diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_nistp224.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp224.c | 1693 |
1 files changed, 0 insertions, 1693 deletions
diff --git a/src/lib/libcrypto/ec/ecp_nistp224.c b/src/lib/libcrypto/ec/ecp_nistp224.c deleted file mode 100644 index d29113045a..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp224.c +++ /dev/null | |||
| @@ -1,1693 +0,0 @@ | |||
| 1 | /* $OpenBSD: ecp_nistp224.c,v 1.16 2015/02/08 22:25:03 miod Exp $ */ | ||
| 2 | /* | ||
| 3 | * Written by Emilia Kasper (Google) for the OpenSSL project. | ||
| 4 | */ | ||
| 5 | /* | ||
| 6 | * Copyright (c) 2011 Google Inc. | ||
| 7 | * | ||
| 8 | * Permission to use, copy, modify, and distribute this software for any | ||
| 9 | * purpose with or without fee is hereby granted, provided that the above | ||
| 10 | * copyright notice and this permission notice appear in all copies. | ||
| 11 | * | ||
| 12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 19 | */ | ||
| 20 | |||
| 21 | /* | ||
| 22 | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication | ||
| 23 | * | ||
| 24 | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation | ||
| 25 | * and Adam Langley's public domain 64-bit C implementation of curve25519 | ||
| 26 | */ | ||
| 27 | |||
| 28 | #include <stdint.h> | ||
| 29 | #include <string.h> | ||
| 30 | |||
| 31 | #include <openssl/opensslconf.h> | ||
| 32 | |||
| 33 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
| 34 | |||
| 35 | #include <openssl/err.h> | ||
| 36 | #include "ec_lcl.h" | ||
| 37 | |||
| 38 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
| 39 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
| 40 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
| 41 | #else | ||
| 42 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
| 43 | #endif | ||
| 44 | |||
| 45 | typedef uint8_t u8; | ||
| 46 | typedef uint64_t u64; | ||
| 47 | typedef int64_t s64; | ||
| 48 | |||
| 49 | |||
| 50 | /******************************************************************************/ | ||
| 51 | /* INTERNAL REPRESENTATION OF FIELD ELEMENTS | ||
| 52 | * | ||
| 53 | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 | ||
| 54 | * using 64-bit coefficients called 'limbs', | ||
| 55 | * and sometimes (for multiplication results) as | ||
| 56 | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 | ||
| 57 | * using 128-bit coefficients called 'widelimbs'. | ||
| 58 | * A 4-limb representation is an 'felem'; | ||
| 59 | * a 7-widelimb representation is a 'widefelem'. | ||
| 60 | * Even within felems, bits of adjacent limbs overlap, and we don't always | ||
| 61 | * reduce the representations: we ensure that inputs to each felem | ||
| 62 | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, | ||
| 63 | * and fit into a 128-bit word without overflow. The coefficients are then | ||
| 64 | * again partially reduced to obtain an felem satisfying a_i < 2^57. | ||
| 65 | * We only reduce to the unique minimal representation at the end of the | ||
| 66 | * computation. | ||
| 67 | */ | ||
| 68 | |||
| 69 | typedef uint64_t limb; | ||
| 70 | typedef uint128_t widelimb; | ||
| 71 | |||
| 72 | typedef limb felem[4]; | ||
| 73 | typedef widelimb widefelem[7]; | ||
| 74 | |||
| 75 | /* Field element represented as a byte arrary. | ||
| 76 | * 28*8 = 224 bits is also the group order size for the elliptic curve, | ||
| 77 | * and we also use this type for scalars for point multiplication. | ||
| 78 | */ | ||
| 79 | typedef u8 felem_bytearray[28]; | ||
| 80 | |||
| 81 | static const felem_bytearray nistp224_curve_params[5] = { | ||
| 82 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */ | ||
| 83 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00, | ||
| 84 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}, | ||
| 85 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */ | ||
| 86 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF, | ||
| 87 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE}, | ||
| 88 | {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */ | ||
| 89 | 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA, | ||
| 90 | 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4}, | ||
| 91 | {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */ | ||
| 92 | 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22, | ||
| 93 | 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21}, | ||
| 94 | {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */ | ||
| 95 | 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64, | ||
| 96 | 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34} | ||
| 97 | }; | ||
| 98 | |||
| 99 | /* Precomputed multiples of the standard generator | ||
| 100 | * Points are given in coordinates (X, Y, Z) where Z normally is 1 | ||
| 101 | * (0 for the point at infinity). | ||
| 102 | * For each field element, slice a_0 is word 0, etc. | ||
| 103 | * | ||
| 104 | * The table has 2 * 16 elements, starting with the following: | ||
| 105 | * index | bits | point | ||
| 106 | * ------+---------+------------------------------ | ||
| 107 | * 0 | 0 0 0 0 | 0G | ||
| 108 | * 1 | 0 0 0 1 | 1G | ||
| 109 | * 2 | 0 0 1 0 | 2^56G | ||
| 110 | * 3 | 0 0 1 1 | (2^56 + 1)G | ||
| 111 | * 4 | 0 1 0 0 | 2^112G | ||
| 112 | * 5 | 0 1 0 1 | (2^112 + 1)G | ||
| 113 | * 6 | 0 1 1 0 | (2^112 + 2^56)G | ||
| 114 | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G | ||
| 115 | * 8 | 1 0 0 0 | 2^168G | ||
| 116 | * 9 | 1 0 0 1 | (2^168 + 1)G | ||
| 117 | * 10 | 1 0 1 0 | (2^168 + 2^56)G | ||
| 118 | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G | ||
| 119 | * 12 | 1 1 0 0 | (2^168 + 2^112)G | ||
| 120 | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G | ||
| 121 | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G | ||
| 122 | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G | ||
| 123 | * followed by a copy of this with each element multiplied by 2^28. | ||
| 124 | * | ||
| 125 | * The reason for this is so that we can clock bits into four different | ||
| 126 | * locations when doing simple scalar multiplies against the base point, | ||
| 127 | * and then another four locations using the second 16 elements. | ||
| 128 | */ | ||
| 129 | static const felem gmul[2][16][3] = | ||
| 130 | {{{{0, 0, 0, 0}, | ||
| 131 | {0, 0, 0, 0}, | ||
| 132 | {0, 0, 0, 0}}, | ||
| 133 | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, | ||
| 134 | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, | ||
| 135 | {1, 0, 0, 0}}, | ||
| 136 | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, | ||
| 137 | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, | ||
| 138 | {1, 0, 0, 0}}, | ||
| 139 | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, | ||
| 140 | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, | ||
| 141 | {1, 0, 0, 0}}, | ||
| 142 | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, | ||
| 143 | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, | ||
| 144 | {1, 0, 0, 0}}, | ||
| 145 | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, | ||
| 146 | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, | ||
| 147 | {1, 0, 0, 0}}, | ||
| 148 | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, | ||
| 149 | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, | ||
| 150 | {1, 0, 0, 0}}, | ||
| 151 | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, | ||
| 152 | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, | ||
| 153 | {1, 0, 0, 0}}, | ||
| 154 | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, | ||
| 155 | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, | ||
| 156 | {1, 0, 0, 0}}, | ||
| 157 | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, | ||
| 158 | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, | ||
| 159 | {1, 0, 0, 0}}, | ||
| 160 | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, | ||
