, &t2); | ||
| 273 | ec_field_element_sub(&group->fm, &t2, &t0, &t2); | ||
| 274 | |||
| 275 | /* t2 := a * t2 ; t4 := t4 + t2 ; t0 := t1 * t4 ; */ | ||
| 276 | ec_field_element_mul(&group->fm, &t2, &ga, &t2); | ||
| 277 | ec_field_element_add(&group->fm, &t4, &t4, &t2); | ||
| 278 | ec_field_element_mul(&group->fm, &t0, &t1, &t4); | ||
| 279 | |||
| 280 | /* Y3 := Y3 + t0 ; t0 := t5 * t4 ; X3 := t3 * X3 ; */ | ||
| 281 | ec_field_element_add(&group->fm, &Y3, &Y3, &t0); | ||
| 282 | ec_field_element_mul(&group->fm, &t0, &t5, &t4); | ||
| 283 | ec_field_element_mul(&group->fm, &X3, &t3, &X3); | ||
| 284 | |||
| 285 | /* X3 := X3 - t0 ; t0 := t3 * t1 ; Z3 := t5 * Z3 ; */ | ||
| 286 | ec_field_element_sub(&group->fm, &X3, &X3, &t0); | ||
| 287 | ec_field_element_mul(&group->fm, &t0, &t3, &t1); | ||
| 288 | ec_field_element_mul(&group->fm, &Z3, &t5, &Z3); | ||
| 289 | |||
| 290 | /* Z3 := Z3 + t0 ; */ | ||
| 291 | ec_field_element_add(&group->fm, &Z3, &Z3, &t0); | ||
| 292 | |||
| 293 | ec_field_element_copy(&r->fe_x, &X3); | ||
| 294 | ec_field_element_copy(&r->fe_y, &Y3); | ||
| 295 | ec_field_element_copy(&r->fe_z, &Z3); | ||
| 296 | |||
| 297 | return 1; | ||
| 298 | } | ||
| 299 | |||
| 300 | static int | ||
| 301 | ec_point_add_a2(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 302 | const EC_POINT *b, BN_CTX *ctx) | ||
| 303 | { | ||
| 304 | EC_FIELD_ELEMENT X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3; | ||
| 305 | EC_FIELD_ELEMENT t0, t1, t2, t3, t4; | ||
| 306 | EC_FIELD_ELEMENT gb; | ||
| 307 | |||
| 308 | /* | ||
| 309 | * Complete, projective point addition for arbitrary prime order short | ||
| 310 | * Weierstrass curves with a = -3 - see https://eprint.iacr.org/2015/1060, | ||
| 311 | * algorithm 4 and appendix A.2. | ||
| 312 | */ | ||
| 313 | |||
| 314 | ec_field_element_copy(&gb, &group->fe_b); | ||
| 315 | |||
| 316 | ec_field_element_copy(&X1, &a->fe_x); | ||
| 317 | ec_field_element_copy(&Y1, &a->fe_y); | ||
| 318 | ec_field_element_copy(&Z1, &a->fe_z); | ||
| 319 | |||
| 320 | ec_field_element_copy(&X2, &b->fe_x); | ||
| 321 | ec_field_element_copy(&Y2, &b->fe_y); | ||
| 322 | ec_field_element_copy(&Z2, &b->fe_z); | ||
| 323 | |||
| 324 | /* t0 := X1 * X2 ; t1 := Y1 * Y2 ; t2 := Z1 * Z2 ; */ | ||
| 325 | ec_field_element_mul(&group->fm, &t0, &X1, &X2); | ||
| 326 | ec_field_element_mul(&group->fm, &t1, &Y1, &Y2); | ||
| 327 | ec_field_element_mul(&group->fm, &t2, &Z1, &Z2); | ||
| 328 | |||
| 329 | /* t3 := X1 + Y1 ; t4 := X2 + Y2 ; t3 := t3 * t4 ; */ | ||
| 330 | ec_field_element_add(&group->fm, &t3, &X1, &Y1); | ||
| 331 | ec_field_element_add(&group->fm, &t4, &X2, &Y2); | ||
| 332 | ec_field_element_mul(&group->fm, &t3, &t3, &t4); | ||
| 333 | |||
| 334 | /* t4 := t0 + t1 ; t3 := t3 - t4 ; t4 := Y1 + Z1 ; */ | ||
| 335 | ec_field_element_add(&group->fm, &t4, &t0, &t1); | ||
| 336 | ec_field_element_sub(&group->fm, &t3, &t3, &t4); | ||
| 337 | ec_field_element_add(&group->fm, &t4, &Y1, &Z1); | ||
| 338 | |||
| 339 | /* X3 := Y2 + Z2 ; t4 := t4 * X3 ; X3 := t1 + t2 ; */ | ||
| 340 | ec_field_element_add(&group->fm, &X3, &Y2, &Z2); | ||
| 341 | ec_field_element_mul(&group->fm, &t4, &t4, &X3); | ||
| 342 | ec_field_element_add(&group->fm, &X3, &t1, &t2); | ||
| 343 | |||
| 344 | /* t4 := t4 - X3 ; X3 := X1 + Z1 ; Y3 := X2 + Z2 ; */ | ||
| 345 | ec_field_element_sub(&group->fm, &t4, &t4, &X3); | ||
| 346 | ec_field_element_add(&group->fm, &X3, &X1, &Z1); | ||