| 161 | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, | ||
| 162 | {1, 0, 0, 0}}, | ||
| 163 | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, | ||
| 164 | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, | ||
| 165 | {1, 0, 0, 0}}, | ||
| 166 | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, | ||
| 167 | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, | ||
| 168 | {1, 0, 0, 0}}, | ||
| 169 | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, | ||
| 170 | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, | ||
| 171 | {1, 0, 0, 0}}, | ||
| 172 | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, | ||
| 173 | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, | ||
| 174 | {1, 0, 0, 0}}, | ||
| 175 | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, | ||
| 176 | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, | ||
| 177 | {1, 0, 0, 0}}}, | ||
| 178 | {{{0, 0, 0, 0}, | ||
| 179 | {0, 0, 0, 0}, | ||
| 180 | {0, 0, 0, 0}}, | ||
| 181 | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, | ||
| 182 | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, | ||
| 183 | {1, 0, 0, 0}}, | ||
| 184 | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, | ||
| 185 | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, | ||
| 186 | {1, 0, 0, 0}}, | ||
| 187 | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, | ||
| 188 | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, | ||
| 189 | {1, 0, 0, 0}}, | ||
| 190 | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, | ||
| 191 | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, | ||
| 192 | {1, 0, 0, 0}}, | ||
| 193 | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, | ||
| 194 | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, | ||
| 195 | {1, 0, 0, 0}}, | ||
| 196 | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, | ||
| 197 | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, | ||
| 198 | {1, 0, 0, 0}}, | ||
| 199 | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, | ||
| 200 | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, | ||
| 201 | {1, 0, 0, 0}}, | ||
| 202 | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, | ||
| 203 | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, | ||
| 204 | {1, 0, 0, 0}}, | ||
| 205 | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, | ||
| 206 | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, | ||
| 207 | {1, 0, 0, 0}}, | ||
| 208 | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, | ||
| 209 | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, | ||
| 210 | {1, 0, 0, 0}}, | ||
| 211 | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, | ||
| 212 | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, | ||
| 213 | {1, 0, 0, 0}}, | ||
| 214 | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, | ||
| 215 | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, | ||
| 216 | {1, 0, 0, 0}}, | ||
| 217 | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, | ||
| 218 | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, | ||
| 219 | {1, 0, 0, 0}}, | ||
| 220 | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, | ||
| 221 | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, | ||
| 222 | {1, 0, 0, 0}}, | ||
| 223 | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, | ||
| 224 | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, | ||
| 225 | {1, 0, 0, 0}}}}; | ||
| 226 | |||
| 227 | /* Precomputation for the group generator. */ | ||
| 228 | typedef struct { | ||
| 229 | felem g_pre_comp[2][16][3]; | ||
| 230 | int references; | ||
| 231 | } NISTP224_PRE_COMP; | ||
| 232 | |||
| 233 | const EC_METHOD * | ||
| 234 | EC_GFp_nistp224_method(void) | ||
| 235 | { | ||
| 236 | static const EC_METHOD ret = { | ||
| 237 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
| 238 | .field_type = NID_X9_62_prime_field, | ||
| 239 | .group_init = ec_GFp_nistp224_group_init, | ||
| 240 | .group_finish = ec_GFp_simple_group_finish, | ||
| 241 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
| 242 | .group_copy = ec_GFp_nist_group_copy, | ||
| 243 | .group_set_curve = ec_GFp_nistp224_group_set_curve, | ||
| 244 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
| 245 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
| 246 | .group_check_discriminant = | ||
| 247 | ec_GFp_simple_group_check_discriminant, | ||
| 248 | .point_init = ec_GFp_simple_point_init, | ||
| 249 | .point_finish = ec_GFp_simple_point_finish, | ||
| 250 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
| 251 | .point_copy = ec_GFp_simple_point_copy, | ||
| 252 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
| 253 | .point_set_Jprojective_coordinates_GFp = | ||
| 254 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
| 255 | .point_get_Jprojective_coordinates_GFp = | ||
| 256 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
| 257 | .point_set_affine_coordinates = | ||
| 258 | ec_GFp_simple_point_set_affine_coordinates, | ||
| 259 | .point_get_affine_coordinates = | ||
| 260 | ec_GFp_nistp224_point_get_affine_coordinates, | ||
| 261 | .add = ec_GFp_simple_add, | ||
| 262 | .dbl = ec_GFp_simple_dbl, | ||
| 263 | .invert = ec_GFp_simple_invert, | ||
| 264 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
| 265 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
| 266 | .point_cmp = ec_GFp_simple_cmp, | ||
| 267 | .make_affine = ec_GFp_simple_make_affine, | ||
| 268 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
| 269 | .mul = ec_GFp_nistp224_points_mul, | ||
| 270 | .precompute_mult = ec_GFp_nistp224_precompute_mult, | ||
| 271 | .have_precompute_mult = ec_GFp_nistp224_have_precompute_mult, | ||
| 272 | .field_mul = ec_GFp_nist_field_mul, | ||
| 273 | .field_sqr = ec_GFp_nist_field_sqr | ||
| 274 | }; | ||
| 275 | |||
| 276 | return &ret; | ||
| 277 | } | ||
| 278 | |||
| 279 | /* Helper functions to convert field elements to/from internal representation */ | ||
| 280 | static void | ||
| 281 | bin28_to_felem(felem out, const u8 in[28]) | ||
| 282 | { | ||
| 283 | out[0] = *((const uint64_t *) (in)) & 0x00ffffffffffffff; | ||
| 284 | out[1] = (*((const uint64_t *) (in + 7))) & 0x00ffffffffffffff; | ||
| 285 | out[2] = (*((const uint64_t *) (in + 14))) & 0x00ffffffffffffff; | ||
| 286 | out[3] = (*((const uint64_t *) (in + 21))) & 0x00ffffffffffffff; | ||
| 287 | } | ||
| 288 | |||
| 289 | static void | ||
| 290 | felem_to_bin28(u8 out[28], const felem in) | ||
| 291 | { | ||
| 292 | unsigned i; | ||
| 293 | for (i = 0; i < 7; ++i) { | ||
| 294 | out[i] = in[0] >> (8 * i); | ||
| 295 | out[i + 7] = in[1] >> (8 * i); | ||
| 296 | out[i + 14] = in[2] >> (8 * i); | ||
| 297 | out[i + 21] = in[3] >> (8 * i); | ||
| 298 | } | ||
| 299 | } | ||
| 300 | |||
| 301 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
| 302 | static void | ||
| 303 | flip_endian(u8 * out, const u8 * in, unsigned len) | ||
| 304 | { | ||
| 305 | unsigned i; | ||
| 306 | for (i = 0; i < len; ++i) | ||
| 307 | out[i] = in[len - 1 - i]; | ||
| 308 | } | ||
| 309 | |||
| 310 | /* From OpenSSL BIGNUM to internal representation */ | ||
| 311 | static int | ||
| 312 | BN_to_felem(felem out, const BIGNUM * bn) | ||
| 313 | { | ||
| 314 | felem_bytearray b_in; | ||
| 315 | felem_bytearray b_out; | ||
| 316 | unsigned num_bytes; | ||
| 317 | |||
| 318 | /* BN_bn2bin eats leading zeroes */ | ||
| 319 | memset(b_out, 0, sizeof b_out); | ||
| 320 | num_bytes = BN_num_bytes(bn); | ||
| 321 | if (num_bytes > sizeof b_out) { | ||
| 322 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 323 | return 0; | ||
| 324 | } | ||
| 325 | if (BN_is_negative(bn)) { | ||
| 326 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 327 | return 0; | ||
| 328 | } | ||
| 329 | num_bytes = BN_bn2bin(bn, b_in); | ||
| 330 | flip_endian(b_out, b_in, num_bytes); | ||
| 331 | bin28_to_felem(out, b_out); | ||
| 332 | return 1; | ||
| 333 | } | ||
| 334 | |||