| 347 | ec_field_element_add(&group->fm, &Y3, &X2, &Z2); | ||
| 348 | |||
| 349 | /* X3 := X3 * Y3 ; Y3 := t0 + t2 ; Y3 := X3 - Y3 ; */ | ||
| 350 | ec_field_element_mul(&group->fm, &X3, &X3, &Y3); | ||
| 351 | ec_field_element_add(&group->fm, &Y3, &t0, &t2); | ||
| 352 | ec_field_element_sub(&group->fm, &Y3, &X3, &Y3); | ||
| 353 | |||
| 354 | /* Z3 := b * t2 ; X3 := Y3 - Z3 ; Z3 := X3 + X3 ; */ | ||
| 355 | ec_field_element_mul(&group->fm, &Z3, &gb, &t2); | ||
| 356 | ec_field_element_sub(&group->fm, &X3, &Y3, &Z3); | ||
| 357 | ec_field_element_add(&group->fm, &Z3, &X3, &X3); | ||
| 358 | |||
| 359 | /* X3 := X3 + Z3 ; Z3 := t1 - X3 ; X3 := t1 + X3 ; */ | ||
| 360 | ec_field_element_add(&group->fm, &X3, &X3, &Z3); | ||
| 361 | ec_field_element_sub(&group->fm, &Z3, &t1, &X3); | ||
| 362 | ec_field_element_add(&group->fm, &X3, &t1, &X3); | ||
| 363 | |||
| 364 | /* Y3 := b * Y3 ; t1 := t2 + t2 ; t2 := t1 + t2 ; */ | ||
| 365 | ec_field_element_mul(&group->fm, &Y3, &gb, &Y3); | ||
| 366 | ec_field_element_add(&group->fm, &t1, &t2, &t2); | ||
| 367 | ec_field_element_add(&group->fm, &t2, &t1, &t2); | ||
| 368 | |||
| 369 | /* Y3 := Y3 - t2 ; Y3 := Y3 - t0 ; t1 := Y3 + Y3 ; */ | ||
| 370 | ec_field_element_sub(&group->fm, &Y3, &Y3, &t2); | ||
| 371 | ec_field_element_sub(&group->fm, &Y3, &Y3, &t0); | ||
| 372 | ec_field_element_add(&group->fm, &t1, &Y3, &Y3); | ||
| 373 | |||
| 374 | /* Y3 := t1 + Y3 ; t1 := t0 + t0 ; t0 := t1 + t0 ; */ | ||
| 375 | ec_field_element_add(&group->fm, &Y3, &t1, &Y3); | ||
| 376 | ec_field_element_add(&group->fm, &t1, &t0, &t0); | ||
| 377 | ec_field_element_add(&group->fm, &t0, &t1, &t0); | ||
| 378 | |||
| 379 | /* t0 := t0 - t2 ; t1 := t4 * Y3 ; t2 := t0 * Y3 ; */ | ||
| 380 | ec_field_element_sub(&group->fm, &t0, &t0, &t2); | ||
| 381 | ec_field_element_mul(&group->fm, &t1, &t4, &Y3); | ||
| 382 | ec_field_element_mul(&group->fm, &t2, &t0, &Y3); | ||
| 383 | |||
| 384 | /* Y3 := X3 * Z3 ; Y3 := Y3 + t2 ; X3 := t3 * X3 ; */ | ||
| 385 | ec_field_element_mul(&group->fm, &Y3, &X3, &Z3); | ||
| 386 | ec_field_element_add(&group->fm, &Y3, &Y3, &t2); | ||
| 387 | ec_field_element_mul(&group->fm, &X3, &t3, &X3); | ||
| 388 | |||
| 389 | /* X3 := X3 - t1 ; Z3 := t4 * Z3 ; t1 := t3 * t0 ; */ | ||
| 390 | ec_field_element_sub(&group->fm, &X3, &X3, &t1); | ||
| 391 | ec_field_element_mul(&group->fm, &Z3, &t4, &Z3); | ||
| 392 | ec_field_element_mul(&group->fm, &t1, &t3, &t0); | ||
| 393 | |||
| 394 | /* Z3 := Z3 + t1 ; */ | ||
| 395 | ec_field_element_add(&group->fm, &Z3, &Z3, &t1); | ||
| 396 | |||
| 397 | ec_field_element_copy(&r->fe_x, &X3); | ||
| 398 | ec_field_element_copy(&r->fe_y, &Y3); | ||
| 399 | ec_field_element_copy(&r->fe_z, &Z3); | ||
| 400 | |||
| 401 | return 1; | ||
| 402 | } | ||
| 403 | |||
| 404 | static int | ||
| 405 | ec_point_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 406 | const EC_POINT *b, BN_CTX *ctx) | ||
| 407 | { | ||
| 408 | if (group->a_is_minus3) | ||
| 409 | return ec_point_add_a2(group, r, a, b, ctx); | ||
| 410 | |||
| 411 | return ec_point_add_a1(group, r, a, b, ctx); | ||
| 412 | } | ||
| 413 | |||
| 414 | static int | ||
| 415 | ec_point_dbl_a1(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 416 | { | ||
| 417 | EC_FIELD_ELEMENT X1, Y1, Z1, X3, Y3, Z3; | ||
| 418 | EC_FIELD_ELEMENT b3, t0, t1, t2, t3; | ||
| 419 | EC_FIELD_ELEMENT ga, gb; | ||
| 420 | |||
| 421 | /* | ||
| 422 | * Exception-free point doubling for arbitrary prime order short | ||
| 423 | * Weierstrass curves with arbitrary a - see | ||
| 424 | * https://eprint.iacr.org/2015/1060, algorithm 3 and appendix A.1. | ||
| 425 | */ | ||
| 426 | |||
| 427 | ec_field_element_copy(&ga, &group->fe_a); | ||
| 428 | ec_field_element_copy(&gb, &group->fe_b); | ||
| 429 | |||
| 430 | ec_field_element_copy(&X1, &a->fe_x); | ||
| 431 | ec_field_element_copy(&Y1, &a->fe_y); | ||
| 432 | ec_field_element_copy(&Z1, &a->fe_z); | ||
| 433 | |||
| 434 | /* b3 := 3 * b ; */ | ||
| 435 | ec_field_element_add(&group->fm, &b3, &gb, &gb); | ||
| 436 | ec_field_element_add(&group->fm, &b3, &b3, &gb); | ||
| 437 | |||
| 438 | /* t0 := X^2; t1 := Y^2; t2 := Z^2 ; */ | ||
| 439 | ec_field_element_sqr(&group->fm, &t0, &X1); | ||
| 440 | ec_field_element_sqr(&group->fm, &t1, &Y1); | ||
| 441 | ec_field_element_sqr(&group->fm, &t2, &Z1); | ||
| 442 | |||
| 443 | /* t3 := X * Y ; t3 := t3 + t3 ; Z3 := X * Z ; */ | ||
| 444 | ec_field_element_mul(&group->fm, &t3, &X1, &Y1); | ||
| 445 | ec_field_element_add(&group->fm, &t3, &t3, &t3); | ||
| 446 | ec_field_element_mul(&group->fm, &Z3, &X1, &Z1); | ||
| 447 | |||
| 448 | /* Z3 := Z3 + Z3 ; X3 := a * Z3 ; Y3 := b3 * t2 ; */ | ||
| 449 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 450 | ec_field_element_mul(&group->fm, &X3, &ga, &Z3); | ||
| 451 | ec_field_element_mul(&group->fm, &Y3, &b3, &t2); | ||
| 452 | |||
| 453 | /* Y3 := X3 + Y3 ; X3 := t1 - Y3 ; Y3 := t1 + Y3 ; */ | ||
| 454 | ec_field_element_add(&group->fm, &Y3, &X3, &Y3); | ||
| 455 | ec_field_element_sub(&group->fm, &X3, &t1, &Y3); | ||
| 456 | ec_field_element_add(&group->fm, &Y3, &t1, &Y3); | ||
| 457 | |||
| 458 | /* Y3 := X3 * Y3 ; X3 := t3 * X3 ; Z3 := b3 * Z3 ; */ | ||
| 459 | ec_field_element_mul(&group->fm, &Y3, &X3, &Y3); | ||
| 460 | ec_field_element_mul(&group->fm, &X3, &t3, &X3); | ||
| 461 | ec_field_element_mul(&group->fm, &Z3, &b3, &Z3); | ||
| 462 | |||
| 463 | /* t2 := a * t2 ; t3 := t0 - t2 ; t3 := a * t3 ; */ | ||
| 464 | ec_field_element_mul(&group->fm, &t2, &ga, &t2); | ||
| 465 | ec_field_element_sub(&group->fm, &t3, &t0, &t2); | ||
| 466 | ec_field_element_mul(&group->fm, &t3, &ga, &t3); | ||
| 467 | |||
| 468 | /* t3 := t3 + Z3 ; Z3 := t0 + t0 ; t0 := Z3 + t0 ; */ | ||
| 469 | ec_field_element_add(&group->fm, &t3, &t3, &Z3); | ||
| 470 | ec_field_element_add(&group->fm, &Z3, &t0, &t0); | ||
| 471 | ec_field_element_add(&group->fm, &t0, &Z3, &t0); | ||
| 472 | |||
| 473 | /* t0 := t0 + t2 ; t0 := t0 * t3 ; Y3 := Y3 + t0 ; */ | ||
| 474 | ec_field_element_add(&group->fm, &t0, &t0, &t2); | ||
| 475 | ec_field_element_mul(&group->fm, &t0, &t0, &t3); | ||
| 476 | ec_field_element_add(&group->fm, &Y3, &Y3, &t0); | ||
| 477 | |||
| 478 | /* t2 := Y * Z ; t2 := t2 + t2 ; t0 := t2 * t3 ; */ | ||
| 479 | ec_field_element_mul(&group->fm, &t2, &Y1, &Z1); | ||
| 480 | ec_field_element_add(&group->fm, &t2, &t2, &t2); | ||
| 481 | ec_field_element_mul(&group->fm, &t0, &t2, &t3); | ||
| 482 | |||
| 483 | /* X3 := X3 - t0 ; Z3 := t2 * t1 ; Z3 := Z3 + Z3 ; */ | ||
| 484 | ec_field_element_sub(&group->fm, &X3, &X3, &t0); | ||
| 485 | ec_field_element_mul(&group->fm, &Z3, &t2, &t1); | ||
| 486 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 487 | |||
| 488 | /* Z3 := Z3 + Z3 ; */ | ||
| 489 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 490 | |||
| 491 | ec_field_element_copy(&r->fe_x, &X3); | ||