| 335 | /* From internal representation to OpenSSL BIGNUM */ | ||
| 336 | static BIGNUM * | ||
| 337 | felem_to_BN(BIGNUM * out, const felem in) | ||
| 338 | { | ||
| 339 | felem_bytearray b_in, b_out; | ||
| 340 | felem_to_bin28(b_in, in); | ||
| 341 | flip_endian(b_out, b_in, sizeof b_out); | ||
| 342 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
| 343 | } | ||
| 344 | |||
| 345 | /******************************************************************************/ | ||
| 346 | /* FIELD OPERATIONS | ||
| 347 | * | ||
| 348 | * Field operations, using the internal representation of field elements. | ||
| 349 | * NB! These operations are specific to our point multiplication and cannot be | ||
| 350 | * expected to be correct in general - e.g., multiplication with a large scalar | ||
| 351 | * will cause an overflow. | ||
| 352 | * | ||
| 353 | */ | ||
| 354 | |||
| 355 | static void | ||
| 356 | felem_one(felem out) | ||
| 357 | { | ||
| 358 | out[0] = 1; | ||
| 359 | out[1] = 0; | ||
| 360 | out[2] = 0; | ||
| 361 | out[3] = 0; | ||
| 362 | } | ||
| 363 | |||
| 364 | static void | ||
| 365 | felem_assign(felem out, const felem in) | ||
| 366 | { | ||
| 367 | out[0] = in[0]; | ||
| 368 | out[1] = in[1]; | ||
| 369 | out[2] = in[2]; | ||
| 370 | out[3] = in[3]; | ||
| 371 | } | ||
| 372 | |||
| 373 | /* Sum two field elements: out += in */ | ||
| 374 | static void | ||
| 375 | felem_sum(felem out, const felem in) | ||
| 376 | { | ||
| 377 | out[0] += in[0]; | ||
| 378 | out[1] += in[1]; | ||
| 379 | out[2] += in[2]; | ||
| 380 | out[3] += in[3]; | ||
| 381 | } | ||
| 382 | |||
| 383 | /* Get negative value: out = -in */ | ||
| 384 | /* Assumes in[i] < 2^57 */ | ||
| 385 | static void | ||
| 386 | felem_neg(felem out, const felem in) | ||
| 387 | { | ||
| 388 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
| 389 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
| 390 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
| 391 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
| 392 | |||
| 393 | /* Set to 0 mod 2^224-2^96+1 to ensure out > in */ | ||
| 394 | out[0] = two58p2 - in[0]; | ||
| 395 | out[1] = two58m42m2 - in[1]; | ||
| 396 | out[2] = two58m2 - in[2]; | ||
| 397 | out[3] = two58m2 - in[3]; | ||
| 398 | } | ||
| 399 | |||
| 400 | /* Subtract field elements: out -= in */ | ||
| 401 | /* Assumes in[i] < 2^57 */ | ||
| 402 | static void | ||
| 403 | felem_diff(felem out, const felem in) | ||
| 404 | { | ||
| 405 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
| 406 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
| 407 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
| 408 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
| 409 | |||
| 410 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
| 411 | out[0] += two58p2; | ||
| 412 | out[1] += two58m42m2; | ||
| 413 | out[2] += two58m2; | ||
| 414 | out[3] += two58m2; | ||
| 415 | |||
| 416 | out[0] -= in[0]; | ||
| 417 | out[1] -= in[1]; | ||
| 418 | out[2] -= in[2]; | ||
| 419 | out[3] -= in[3]; | ||
| 420 | } | ||
| 421 | |||
| 422 | /* Subtract in unreduced 128-bit mode: out -= in */ | ||
| 423 | /* Assumes in[i] < 2^119 */ | ||
| 424 | static void | ||
| 425 | widefelem_diff(widefelem out, const widefelem in) | ||
| 426 | { | ||
| 427 | static const widelimb two120 = ((widelimb) 1) << 120; | ||
| 428 | static const widelimb two120m64 = (((widelimb) 1) << 120) - | ||
| 429 | (((widelimb) 1) << 64); | ||
| 430 | static const widelimb two120m104m64 = (((widelimb) 1) << 120) - | ||
| 431 | (((widelimb) 1) << 104) - (((widelimb) 1) << 64); | ||
| 432 | |||
| 433 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
| 434 | out[0] += two120; | ||
| 435 | out[1] += two120m64; | ||
| 436 | out[2] += two120m64; | ||
| 437 | out[3] += two120; | ||
| 438 | out[4] += two120m104m64; | ||
| 439 | out[5] += two120m64; | ||
| 440 | out[6] += two120m64; | ||
| 441 | |||
| 442 | out[0] -= in[0]; | ||
| 443 | out[1] -= in[1]; | ||
| 444 | out[2] -= in[2]; | ||
| 445 | out[3] -= in[3]; | ||
| 446 | out[4] -= in[4]; | ||
| 447 | out[5] -= in[5]; | ||
| 448 | out[6] -= in[6]; | ||
| 449 | } | ||
| 450 | |||
| 451 | /* Subtract in mixed mode: out128 -= in64 */ | ||
| 452 | /* in[i] < 2^63 */ | ||
| 453 | static void | ||
| 454 | felem_diff_128_64(widefelem out, const felem in) | ||
| 455 | { | ||
| 456 | static const widelimb two64p8 = (((widelimb) 1) << 64) + | ||
| 457 | (((widelimb) 1) << 8); | ||
| 458 | static const widelimb two64m8 = (((widelimb) 1) << 64) - | ||
| 459 | (((widelimb) 1) << 8); | ||
| 460 | static const widelimb two64m48m8 = (((widelimb) 1) << 64) - | ||
| 461 | (((widelimb) 1) << 48) - (((widelimb) 1) << 8); | ||
| 462 | |||
| 463 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
| 464 | out[0] += two64p8; | ||
| 465 | out[1] += two64m48m8; | ||
| 466 | out[2] += two64m8; | ||
| 467 | out[3] += two64m8; | ||
| 468 | |||
| 469 | out[0] -= in[0]; | ||
| 470 | out[1] -= in[1]; | ||
| 471 | out[2] -= in[2]; | ||
| 472 | out[3] -= in[3]; | ||
| 473 | } | ||
| 474 | |||
| 475 | /* Multiply a field element by a scalar: out = out * scalar | ||
| 476 | * The scalars we actually use are small, so results fit without overflow */ | ||
| 477 | static void | ||
| 478 | felem_scalar(felem out, const limb scalar) | ||
| 479 | { | ||
| 480 | out[0] *= scalar; | ||
| 481 | out[1] *= scalar; | ||
| 482 | out[2] *= scalar; | ||
| 483 | out[3] *= scalar; | ||
| 484 | } | ||
| 485 | |||
| 486 | /* Multiply an unreduced field element by a scalar: out = out * scalar | ||
| 487 | * The scalars we actually use are small, so results fit without overflow */ | ||
| 488 | static void | ||
| 489 | widefelem_scalar(widefelem out, const widelimb scalar) | ||
| 490 | { | ||
| 491 | out[0] *= scalar; | ||
| 492 | out[1] *= scalar; | ||
| 493 | out[2] *= scalar; | ||
| 494 | out[3] *= scalar; | ||
| 495 | out[4] *= scalar; | ||
| 496 | out[5] *= scalar; | ||
| 497 | out[6] *= scalar; | ||
| 498 | } | ||
| 499 | |||
| 500 | /* Square a field element: out = in^2 */ | ||
| 501 | static void | ||
| 502 | felem_square(widefelem out, const felem in) | ||
| 503 | { | ||
| 504 | limb tmp0, tmp1, tmp2; | ||
| 505 | tmp0 = 2 * in[0]; | ||
| 506 | tmp1 = 2 * in[1]; | ||
| 507 | tmp2 = 2 * in[2]; | ||
| 508 | out[0] = ((widelimb) in[0]) * in[0]; | ||
| 509 | out[1] = ((widelimb) in[0]) * tmp1; | ||
| 510 | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; | ||
| 511 | out[3] = ((widelimb) in[3]) * tmp0 + | ||
| 512 | ((widelimb) in[1]) * tmp2; | ||
| 513 | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; | ||
| 514 | out[5] = ((widelimb) in[3]) * tmp2; | ||
| 515 | out[6] = ((widelimb) in[3]) * in[3]; | ||
| 516 | } | ||
| 517 | |||
| 518 | /* Multiply two field elements: out = in1 * in2 */ | ||
| 519 | static void | ||
| 520 | felem_mul(widefelem out, const felem in1, const felem in2) | ||
| 521 | { | ||
| 522 | out[0] = ((widelimb) in1[0]) * in2[0]; | ||
| 523 | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; | ||
| 524 | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + | ||
| 525 | ((widelimb) in1[2]) * in2[0]; | ||
| 526 | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + | ||
| 527 | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; | ||
| 528 | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + | ||
| 529 | ((widelimb) in1[3]) * in2[1]; | ||
| 530 | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; | ||
| 531 | out[6] = ((widelimb) in1[3]) * in2[3]; | ||
| 532 | } | ||
| 533 | |||
| 534 | /* Reduce seven 128-bit coefficients to four 64-bit coefficients. | ||
| 535 | * Requires in[i] < 2^126, | ||
| 536 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ | ||
| 537 | static void | ||
| 538 | felem_reduce(felem out, const widefelem in) | ||
| 539 | { | ||
| 540 | static const widelimb two127p15 = (((widelimb) 1) << 127) + | ||
| 541 | (((widelimb) 1) << 15); | ||
| 542 | static const widelimb two127m71 = (((widelimb) 1) << 127) - | ||