| 492 | ec_field_element_copy(&r->fe_y, &Y3); | ||
| 493 | ec_field_element_copy(&r->fe_z, &Z3); | ||
| 494 | |||
| 495 | return 1; | ||
| 496 | } | ||
| 497 | |||
| 498 | static int | ||
| 499 | ec_point_dbl_a2(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 500 | { | ||
| 501 | EC_FIELD_ELEMENT X1, Y1, Z1, X3, Y3, Z3; | ||
| 502 | EC_FIELD_ELEMENT t0, t1, t2, t3; | ||
| 503 | EC_FIELD_ELEMENT ga, gb; | ||
| 504 | |||
| 505 | /* | ||
| 506 | * Exception-free point doubling for arbitrary prime order short | ||
| 507 | * Weierstrass curves with a = -3 - see https://eprint.iacr.org/2015/1060, | ||
| 508 | * algorithm 6 and appendix A.2. | ||
| 509 | */ | ||
| 510 | |||
| 511 | ec_field_element_copy(&ga, &group->fe_a); | ||
| 512 | ec_field_element_copy(&gb, &group->fe_b); | ||
| 513 | |||
| 514 | ec_field_element_copy(&X1, &a->fe_x); | ||
| 515 | ec_field_element_copy(&Y1, &a->fe_y); | ||
| 516 | ec_field_element_copy(&Z1, &a->fe_z); | ||
| 517 | |||
| 518 | /* t0 := X^2; t1 := Y^2; t2 := Z^2 ; */ | ||
| 519 | ec_field_element_sqr(&group->fm, &t0, &X1); | ||
| 520 | ec_field_element_sqr(&group->fm, &t1, &Y1); | ||
| 521 | ec_field_element_sqr(&group->fm, &t2, &Z1); | ||
| 522 | |||
| 523 | /* t3 := X * Y ; t3 := t3 + t3 ; Z3 := X * Z ; */ | ||
| 524 | ec_field_element_mul(&group->fm, &t3, &X1, &Y1); | ||
| 525 | ec_field_element_add(&group->fm, &t3, &t3, &t3); | ||
| 526 | ec_field_element_mul(&group->fm, &Z3, &X1, &Z1); | ||
| 527 | |||
| 528 | /* Z3 := Z3 + Z3 ; Y3 := b * t2 ; Y3 := Y3 - Z3 ; */ | ||
| 529 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 530 | ec_field_element_mul(&group->fm, &Y3, &gb, &t2); | ||
| 531 | ec_field_element_sub(&group->fm, &Y3, &Y3, &Z3); | ||
| 532 | |||
| 533 | /* X3 := Y3 + Y3 ; Y3 := X3 + Y3 ; X3 := t1 - Y3 ; */ | ||
| 534 | ec_field_element_add(&group->fm, &X3, &Y3, &Y3); | ||
| 535 | ec_field_element_add(&group->fm, &Y3, &X3, &Y3); | ||
| 536 | ec_field_element_sub(&group->fm, &X3, &t1, &Y3); | ||
| 537 | |||
| 538 | /* Y3 := t1 + Y3 ; Y3 := X3 * Y3 ; X3 := X3 * t3 ; */ | ||
| 539 | ec_field_element_add(&group->fm, &Y3, &t1, &Y3); | ||
| 540 | ec_field_element_mul(&group->fm, &Y3, &X3, &Y3); | ||
| 541 | ec_field_element_mul(&group->fm, &X3, &X3, &t3); | ||
| 542 | |||
| 543 | /* t3 := t2 + t2 ; t2 := t2 + t3 ; Z3 := b * Z3 ; */ | ||
| 544 | ec_field_element_add(&group->fm, &t3, &t2, &t2); | ||
| 545 | ec_field_element_add(&group->fm, &t2, &t2, &t3); | ||
| 546 | ec_field_element_mul(&group->fm, &Z3, &gb, &Z3); | ||
| 547 | |||
| 548 | /* Z3 := Z3 - t2 ; Z3 := Z3 - t0 ; t3 := Z3 + Z3 ; */ | ||
| 549 | ec_field_element_sub(&group->fm, &Z3, &Z3, &t2); | ||
| 550 | ec_field_element_sub(&group->fm, &Z3, &Z3, &t0); | ||
| 551 | ec_field_element_add(&group->fm, &t3, &Z3, &Z3); | ||
| 552 | |||
| 553 | /* Z3 := Z3 + t3 ; t3 := t0 + t0 ; t0 := t3 + t0 ; */ | ||
| 554 | ec_field_element_add(&group->fm, &Z3, &Z3, &t3); | ||
| 555 | ec_field_element_add(&group->fm, &t3, &t0, &t0); | ||
| 556 | ec_field_element_add(&group->fm, &t0, &t3, &t0); | ||
| 557 | |||
| 558 | /* t0 := t0 - t2 ; t0 := t0 * Z3 ; Y3 := Y3 + t0 ; */ | ||
| 559 | ec_field_element_sub(&group->fm, &t0, &t0, &t2); | ||
| 560 | ec_field_element_mul(&group->fm, &t0, &t0, &Z3); | ||
| 561 | ec_field_element_add(&group->fm, &Y3, &Y3, &t0); | ||
| 562 | |||
| 563 | /* t0 := Y * Z ; t0 := t0 + t0 ; Z3 := t0 * Z3 ; */ | ||
| 564 | ec_field_element_mul(&group->fm, &t0, &Y1, &Z1); | ||
| 565 | ec_field_element_add(&group->fm, &t0, &t0, &t0); | ||
| 566 | ec_field_element_mul(&group->fm, &Z3, &t0, &Z3); | ||
| 567 | |||
| 568 | /* X3 := X3 - Z3 ; Z3 := t0 * t1 ; Z3 := Z3 + Z3 ; */ | ||
| 569 | ec_field_element_sub(&group->fm, &X3, &X3, &Z3); | ||
| 570 | ec_field_element_mul(&group->fm, &Z3, &t0, &t1); | ||
| 571 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 572 | |||
| 573 | /* Z3 := Z3 + Z3 ; */ | ||
| 574 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 575 | |||
| 576 | ec_field_element_copy(&r->fe_x, &X3); | ||
| 577 | ec_field_element_copy(&r->fe_y, &Y3); | ||
| 578 | ec_field_element_copy(&r->fe_z, &Z3); | ||
| 579 | |||
| 580 | return 1; | ||
| 581 | } | ||
| 582 | |||
| 583 | static int | ||
| 584 | ec_point_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 585 | { | ||
| 586 | if (group->a_is_minus3) | ||
| 587 | return ec_point_dbl_a2(group, r, a, ctx); | ||
| 588 | |||
| 589 | return ec_point_dbl_a1(group, r, a, ctx); | ||
| 590 | } | ||
| 591 | |||
| 592 | static int | ||
| 593 | ec_point_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 594 | { | ||
| 595 | EC_FIELD_ELEMENT y; | ||
| 596 | BN_ULONG mask; | ||
| 597 | int i; | ||
| 598 | |||
| 599 | /* | ||
| 600 | * Invert the point by setting Y = p - Y, if Y is non-zero and the point | ||
| 601 | * is not at infinity. | ||
| 602 | */ | ||
| 603 | |||
| 604 | mask = ~(0 - (ec_point_is_at_infinity(group, point) | | ||
| 605 | ec_field_element_is_zero(&group->fm, &point->fe_y))); | ||
| 606 | |||
| 607 | /* XXX - masked/conditional subtraction? */ | ||
| 608 | ec_field_element_sub(&group->fm, &y, &group->fm.m, &point->fe_y); | ||
| 609 | |||
| 610 | for (i = 0; i < group->fm.n; i++) | ||
| 611 | point->fe_y.w[i] = (point->fe_y.w[i] & ~mask) | (y.w[i] & mask); | ||
| 612 | |||
| 613 | return 1; | ||
| 614 | } | ||
| 615 | |||
| 616 | static int | ||
| 617 | ec_point_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
| 618 | { | ||
| 619 | EC_FIELD_ELEMENT sum, axz2, bz3, x3, y2z, z2; | ||
| 620 | |||
| 621 | /* | ||
| 622 | * Curve is defined by a Weierstrass equation y^2 = x^3 + a*x + b. | ||
| 623 | * The given point is in homogeneous projective coordinates | ||
| 624 | * (x = X/Z, y = Y/Z). Substitute and multiply by Z^3 in order to | ||
| 625 | * evaluate as zy^2 = x^3 + axz^2 + bz^3. | ||
| 626 | */ | ||
| 627 | |||
| 628 | ec_field_element_sqr(&group->fm, &z2, &point->fe_z); | ||
| 629 | |||
| 630 | ec_field_element_sqr(&group->fm, &y2z, &point->fe_y); | ||
| 631 | ec_field_element_mul(&group->fm, &y2z, &y2z, &point->fe_z); | ||
| 632 | |||
| 633 | ec_field_element_sqr(&group->fm, &x3, &point->fe_x); | ||
| 634 | ec_field_element_mul(&group->fm, &x3, &x3, &point->fe_x); | ||
| 635 | |||
| 636 | ec_field_element_mul(&group->fm, &axz2, &group->fe_a, &point->fe_x); | ||
| 637 | ec_field_element_mul(&group->fm, &axz2, &axz2, &z2); | ||
| 638 | |||
| 639 | ec_field_element_mul(&group->fm, &bz3, &group->fe_b, &point->fe_z); | ||
| 640 | ec_field_element_mul(&group->fm, &bz3, &bz3, &z2); | ||
| 641 | |||
| 642 | ec_field_element_add(&group->fm, &sum, &x3, &axz2); | ||
| 643 | ec_field_element_add(&group->fm, &sum, &sum, &bz3); | ||
| 644 | |||
| 645 | return ec_field_element_equal(&group->fm, &y2z, &sum) | | ||
| 646 | ec_point_is_at_infinity(group, point); | ||
| 647 | } | ||
| 648 | |||
| 649 | static int | ||
| 650 | ec_point_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
| 651 | { | ||