| 543 | (((widelimb) 1) << 71); | ||
| 544 | static const widelimb two127m71m55 = (((widelimb) 1) << 127) - | ||
| 545 | (((widelimb) 1) << 71) - (((widelimb) 1) << 55); | ||
| 546 | widelimb output[5]; | ||
| 547 | |||
| 548 | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ | ||
| 549 | output[0] = in[0] + two127p15; | ||
| 550 | output[1] = in[1] + two127m71m55; | ||
| 551 | output[2] = in[2] + two127m71; | ||
| 552 | output[3] = in[3]; | ||
| 553 | output[4] = in[4]; | ||
| 554 | |||
| 555 | /* Eliminate in[4], in[5], in[6] */ | ||
| 556 | output[4] += in[6] >> 16; | ||
| 557 | output[3] += (in[6] & 0xffff) << 40; | ||
| 558 | output[2] -= in[6]; | ||
| 559 | |||
| 560 | output[3] += in[5] >> 16; | ||
| 561 | output[2] += (in[5] & 0xffff) << 40; | ||
| 562 | output[1] -= in[5]; | ||
| 563 | |||
| 564 | output[2] += output[4] >> 16; | ||
| 565 | output[1] += (output[4] & 0xffff) << 40; | ||
| 566 | output[0] -= output[4]; | ||
| 567 | |||
| 568 | /* Carry 2 -> 3 -> 4 */ | ||
| 569 | output[3] += output[2] >> 56; | ||
| 570 | output[2] &= 0x00ffffffffffffff; | ||
| 571 | |||
| 572 | output[4] = output[3] >> 56; | ||
| 573 | output[3] &= 0x00ffffffffffffff; | ||
| 574 | |||
| 575 | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ | ||
| 576 | |||
| 577 | /* Eliminate output[4] */ | ||
| 578 | output[2] += output[4] >> 16; | ||
| 579 | /* output[2] < 2^56 + 2^56 = 2^57 */ | ||
| 580 | output[1] += (output[4] & 0xffff) << 40; | ||
| 581 | output[0] -= output[4]; | ||
| 582 | |||
| 583 | /* Carry 0 -> 1 -> 2 -> 3 */ | ||
| 584 | output[1] += output[0] >> 56; | ||
| 585 | out[0] = output[0] & 0x00ffffffffffffff; | ||
| 586 | |||
| 587 | output[2] += output[1] >> 56; | ||
| 588 | /* output[2] < 2^57 + 2^72 */ | ||
| 589 | out[1] = output[1] & 0x00ffffffffffffff; | ||
| 590 | output[3] += output[2] >> 56; | ||
| 591 | /* output[3] <= 2^56 + 2^16 */ | ||
| 592 | out[2] = output[2] & 0x00ffffffffffffff; | ||
| 593 | |||
| 594 | /* | ||
| 595 | * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 | ||
| 596 | * (due to final carry), so out < 2*p | ||
| 597 | */ | ||
| 598 | out[3] = output[3]; | ||
| 599 | } | ||
| 600 | |||
| 601 | static void | ||
| 602 | felem_square_reduce(felem out, const felem in) | ||
| 603 | { | ||
| 604 | widefelem tmp; | ||
| 605 | felem_square(tmp, in); | ||
| 606 | felem_reduce(out, tmp); | ||
| 607 | } | ||
| 608 | |||
| 609 | static void | ||
| 610 | felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
| 611 | { | ||
| 612 | widefelem tmp; | ||
| 613 | felem_mul(tmp, in1, in2); | ||
| 614 | felem_reduce(out, tmp); | ||
| 615 | } | ||
| 616 | |||
| 617 | /* Reduce to unique minimal representation. | ||
| 618 | * Requires 0 <= in < 2*p (always call felem_reduce first) */ | ||
| 619 | static void | ||
| 620 | felem_contract(felem out, const felem in) | ||
| 621 | { | ||
| 622 | static const int64_t two56 = ((limb) 1) << 56; | ||
| 623 | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ | ||
| 624 | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ | ||
| 625 | int64_t tmp[4], a; | ||
| 626 | tmp[0] = in[0]; | ||
| 627 | tmp[1] = in[1]; | ||
| 628 | tmp[2] = in[2]; | ||
| 629 | tmp[3] = in[3]; | ||
| 630 | /* Case 1: a = 1 iff in >= 2^224 */ | ||
| 631 | a = (in[3] >> 56); | ||
| 632 | tmp[0] -= a; | ||
| 633 | tmp[1] += a << 40; | ||
| 634 | tmp[3] &= 0x00ffffffffffffff; | ||
| 635 | /* | ||
| 636 | * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all | ||
| 637 | * 1 and the lower part is non-zero | ||
| 638 | */ | ||
| 639 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | | ||
| 640 | (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); | ||
| 641 | a &= 0x00ffffffffffffff; | ||
| 642 | /* turn a into an all-one mask (if a = 0) or an all-zero mask */ | ||
| 643 | a = (a - 1) >> 63; | ||
| 644 | /* subtract 2^224 - 2^96 + 1 if a is all-one */ | ||
| 645 | tmp[3] &= a ^ 0xffffffffffffffff; | ||
| 646 | tmp[2] &= a ^ 0xffffffffffffffff; | ||
| 647 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; | ||
| 648 | tmp[0] -= 1 & a; | ||
| 649 | |||
| 650 | /* | ||
| 651 | * eliminate negative coefficients: if tmp[0] is negative, tmp[1] | ||
| 652 | * must be non-zero, so we only need one step | ||
| 653 | */ | ||
| 654 | a = tmp[0] >> 63; | ||
| 655 | tmp[0] += two56 & a; | ||
| 656 | tmp[1] -= 1 & a; | ||
| 657 | |||
| 658 | /* carry 1 -> 2 -> 3 */ | ||
| 659 | tmp[2] += tmp[1] >> 56; | ||
| 660 | tmp[1] &= 0x00ffffffffffffff; | ||
| 661 | |||
| 662 | tmp[3] += tmp[2] >> 56; | ||
| 663 | tmp[2] &= 0x00ffffffffffffff; | ||
| 664 | |||
| 665 | /* Now 0 <= out < p */ | ||
| 666 | out[0] = tmp[0]; | ||
| 667 | out[1] = tmp[1]; | ||
| 668 | out[2] = tmp[2]; | ||
| 669 | out[3] = tmp[3]; | ||
| 670 | } | ||
| 671 | |||
| 672 | /* Zero-check: returns 1 if input is 0, and 0 otherwise. | ||
| 673 | * We know that field elements are reduced to in < 2^225, | ||
| 674 | * so we only need to check three cases: 0, 2^224 - 2^96 + 1, | ||
| 675 | * and 2^225 - 2^97 + 2 */ | ||
| 676 | static limb | ||
| 677 | felem_is_zero(const felem in) | ||
| 678 | { | ||
| 679 | limb zero, two224m96p1, two225m97p2; | ||
| 680 | |||
| 681 | zero = in[0] | in[1] | in[2] | in[3]; | ||
| 682 | zero = (((int64_t) (zero) - 1) >> 63) & 1; | ||
| 683 | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | ||
| 684 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); | ||
| 685 | two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; | ||
| 686 | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | ||
| 687 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); | ||
| 688 | two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; | ||
| 689 | return (zero | two224m96p1 | two225m97p2); | ||
| 690 | } | ||
| 691 | |||
| 692 | static limb | ||
| 693 | felem_is_zero_int(const felem in) | ||
| 694 | { | ||
| 695 | return (int) (felem_is_zero(in) & ((limb) 1)); | ||
| 696 | } | ||
| 697 | |||
| 698 | /* Invert a field element */ | ||
| 699 | /* Computation chain copied from djb's code */ | ||
| 700 | static void | ||
| 701 | felem_inv(felem out, const felem in) | ||
| 702 | { | ||
| 703 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
| 704 | widefelem tmp; | ||
| 705 | unsigned i; | ||
| 706 | |||
| 707 | felem_square(tmp, in); | ||
| 708 | felem_reduce(ftmp, tmp);/* 2 */ | ||
| 709 | felem_mul(tmp, in, ftmp); | ||
| 710 | felem_reduce(ftmp, tmp);/* 2^2 - 1 */ | ||
| 711 | felem_square(tmp, ftmp); | ||
| 712 | felem_reduce(ftmp, tmp);/* 2^3 - 2 */ | ||
| 713 | felem_mul(tmp, in, ftmp); | ||
| 714 | felem_reduce(ftmp, tmp);/* 2^3 - 1 */ | ||
| 715 | felem_square(tmp, ftmp); | ||
| 716 | felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ | ||
| 717 | felem_square(tmp, ftmp2); | ||
| 718 | felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ | ||
| 719 | felem_square(tmp, ftmp2); | ||
| 720 | felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ | ||
| 721 | felem_mul(tmp, ftmp2, ftmp); | ||
| 722 | felem_reduce(ftmp, tmp);/* 2^6 - 1 */ | ||
| 723 | felem_square(tmp, ftmp); | ||
| 724 | felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ | ||
| 725 | for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */ | ||
| 726 | felem_square(tmp, ftmp2); | ||
| 727 | felem_reduce(ftmp2, tmp); | ||
| 728 | } | ||
| 729 | felem_mul(tmp, ftmp2, ftmp); | ||
| 730 | felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ | ||
| 731 | felem_square(tmp, ftmp2); | ||
| 732 | felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ | ||
| 733 | for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */ | ||
| 734 | felem_square(tmp, ftmp3); | ||
| 735 | felem_reduce(ftmp3, tmp); | ||
| 736 | } | ||
| 737 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 738 | felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ | ||
| 739 | felem_square(tmp, ftmp2); | ||
| 740 | felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ | ||