| 652 | EC_FIELD_ELEMENT ax, ay, bx, by; | ||
| 653 | |||
| 654 | /* | ||
| 655 | * Compare two points that have homogeneous projection coordinates, that | ||
| 656 | * is (X_a/Z_a, Y_a/Z_a) == (X_b/Z_b, Y_b/Z_b). Return -1 on error, 0 on | ||
| 657 | * equality and 1 on inequality. | ||
| 658 | * | ||
| 659 | * If a and b are both at infinity, Z_a and Z_b will both be zero, | ||
| 660 | * resulting in all values becoming zero, resulting in equality. If a is | ||
| 661 | * at infinity and b is not, then Y_a will be one and Z_b will be | ||
| 662 | * non-zero, hence Y_a * Z_b will be non-zero. Z_a will be zero, hence | ||
| 663 | * Y_b * Z_a will be zero, resulting in inequality. The same applies if | ||
| 664 | * b is at infinity and a is not. | ||
| 665 | */ | ||
| 666 | |||
| 667 | ec_field_element_mul(&group->fm, &ax, &a->fe_x, &b->fe_z); | ||
| 668 | ec_field_element_mul(&group->fm, &ay, &a->fe_y, &b->fe_z); | ||
| 669 | ec_field_element_mul(&group->fm, &bx, &b->fe_x, &a->fe_z); | ||
| 670 | ec_field_element_mul(&group->fm, &by, &b->fe_y, &a->fe_z); | ||
| 671 | |||
| 672 | return 1 - (ec_field_element_equal(&group->fm, &ax, &bx) & | ||
| 673 | ec_field_element_equal(&group->fm, &ay, &by)); | ||
| 674 | } | ||
| 675 | |||
| 676 | #if 0 | ||
| 677 | static int | ||
| 678 | ec_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], | ||
| 679 | BN_CTX *ctx) | ||
| 680 | { | ||
| 681 | size_t i; | ||
| 682 | |||
| 683 | /* XXX */ | ||
| 684 | for (i = 0; i < num; i++) { | ||
| 685 | if (!EC_POINT_make_affine(group, points[0], ctx)) | ||
| 686 | return 0; | ||
| 687 | } | ||
| 688 | |||
| 689 | return 1; | ||
| 690 | } | ||
| 691 | #else | ||
| 692 | |||
| 693 | static int | ||
| 694 | ec_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], | ||
| 695 | BN_CTX *ctx) | ||
| 696 | { | ||
| 697 | BIGNUM **prod_Z = NULL; | ||
| 698 | BIGNUM *tmp, *tmp_Z; | ||
| 699 | size_t i; | ||
| 700 | int ret = 0; | ||
| 701 | |||
| 702 | if (num == 0) | ||
| 703 | return 1; | ||
| 704 | |||
| 705 | BN_CTX_start(ctx); | ||
| 706 | |||
| 707 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 708 | goto err; | ||
| 709 | if ((tmp_Z = BN_CTX_get(ctx)) == NULL) | ||
| 710 | goto err; | ||
| 711 | |||
| 712 | if ((prod_Z = calloc(num, sizeof *prod_Z)) == NULL) | ||
| 713 | goto err; | ||
| 714 | for (i = 0; i < num; i++) { | ||
| 715 | if ((prod_Z[i] = BN_CTX_get(ctx)) == NULL) | ||
| 716 | goto err; | ||
| 717 | } | ||
| 718 | |||
| 719 | if (!BN_is_zero(points[0]->Z)) { | ||
| 720 | if (!bn_copy(prod_Z[0], points[0]->Z)) | ||
| 721 | goto err; | ||
| 722 | } else { | ||
| 723 | if (!BN_one(prod_Z[0])) | ||
| 724 | goto err; | ||
| 725 | } | ||
| 726 | |||
| 727 | for (i = 1; i < num; i++) { | ||
| 728 | if (!BN_is_zero(points[i]->Z)) { | ||
| 729 | if (!BN_mod_mul(prod_Z[i], prod_Z[i - 1], points[i]->Z, | ||
| 730 | group->p, ctx)) | ||
| 731 | goto err; | ||
| 732 | } else { | ||
| 733 | if (!bn_copy(prod_Z[i], prod_Z[i - 1])) | ||
| 734 | goto err; | ||
| 735 | } | ||
| 736 | } | ||
| 737 | |||
| 738 | if (!BN_mod_inverse_nonct(tmp, prod_Z[num - 1], group->p, ctx)) { | ||
| 739 | ECerror(ERR_R_BN_LIB); | ||
| 740 | goto err; | ||
| 741 | } | ||
| 742 | |||
| 743 | for (i = num - 1; i > 0; i--) { | ||
| 744 | if (BN_is_zero(points[i]->Z)) | ||
| 745 | continue; | ||
| 746 | |||
| 747 | if (!BN_mod_mul(tmp_Z, prod_Z[i - 1], tmp, group->p, ctx)) | ||
| 748 | goto err; | ||
| 749 | if (!BN_mod_mul(tmp, tmp, points[i]->Z, group->p, ctx)) | ||
| 750 | goto err; | ||
| 751 | if (!bn_copy(points[i]->Z, tmp_Z)) | ||
| 752 | goto err; | ||
| 753 | } | ||
| 754 | |||
| 755 | for (i = 0; i < num; i++) { | ||
| 756 | EC_POINT *p = points[i]; | ||
| 757 | |||
| 758 | if (BN_is_zero(p->Z)) | ||
| 759 | continue; | ||
| 760 | |||
| 761 | if (!BN_mod_mul(p->X, p->X, p->Z, group->p, ctx)) | ||
| 762 | goto err; | ||
| 763 | if (!BN_mod_mul(p->Y, p->Y, p->Z, group->p, ctx)) | ||
| 764 | goto err; | ||
| 765 | |||
| 766 | if (!BN_one(p->Z)) | ||
| 767 | goto err; | ||
| 768 | } | ||
| 769 | |||
| 770 | ret = 1; | ||
| 771 | |||
| 772 | err: | ||
| 773 | BN_CTX_end(ctx); | ||
| 774 | free(prod_Z); | ||
| 775 | |||
| 776 | return ret; | ||
| 777 | } | ||
| 778 | #endif | ||
| 779 | |||
| 780 | static void | ||
| 781 | ec_point_select(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 782 | const EC_POINT *b, int conditional) | ||
| 783 | { | ||
| 784 | ec_field_element_select(&group->fm, &r->fe_x, &a->fe_x, &b->fe_x, conditional); | ||
| 785 | ec_field_element_select(&group->fm, &r->fe_y, &a->fe_y, &b->fe_y, conditional); | ||
| 786 | ec_field_element_select(&group->fm, &r->fe_z, &a->fe_z, &b->fe_z, conditional); | ||
| 787 | } | ||
| 788 | |||
| 789 | static int | ||
| 790 | ec_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, const EC_POINT *point, | ||
| 791 | BN_CTX *ctx) | ||
| 792 | { | ||
| 793 | BIGNUM *cardinality; | ||
| 794 | EC_POINT *multiples[15]; | ||
| 795 | EC_POINT *rr = NULL, *t = NULL; | ||
| 796 | uint8_t *scalar_bytes = NULL; | ||
| 797 | int scalar_len = 0; | ||
| 798 | uint8_t j, wv; | ||
| 799 | int conditional, i; | ||
| 800 | int ret = 0; | ||
| 801 | |||
| 802 | memset(multiples, 0, sizeof(multiples)); | ||
| 803 | |||
| 804 | BN_CTX_start(ctx); | ||
| 805 | |||
| 806 | /* XXX - consider blinding. */ | ||
| 807 | |||
| 808 | if ((cardinality = BN_CTX_get(ctx)) == NULL) | ||
| 809 | goto err; | ||
| 810 | if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) | ||
| 811 | goto err; | ||
| 812 | |||
| 813 | /* XXX - handle scalar > cardinality and/or negative. */ | ||
| 814 | |||
| 815 | /* Convert scalar into big endian bytes. */ | ||
| 816 | scalar_len = BN_num_bytes(cardinality); | ||
| 817 | if ((scalar_bytes = calloc(1, scalar_len)) == NULL) | ||
| 818 | goto err; | ||
| 819 | if (!BN_bn2binpad(scalar, scalar_bytes, scalar_len)) | ||
| 820 | goto err; | ||
| 821 | |||
| 822 | /* Compute multiples of point. */ | ||
| 823 | if ((multiples[0] = EC_POINT_dup(point, group)) == NULL) | ||
| 824 | goto err; | ||
| 825 | for (i = 1; i < 15; i += 2) { | ||
| 826 | if ((multiples[i] = EC_POINT_new(group)) == NULL) | ||
| 827 | goto err; | ||
| 828 | if (!EC_POINT_dbl(group, multiples[i], multiples[i / 2], ctx)) | ||
| 829 | goto err; | ||
| 830 | if ((multiples[i + 1] = EC_POINT_new(group)) == NULL) | ||
| 831 | goto err; | ||
| 832 | if (!EC_POINT_add(group, multiples[i + 1], multiples[i], point, ctx)) | ||
| 833 | goto err; | ||
| 834 | } | ||
| 835 | |||
| 836 | if ((rr = EC_POINT_new(group)) == NULL) | ||
| 837 | goto err; | ||
| 838 | if ((t = EC_POINT_new(group)) == NULL) | ||
| 839 | goto err; | ||
| 840 | |||
| 841 | if (!EC_POINT_set_to_infinity(group, rr)) | ||
| 842 | goto err; | ||
| 843 | |||
| 844 | for (i = 0; i < scalar_len; i++) { | ||
| 845 | if (i != 0) { | ||
| 846 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 847 | goto err; | ||