| 741 | for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */ | ||
| 742 | felem_square(tmp, ftmp3); | ||
| 743 | felem_reduce(ftmp3, tmp); | ||
| 744 | } | ||
| 745 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 746 | felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ | ||
| 747 | felem_square(tmp, ftmp3); | ||
| 748 | felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ | ||
| 749 | for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */ | ||
| 750 | felem_square(tmp, ftmp4); | ||
| 751 | felem_reduce(ftmp4, tmp); | ||
| 752 | } | ||
| 753 | felem_mul(tmp, ftmp3, ftmp4); | ||
| 754 | felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ | ||
| 755 | felem_square(tmp, ftmp3); | ||
| 756 | felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ | ||
| 757 | for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */ | ||
| 758 | felem_square(tmp, ftmp4); | ||
| 759 | felem_reduce(ftmp4, tmp); | ||
| 760 | } | ||
| 761 | felem_mul(tmp, ftmp2, ftmp4); | ||
| 762 | felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ | ||
| 763 | for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */ | ||
| 764 | felem_square(tmp, ftmp2); | ||
| 765 | felem_reduce(ftmp2, tmp); | ||
| 766 | } | ||
| 767 | felem_mul(tmp, ftmp2, ftmp); | ||
| 768 | felem_reduce(ftmp, tmp);/* 2^126 - 1 */ | ||
| 769 | felem_square(tmp, ftmp); | ||
| 770 | felem_reduce(ftmp, tmp);/* 2^127 - 2 */ | ||
| 771 | felem_mul(tmp, ftmp, in); | ||
| 772 | felem_reduce(ftmp, tmp);/* 2^127 - 1 */ | ||
| 773 | for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */ | ||
| 774 | felem_square(tmp, ftmp); | ||
| 775 | felem_reduce(ftmp, tmp); | ||
| 776 | } | ||
| 777 | felem_mul(tmp, ftmp, ftmp3); | ||
| 778 | felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ | ||
| 779 | } | ||
| 780 | |||
| 781 | /* Copy in constant time: | ||
| 782 | * if icopy == 1, copy in to out, | ||
| 783 | * if icopy == 0, copy out to itself. */ | ||
| 784 | static void | ||
| 785 | copy_conditional(felem out, const felem in, limb icopy) | ||
| 786 | { | ||
| 787 | unsigned i; | ||
| 788 | /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */ | ||
| 789 | const limb copy = -icopy; | ||
| 790 | for (i = 0; i < 4; ++i) { | ||
| 791 | const limb tmp = copy & (in[i] ^ out[i]); | ||
| 792 | out[i] ^= tmp; | ||
| 793 | } | ||
| 794 | } | ||
| 795 | |||
| 796 | /******************************************************************************/ | ||
| 797 | /* ELLIPTIC CURVE POINT OPERATIONS | ||
| 798 | * | ||
| 799 | * Points are represented in Jacobian projective coordinates: | ||
| 800 | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), | ||
| 801 | * or to the point at infinity if Z == 0. | ||
| 802 | * | ||
| 803 | */ | ||
| 804 | |||
| 805 | /* Double an elliptic curve point: | ||
| 806 | * (X', Y', Z') = 2 * (X, Y, Z), where | ||
| 807 | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 | ||
| 808 | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 | ||
| 809 | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z | ||
| 810 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, | ||
| 811 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
| 812 | static void | ||
| 813 | point_double(felem x_out, felem y_out, felem z_out, | ||
| 814 | const felem x_in, const felem y_in, const felem z_in) | ||
| 815 | { | ||
| 816 | widefelem tmp, tmp2; | ||
| 817 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
| 818 | |||
| 819 | felem_assign(ftmp, x_in); | ||
| 820 | felem_assign(ftmp2, x_in); | ||
| 821 | |||
| 822 | /* delta = z^2 */ | ||
| 823 | felem_square(tmp, z_in); | ||
| 824 | felem_reduce(delta, tmp); | ||
| 825 | |||
| 826 | /* gamma = y^2 */ | ||
| 827 | felem_square(tmp, y_in); | ||
| 828 | felem_reduce(gamma, tmp); | ||
| 829 | |||
| 830 | /* beta = x*gamma */ | ||
| 831 | felem_mul(tmp, x_in, gamma); | ||
| 832 | felem_reduce(beta, tmp); | ||
| 833 | |||
| 834 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
| 835 | felem_diff(ftmp, delta); | ||
| 836 | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
| 837 | felem_sum(ftmp2, delta); | ||
| 838 | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ | ||
| 839 | felem_scalar(ftmp2, 3); | ||
| 840 | /* ftmp2[i] < 3 * 2^58 < 2^60 */ | ||
| 841 | felem_mul(tmp, ftmp, ftmp2); | ||
| 842 | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ | ||
| 843 | felem_reduce(alpha, tmp); | ||
| 844 | |||
| 845 | /* x' = alpha^2 - 8*beta */ | ||
| 846 | felem_square(tmp, alpha); | ||
| 847 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 848 | felem_assign(ftmp, beta); | ||
| 849 | felem_scalar(ftmp, 8); | ||
| 850 | /* ftmp[i] < 8 * 2^57 = 2^60 */ | ||
| 851 | felem_diff_128_64(tmp, ftmp); | ||
| 852 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
| 853 | felem_reduce(x_out, tmp); | ||
| 854 | |||
| 855 | /* z' = (y + z)^2 - gamma - delta */ | ||
| 856 | felem_sum(delta, gamma); | ||
| 857 | /* delta[i] < 2^57 + 2^57 = 2^58 */ | ||
| 858 | felem_assign(ftmp, y_in); | ||
| 859 | felem_sum(ftmp, z_in); | ||
| 860 | /* ftmp[i] < 2^57 + 2^57 = 2^58 */ | ||
| 861 | felem_square(tmp, ftmp); | ||
| 862 | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ | ||
| 863 | felem_diff_128_64(tmp, delta); | ||
| 864 | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ | ||
| 865 | felem_reduce(z_out, tmp); | ||
| 866 | |||
| 867 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
| 868 | felem_scalar(beta, 4); | ||
| 869 | /* beta[i] < 4 * 2^57 = 2^59 */ | ||
| 870 | felem_diff(beta, x_out); | ||
| 871 | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ | ||
| 872 | felem_mul(tmp, alpha, beta); | ||
| 873 | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ | ||
| 874 | felem_square(tmp2, gamma); | ||
| 875 | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 876 | widefelem_scalar(tmp2, 8); | ||
| 877 | /* tmp2[i] < 8 * 2^116 = 2^119 */ | ||
| 878 | widefelem_diff(tmp, tmp2); | ||
| 879 | /* tmp[i] < 2^119 + 2^120 < 2^121 */ | ||
| 880 | felem_reduce(y_out, tmp); | ||
| 881 | } | ||
| 882 | |||
| 883 | /* Add two elliptic curve points: | ||
| 884 | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where | ||
| 885 | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - | ||
| 886 | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 | ||
| 887 | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - | ||
| 888 | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 | ||
| 889 | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) | ||
| 890 | * | ||
| 891 | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. | ||
| 892 | */ | ||
| 893 | |||
| 894 | /* This function is not entirely constant-time: | ||
| 895 | * it includes a branch for checking whether the two input points are equal, | ||
| 896 | * (while not equal to the point at infinity). | ||
| 897 | * This case never happens during single point multiplication, | ||
| 898 | * so there is no timing leak for ECDH or ECDSA signing. */ | ||
| 899 | static void | ||
| 900 | point_add(felem x3, felem y3, felem z3, | ||
| 901 | const felem x1, const felem y1, const felem z1, | ||
| 902 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
| 903 | { | ||
| 904 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; | ||
| 905 | widefelem tmp, tmp2; | ||
| 906 | limb z1_is_zero, z2_is_zero, x_equal, y_equal; | ||
| 907 | |||
| 908 | if (!mixed) { | ||
| 909 | /* ftmp2 = z2^2 */ | ||
| 910 | felem_square(tmp, z2); | ||
| 911 | felem_reduce(ftmp2, tmp); | ||
| 912 | |||
| 913 | /* ftmp4 = z2^3 */ | ||
| 914 | felem_mul(tmp, ftmp2, z2); | ||
| 915 | felem_reduce(ftmp4, tmp); | ||
| 916 | |||
| 917 | /* ftmp4 = z2^3*y1 */ | ||
| 918 | felem_mul(tmp2, ftmp4, y1); | ||
| 919 | felem_reduce(ftmp4, tmp2); | ||
| 920 | |||
| 921 | /* ftmp2 = z2^2*x1 */ | ||
| 922 | felem_mul(tmp2, ftmp2, x1); | ||
| 923 | felem_reduce(ftmp2, tmp2); | ||
| 924 | } else { | ||
| 925 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
| 926 | |||
| 927 | /* ftmp4 = z2^3*y1 */ | ||
| 928 | felem_assign(ftmp4, y1); | ||
| 929 | |||
| 930 | /* ftmp2 = z2^2*x1 */ | ||
| 931 | felem_assign(ftmp2, x1); | ||
| 932 | } | ||
| 933 | |||
| 934 | /* ftmp = z1^2 */ | ||
| 935 | felem_square(tmp, z1); | ||
| 936 | felem_reduce(ftmp, tmp); | ||
| 937 | |||
| 938 | /* ftmp3 = z1^3 */ | ||
| 939 | felem_mul(tmp, ftmp, z1); | ||
| 940 | felem_reduce(ftmp3, tmp); | ||
| 941 | |||
| 942 | /* tmp = z1^3*y2 */ | ||
| 943 | felem_mul(tmp, ftmp3, y2); | ||
| 944 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 945 | |||
| 946 | /* ftmp3 = z1^3*y2 - z2^3*y1 */ | ||
| 947 | felem_diff_128_64(tmp, ftmp4); | ||
| 948 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
| 949 | felem_reduce(ftmp3, tmp); | ||
| 950 | |||
| 951 | /* tmp = z1^2*x2 */ | ||
| 952 | felem_mul(tmp, ftmp, x2); | ||
| 953 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 954 | |||
| 955 | /* ftmp = z1^2*x2 - z2^2*x1 */ | ||
| 956 | felem_diff_128_64(tmp, ftmp2); | ||
| 957 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
| 958 | felem_reduce(ftmp, tmp); | ||
| 959 | |||
| 960 | /* | ||
| 961 | * the formulae are incorrect if the points are equal so we check for | ||
| 962 | * this and do doubling if this happens | ||
| 963 | */ | ||
| 964 | x_equal = felem_is_zero(ftmp); | ||
| 965 | y_equal = felem_is_zero(ftmp3); | ||
| 966 | z1_is_zero = felem_is_zero(z1); | ||
| 967 | z2_is_zero = felem_is_zero(z2); | ||
| 968 | /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ | ||
| 969 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
| 970 | point_double(x3, y3, z3, x1, y1, z1); | ||
| 971 | return; | ||
| 972 | } | ||
| 973 | /* ftmp5 = z1*z2 */ | ||
| 974 | if (!mixed) { | ||
| 975 | felem_mul(tmp, z1, z2); | ||
| 976 | felem_reduce(ftmp5, tmp); | ||
| 977 | } else { | ||
| 978 | /* special case z2 = 0 is handled later */ | ||
| 979 | felem_assign(ftmp5, z1); | ||
| 980 | } | ||
| 981 | |||
| 982 | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ | ||
| 983 | felem_mul(tmp, ftmp, ftmp5); | ||
| 984 | felem_reduce(z_out, tmp); | ||
| 985 | |||
| 986 | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ | ||
| 987 | felem_assign(ftmp5, ftmp); | ||
| 988 | felem_square(tmp, ftmp); | ||
| 989 | felem_reduce(ftmp, tmp); | ||
| 990 | |||
| 991 | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ | ||
| 992 | felem_mul(tmp, ftmp, ftmp5); | ||
| 993 | felem_reduce(ftmp5, tmp); | ||
| 994 | |||
| 995 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
| 996 | felem_mul(tmp, ftmp2, ftmp); | ||
| 997 | felem_reduce(ftmp2, tmp); | ||
| 998 | |||
| 999 | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ | ||
| 1000 | felem_mul(tmp, ftmp4, ftmp5); | ||
| 1001 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 1002 | |||
| 1003 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ | ||
| 1004 | felem_square(tmp2, ftmp3); | ||
| 1005 | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ | ||
| 1006 | |||
| 1007 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ | ||
| 1008 | felem_diff_128_64(tmp2, ftmp5); | ||
| 1009 | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
| 1010 | |||
| 1011 | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
| 1012 | felem_assign(ftmp5, ftmp2); | ||
| 1013 | felem_scalar(ftmp5, 2); | ||
| 1014 | /* ftmp5[i] < 2 * 2^57 = 2^58 */ | ||
| 1015 | |||
| 1016 | /* | ||
| 1017 | * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - | ||
| 1018 | * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 | ||
| 1019 | */ | ||
| 1020 | felem_diff_128_64(tmp2, ftmp5); | ||
| 1021 | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ | ||
| 1022 | felem_reduce(x_out, tmp2); | ||
| 1023 | |||
| 1024 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ | ||
| 1025 | felem_diff(ftmp2, x_out); | ||
| 1026 | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
| 1027 | |||
| 1028 | /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */ | ||
| 1029 | felem_mul(tmp2, ftmp3, ftmp2); | ||
| 1030 | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ | ||
| 1031 | |||
| 1032 | /* | ||
| 1033 | * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - | ||
| 1034 | * x_out) - z2^3*y1*(z1^2*x2 - z2^2*x1)^3 | ||
| 1035 | */ | ||
| 1036 | widefelem_diff(tmp2, tmp); | ||
| 1037 | /* tmp2[i] < 2^118 + 2^120 < 2^121 */ | ||
| 1038 | felem_reduce(y_out, tmp2); | ||
| 1039 | |||
| 1040 | /* | ||
| 1041 | * the result (x_out, y_out, z_out) is incorrect if one of the inputs | ||
| 1042 | * is the point at infinity, so we need to check for this separately | ||
| 1043 | */ | ||
| 1044 | |||
| 1045 | /* if point 1 is at infinity, copy point 2 to output, and vice versa */ | ||
| 1046 | copy_conditional(x_out, x2, z1_is_zero); | ||
| 1047 | copy_conditional(x_out, x1, z2_is_zero); | ||
| 1048 | copy_conditional(y_out, y2, z1_is_zero); | ||
| 1049 | copy_conditional(y_out, y1, z2_is_zero); | ||
| 1050 | copy_conditional(z_out, z2, z1_is_zero); | ||
| 1051 | copy_conditional(z_out, z1, z2_is_zero); | ||
| 1052 | felem_assign(x3, x_out); | ||
| 1053 | felem_assign(y3, y_out); | ||
| 1054 | felem_assign(z3, z_out); | ||
| 1055 | } | ||
| 1056 | |||
| 1057 | /* select_point selects the |idx|th point from a precomputation table and | ||
| 1058 | * copies it to out. */ | ||
| 1059 | static void | ||
| 1060 | select_point(const u64 idx, unsigned int size, const felem pre_comp[ /* size */ ][3], felem out[3]) | ||
| 1061 | { | ||
| 1062 | unsigned i, j; | ||
| 1063 | limb *outlimbs = &out[0][0]; | ||
| 1064 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
| 1065 | |||
| 1066 | for (i = 0; i < size; i++) { | ||
| 1067 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
| 1068 | u64 mask = i ^ idx; | ||
| 1069 | mask |= mask >> 4; | ||
| 1070 | mask |= mask >> 2; | ||
| 1071 | mask |= mask >> 1; | ||
| 1072 | mask &= 1; | ||
| 1073 | mask--; | ||
| 1074 | for (j = 0; j < 4 * 3; j++) | ||
| 1075 | outlimbs[j] |= inlimbs[j] & mask; | ||
| 1076 | } | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | /* get_bit returns the |i|th bit in |in| */ | ||
| 1080 | static char | ||
| 1081 | get_bit(const felem_bytearray in, unsigned i) | ||
| 1082 | { | ||
| 1083 | if (i >= 224) | ||
| 1084 | return 0; | ||
| 1085 | return (in[i >> 3] >> (i & 7)) & 1; | ||
| 1086 | } | ||
| 1087 | |||
| 1088 | /* Interleaved point multiplication using precomputed point multiples: | ||
| 1089 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
| 1090 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
| 1091 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
| 1092 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
| 1093 | static void | ||
| 1094 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
| 1095 | const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, | ||
| 1096 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3]) | ||
| 1097 | { | ||
| 1098 | int i, skip; | ||
| 1099 | unsigned num; | ||
| 1100 | unsigned gen_mul = (g_scalar != NULL); | ||
| 1101 | felem nq[3], tmp[4]; | ||
| 1102 | u64 bits; | ||
| 1103 | u8 sign, digit; | ||
| 1104 | |||
| 1105 | /* set nq to the point at infinity */ | ||
| 1106 | memset(nq, 0, 3 * sizeof(felem)); | ||
| 1107 | |||
| 1108 | /* | ||
| 1109 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
| 1110 | * multiples of the generator (two in each of the last 28 rounds) and | ||
| 1111 | * additions of other points multiples (every 5th round). | ||
| 1112 | */ | ||
| 1113 | skip = 1; /* save two point operations in the first | ||
| 1114 | * round */ | ||
| 1115 | for (i = (num_points ? 220 : 27); i >= 0; --i) { | ||
| 1116 | /* double */ | ||
| 1117 | if (!skip) | ||
| 1118 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
| 1119 | |||
| 1120 | /* add multiples of the generator */ | ||
| 1121 | if (gen_mul && (i <= 27)) { | ||
| 1122 | /* first, look 28 bits upwards */ | ||