| 848 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 849 | goto err; | ||
| 850 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 851 | goto err; | ||
| 852 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 853 | goto err; | ||
| 854 | } | ||
| 855 | |||
| 856 | if (!EC_POINT_set_to_infinity(group, t)) | ||
| 857 | goto err; | ||
| 858 | |||
| 859 | wv = scalar_bytes[i] >> 4; | ||
| 860 | for (j = 1; j < 16; j++) { | ||
| 861 | conditional = crypto_ct_eq_u8(j, wv); | ||
| 862 | ec_point_select(group, t, t, multiples[j - 1], conditional); | ||
| 863 | } | ||
| 864 | if (!EC_POINT_add(group, rr, rr, t, ctx)) | ||
| 865 | goto err; | ||
| 866 | |||
| 867 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 868 | goto err; | ||
| 869 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 870 | goto err; | ||
| 871 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 872 | goto err; | ||
| 873 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 874 | goto err; | ||
| 875 | |||
| 876 | if (!EC_POINT_set_to_infinity(group, t)) | ||
| 877 | goto err; | ||
| 878 | |||
| 879 | wv = scalar_bytes[i] & 0xf; | ||
| 880 | for (j = 1; j < 16; j++) { | ||
| 881 | conditional = crypto_ct_eq_u8(j, wv); | ||
| 882 | ec_point_select(group, t, t, multiples[j - 1], conditional); | ||
| 883 | } | ||
| 884 | if (!EC_POINT_add(group, rr, rr, t, ctx)) | ||
| 885 | goto err; | ||
| 886 | } | ||
| 887 | |||
| 888 | if (!EC_POINT_copy(r, rr)) | ||
| 889 | goto err; | ||
| 890 | |||
| 891 | ret = 1; | ||
| 892 | |||
| 893 | err: | ||
| 894 | for (i = 0; i < 15; i++) | ||
| 895 | EC_POINT_free(multiples[i]); | ||
| 896 | |||
| 897 | EC_POINT_free(rr); | ||
| 898 | EC_POINT_free(t); | ||
| 899 | |||
| 900 | freezero(scalar_bytes, scalar_len); | ||
| 901 | |||
| 902 | BN_CTX_end(ctx); | ||
| 903 | |||
| 904 | return ret; | ||
| 905 | } | ||
| 906 | |||
| 907 | static int | ||
| 908 | ec_mul_single_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 909 | const EC_POINT *point, BN_CTX *ctx) | ||
| 910 | { | ||
| 911 | return ec_mul(group, r, scalar, point, ctx); | ||
| 912 | } | ||
| 913 | |||
| 914 | static int | ||
| 915 | ec_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar1, | ||
| 916 | const EC_POINT *point1, const BIGNUM *scalar2, const EC_POINT *point2, | ||
| 917 | BN_CTX *ctx) | ||
| 918 | { | ||
| 919 | return ec_wnaf_mul(group, r, scalar1, point1, scalar2, point2, ctx); | ||
| 920 | } | ||
| 921 | |||
| 922 | static const EC_METHOD ec_GFp_homogeneous_projective_method = { | ||
| 923 | .group_set_curve = ec_group_set_curve, | ||
| 924 | .group_get_curve = ec_group_get_curve, | ||
| 925 | .point_set_to_infinity = ec_point_set_to_infinity, | ||
| 926 | .point_is_at_infinity = ec_point_is_at_infinity, | ||
| 927 | .point_set_affine_coordinates = ec_point_set_affine_coordinates, | ||
| 928 | .point_get_affine_coordinates = ec_point_get_affine_coordinates, | ||
| 929 | .add = ec_point_add, | ||
| 930 | .dbl = ec_point_dbl, | ||
| 931 | .invert = ec_point_invert, | ||
| 932 | .point_is_on_curve = ec_point_is_on_curve, | ||
| 933 | .point_cmp = ec_point_cmp, | ||
| 934 | .points_make_affine = ec_points_make_affine, | ||
| 935 | .mul_single_ct = ec_mul_single_ct, | ||
| 936 | .mul_double_nonct = ec_mul_double_nonct, | ||
| 937 | }; | ||
| 938 | |||
| 939 | const EC_METHOD * | ||
| 940 | EC_GFp_homogeneous_projective_method(void) | ||
| 941 | { | ||
| 942 | return &ec_GFp_homogeneous_projective_method; | ||
| 943 | } | ||