| 1123 | bits = get_bit(g_scalar, i + 196) << 3; | ||
| 1124 | bits |= get_bit(g_scalar, i + 140) << 2; | ||
| 1125 | bits |= get_bit(g_scalar, i + 84) << 1; | ||
| 1126 | bits |= get_bit(g_scalar, i + 28); | ||
| 1127 | /* select the point to add, in constant time */ | ||
| 1128 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
| 1129 | |||
| 1130 | if (!skip) { | ||
| 1131 | point_add(nq[0], nq[1], nq[2], | ||
| 1132 | nq[0], nq[1], nq[2], | ||
| 1133 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
| 1134 | } else { | ||
| 1135 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
| 1136 | skip = 0; | ||
| 1137 | } | ||
| 1138 | |||
| 1139 | /* second, look at the current position */ | ||
| 1140 | bits = get_bit(g_scalar, i + 168) << 3; | ||
| 1141 | bits |= get_bit(g_scalar, i + 112) << 2; | ||
| 1142 | bits |= get_bit(g_scalar, i + 56) << 1; | ||
| 1143 | bits |= get_bit(g_scalar, i); | ||
| 1144 | /* select the point to add, in constant time */ | ||
| 1145 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
| 1146 | point_add(nq[0], nq[1], nq[2], | ||
| 1147 | nq[0], nq[1], nq[2], | ||
| 1148 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
| 1149 | } | ||
| 1150 | /* do other additions every 5 doublings */ | ||
| 1151 | if (num_points && (i % 5 == 0)) { | ||
| 1152 | /* loop over all scalars */ | ||
| 1153 | for (num = 0; num < num_points; ++num) { | ||
| 1154 | bits = get_bit(scalars[num], i + 4) << 5; | ||
| 1155 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
| 1156 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
| 1157 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
| 1158 | bits |= get_bit(scalars[num], i) << 1; | ||
| 1159 | bits |= get_bit(scalars[num], i - 1); | ||
| 1160 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
| 1161 | |||
| 1162 | /* select the point to add or subtract */ | ||
| 1163 | select_point(digit, 17, pre_comp[num], tmp); | ||
| 1164 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the | ||
| 1165 | * negative point */ | ||
| 1166 | copy_conditional(tmp[1], tmp[3], sign); | ||
| 1167 | |||
| 1168 | if (!skip) { | ||
| 1169 | point_add(nq[0], nq[1], nq[2], | ||
| 1170 | nq[0], nq[1], nq[2], | ||
| 1171 | mixed, tmp[0], tmp[1], tmp[2]); | ||
| 1172 | } else { | ||
| 1173 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
| 1174 | skip = 0; | ||
| 1175 | } | ||
| 1176 | } | ||
| 1177 | } | ||
| 1178 | } | ||
| 1179 | felem_assign(x_out, nq[0]); | ||
| 1180 | felem_assign(y_out, nq[1]); | ||
| 1181 | felem_assign(z_out, nq[2]); | ||
| 1182 | } | ||
| 1183 | |||
| 1184 | /******************************************************************************/ | ||
| 1185 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
| 1186 | */ | ||
| 1187 | |||
| 1188 | static NISTP224_PRE_COMP * | ||
| 1189 | nistp224_pre_comp_new() | ||
| 1190 | { | ||
| 1191 | NISTP224_PRE_COMP *ret = NULL; | ||
| 1192 | ret = malloc(sizeof *ret); | ||
| 1193 | if (!ret) { | ||
| 1194 | ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
| 1195 | return ret; | ||
| 1196 | } | ||
| 1197 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
| 1198 | ret->references = 1; | ||
| 1199 | return ret; | ||
| 1200 | } | ||
| 1201 | |||
| 1202 | static void * | ||
| 1203 | nistp224_pre_comp_dup(void *src_) | ||
| 1204 | { | ||
| 1205 | NISTP224_PRE_COMP *src = src_; | ||
| 1206 | |||
| 1207 | /* no need to actually copy, these objects never change! */ | ||
| 1208 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1209 | |||
| 1210 | return src_; | ||
| 1211 | } | ||
| 1212 | |||
| 1213 | static void | ||
| 1214 | nistp224_pre_comp_free(void *pre_) | ||
| 1215 | { | ||
| 1216 | int i; | ||
| 1217 | NISTP224_PRE_COMP *pre = pre_; | ||
| 1218 | |||
| 1219 | if (!pre) | ||
| 1220 | return; | ||
| 1221 | |||
| 1222 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1223 | if (i > 0) | ||
| 1224 | return; | ||
| 1225 | |||
| 1226 | free(pre); | ||
| 1227 | } | ||
| 1228 | |||
| 1229 | static void | ||
| 1230 | nistp224_pre_comp_clear_free(void *pre_) | ||
| 1231 | { | ||
| 1232 | int i; | ||
| 1233 | NISTP224_PRE_COMP *pre = pre_; | ||
| 1234 | |||
| 1235 | if (!pre) | ||
| 1236 | return; | ||
| 1237 | |||
| 1238 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1239 | if (i > 0) | ||
| 1240 | return; | ||
| 1241 | |||
| 1242 | OPENSSL_cleanse(pre, sizeof *pre); | ||
| 1243 | free(pre); | ||
| 1244 | } | ||
| 1245 | |||
| 1246 | /******************************************************************************/ | ||
| 1247 | /* OPENSSL EC_METHOD FUNCTIONS | ||
| 1248 | */ | ||
| 1249 | |||
| 1250 | int | ||
| 1251 | ec_GFp_nistp224_group_init(EC_GROUP * group) | ||
| 1252 | { | ||
| 1253 | int ret; | ||
| 1254 | ret = ec_GFp_simple_group_init(group); | ||
| 1255 | group->a_is_minus3 = 1; | ||
| 1256 | return ret; | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | int | ||
| 1260 | ec_GFp_nistp224_group_set_curve(EC_GROUP * group, const BIGNUM * p, | ||
| 1261 | const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
| 1262 | { | ||
| 1263 | int ret = 0; | ||
| 1264 | BN_CTX *new_ctx = NULL; | ||
| 1265 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
| 1266 | |||
| 1267 | if (ctx == NULL) | ||
| 1268 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 1269 | return 0; | ||
| 1270 | BN_CTX_start(ctx); | ||
| 1271 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
| 1272 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
| 1273 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
| 1274 | goto err; | ||
| 1275 | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
| 1276 | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
| 1277 | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
| 1278 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
| 1279 | (BN_cmp(curve_b, b))) { | ||
| 1280 | ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, | ||
| 1281 | EC_R_WRONG_CURVE_PARAMETERS); | ||
| 1282 | goto err; | ||
| 1283 | } | ||
| 1284 | group->field_mod_func = BN_nist_mod_224; | ||
| 1285 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
| 1286 | err: | ||
| 1287 | BN_CTX_end(ctx); | ||
| 1288 | BN_CTX_free(new_ctx); | ||
| 1289 | return ret; | ||
| 1290 | } | ||
| 1291 | |||
| 1292 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
| 1293 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
| 1294 | int | ||
| 1295 | ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group, | ||
| 1296 | const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
| 1297 | { | ||
| 1298 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
| 1299 | widefelem tmp; | ||
| 1300 | |||
| 1301 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
| 1302 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
| 1303 | EC_R_POINT_AT_INFINITY); | ||
| 1304 | return 0; | ||
| 1305 | } | ||
| 1306 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
| 1307 | (!BN_to_felem(z1, &point->Z))) | ||
| 1308 | return 0; | ||
| 1309 | felem_inv(z2, z1); | ||
| 1310 | felem_square(tmp, z2); | ||
| 1311 | felem_reduce(z1, tmp); | ||
| 1312 | felem_mul(tmp, x_in, z1); | ||
| 1313 | felem_reduce(x_in, tmp); | ||
| 1314 | felem_contract(x_out, x_in); | ||
| 1315 | if (x != NULL) { | ||
| 1316 | if (!felem_to_BN(x, x_out)) { | ||
| 1317 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
| 1318 | ERR_R_BN_LIB); | ||
| 1319 | return 0; | ||
| 1320 | } | ||
| 1321 | } | ||
| 1322 | felem_mul(tmp, z1, z2); | ||
| 1323 | felem_reduce(z1, tmp); | ||
| 1324 | felem_mul(tmp, y_in, z1); | ||
| 1325 | felem_reduce(y_in, tmp); | ||
| 1326 | felem_contract(y_out, y_in); | ||
| 1327 | if (y != NULL) { | ||
| 1328 | if (!felem_to_BN(y, y_out)) { | ||
| 1329 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
| 1330 | ERR_R_BN_LIB); | ||
| 1331 | return 0; | ||
| 1332 | } | ||
| 1333 | } | ||
| 1334 | return 1; | ||
| 1335 | } | ||
| 1336 | |||
| 1337 | static void | ||
| 1338 | make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) | ||
| 1339 | { | ||
| 1340 | /* | ||
| 1341 | * Runs in constant time, unless an input is the point at infinity | ||
| 1342 | * (which normally shouldn't happen). | ||
| 1343 | */ | ||
| 1344 | ec_GFp_nistp_points_make_affine_internal( | ||
| 1345 | num, | ||
| 1346 | points, | ||
| 1347 | sizeof(felem), | ||
| 1348 | tmp_felems, | ||
| 1349 | (void (*) (void *)) felem_one, | ||
| 1350 | (int (*) (const void *)) felem_is_zero_int, | ||
| 1351 | (void (*) (void *, const void *)) felem_assign, | ||
| 1352 | (void (*) (void *, const void *)) felem_square_reduce, | ||
| 1353 | (void (*) (void *, const void *, const void *)) felem_mul_reduce, | ||
| 1354 | (void (*) (void *, const void *)) felem_inv, | ||
| 1355 | (void (*) (void *, const void *)) felem_contract); | ||
| 1356 | } | ||
| 1357 | |||
| 1358 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
| 1359 | * Result is stored in r (r can equal one of the inputs). */ | ||
| 1360 | int | ||
| 1361 | ec_GFp_nistp224_points_mul(const EC_GROUP * group, EC_POINT * r, | ||
| 1362 | const BIGNUM * scalar, size_t num, const EC_POINT * points[], | ||
| 1363 | const BIGNUM * scalars[], BN_CTX * ctx) | ||
| 1364 | { | ||
| 1365 | int ret = 0; | ||
| 1366 | int j; | ||
| 1367 | unsigned i; | ||
| 1368 | int mixed = 0; | ||
| 1369 | BN_CTX *new_ctx = NULL; | ||
| 1370 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
| 1371 | felem_bytearray g_secret; | ||
| 1372 | felem_bytearray *secrets = NULL; | ||
| 1373 | felem(*pre_comp)[17][3] = NULL; | ||
| 1374 | felem *tmp_felems = NULL; | ||
| 1375 | felem_bytearray tmp; | ||
| 1376 | unsigned num_bytes; | ||
| 1377 | int have_pre_comp = 0; | ||
| 1378 | size_t num_points = num; | ||
| 1379 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
| 1380 | NISTP224_PRE_COMP *pre = NULL; | ||
| 1381 | const felem(*g_pre_comp)[16][3] = NULL; | ||
| 1382 | EC_POINT *generator = NULL; | ||
| 1383 | const EC_POINT *p = NULL; | ||
| 1384 | const BIGNUM *p_scalar = NULL; | ||
| 1385 | |||
| 1386 | if (ctx == NULL) | ||
| 1387 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 1388 | return 0; | ||
| 1389 | BN_CTX_start(ctx); | ||
| 1390 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1391 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
| 1392 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
| 1393 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
| 1394 | goto err; | ||
| 1395 | |||
| 1396 | if (scalar != NULL) { | ||
| 1397 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
| 1398 | nistp224_pre_comp_dup, nistp224_pre_comp_free, | ||
| 1399 | nistp224_pre_comp_clear_free); | ||
| 1400 | if (pre) | ||
| 1401 | /* we have precomputation, try to use it */ | ||
| 1402 | g_pre_comp = (const felem(*)[16][3]) pre->g_pre_comp; | ||
| 1403 | else | ||
| 1404 | /* try to use the standard precomputation */ | ||
| 1405 | g_pre_comp = &gmul[0]; | ||
| 1406 | generator = EC_POINT_new(group); | ||
| 1407 | if (generator == NULL) | ||
| 1408 | goto err; | ||
| 1409 | /* get the generator from precomputation */ | ||
| 1410 | if (!felem_to_BN(x, g_pre_comp[0][1][0]) || | ||
| 1411 | !felem_to_BN(y, g_pre_comp[0][1][1]) || | ||
| 1412 | !felem_to_BN(z, g_pre_comp[0][1][2])) { | ||
| 1413 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1414 | goto err; | ||
| 1415 | } | ||
| 1416 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
| 1417 | generator, x, y, z, ctx)) | ||
| 1418 | goto err; | ||
| 1419 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 1420 | /* precomputation matches generator */ | ||
| 1421 | have_pre_comp = 1; | ||
| 1422 | else | ||
| 1423 | /* | ||
| 1424 | * we don't have valid precomputation: treat the | ||
| 1425 | * generator as a random point | ||
| 1426 | */ | ||
| 1427 | num_points = num_points + 1; | ||
| 1428 | } | ||
| 1429 | if (num_points > 0) { | ||
| 1430 | if (num_points >= 3) { | ||
| 1431 | /* | ||
| 1432 | * unless we precompute multiples for just one or two | ||
| 1433 | * points, converting those into affine form is time | ||
| 1434 | * well spent | ||
| 1435 | */ | ||
| 1436 | mixed = 1; | ||
| 1437 | } | ||
| 1438 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
| 1439 | pre_comp = calloc(num_points, 17 * 3 * sizeof(felem)); | ||
| 1440 | if (mixed) { | ||
| 1441 | /* XXX should do more int overflow checking */ | ||
| 1442 | tmp_felems = reallocarray(NULL, | ||
| 1443 | (num_points * 17 + 1), sizeof(felem)); | ||
| 1444 | } | ||
| 1445 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) { | ||
| 1446 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
| 1447 | goto err; | ||
| 1448 | } | ||
| 1449 | /* | ||
| 1450 | * we treat NULL scalars as 0, and NULL points as points at | ||
| 1451 | * infinity, i.e., they contribute nothing to the linear | ||
| 1452 | * combination | ||
| 1453 | */ | ||
| 1454 | for (i = 0; i < num_points; ++i) { | ||
| 1455 | if (i == num) | ||
| 1456 | /* the generator */ | ||
| 1457 | { | ||
| 1458 | p = EC_GROUP_get0_generator(group); | ||
| 1459 | p_scalar = scalar; | ||
| 1460 | } else | ||
| 1461 | /* the i^th point */ | ||
| 1462 | { | ||
| 1463 | p = points[i]; | ||
| 1464 | p_scalar = scalars[i]; | ||
| 1465 | } | ||
| 1466 | if ((p_scalar != NULL) && (p != NULL)) { | ||
| 1467 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
| 1468 | if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar))) { | ||
| 1469 | /* | ||
| 1470 | * this is an unusual input, and we | ||
| 1471 | * don't guarantee constant-timeness | ||
| 1472 | */ | ||
| 1473 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
| 1474 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1475 | goto err; | ||
| 1476 | } | ||
| 1477 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1478 | } else | ||
| 1479 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
| 1480 | flip_endian(secrets[i], tmp, num_bytes); | ||
| 1481 | /* precompute multiples */ | ||
| 1482 | if ((!BN_to_felem(x_out, &p->X)) || | ||
| 1483 | (!BN_to_felem(y_out, &p->Y)) || | ||
| 1484 | (!BN_to_felem(z_out, &p->Z))) | ||
| 1485 | goto err; | ||
| 1486 | felem_assign(pre_comp[i][1][0], x_out); | ||
| 1487 | felem_assign(pre_comp[i][1][1], y_out); | ||
| 1488 | felem_assign(pre_comp[i][1][2], z_out); | ||
| 1489 | for (j = 2; j <= 16; ++j) { | ||
| 1490 | if (j & 1) { | ||
| 1491 | point_add( | ||
| 1492 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1493 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
| 1494 | 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
| 1495 | } else { | ||
| 1496 | point_double( | ||
| 1497 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1498 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
| 1499 | } | ||
| 1500 | } | ||
| 1501 | } | ||
| 1502 | } | ||
| 1503 | if (mixed) | ||
| 1504 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
| 1505 | } | ||
| 1506 | /* the scalar for the generator */ | ||
| 1507 | if ((scalar != NULL) && (have_pre_comp)) { | ||
| 1508 | memset(g_secret, 0, sizeof g_secret); | ||
| 1509 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
| 1510 | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { | ||
| 1511 | /* | ||
| 1512 | * this is an unusual input, and we don't guarantee | ||
| 1513 | * constant-timeness | ||
| 1514 | */ | ||
| 1515 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
| 1516 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1517 | goto err; | ||
| 1518 | } | ||
| 1519 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1520 | } else | ||
| 1521 | num_bytes = BN_bn2bin(scalar, tmp); | ||
| 1522 | flip_endian(g_secret, tmp, num_bytes); | ||
| 1523 | /* do the multiplication with generator precomputation */ | ||
| 1524 | batch_mul(x_out, y_out, z_out, | ||
| 1525 | (const felem_bytearray(*)) secrets, num_points, | ||
| 1526 | g_secret, | ||
| 1527 | mixed, (const felem(*)[17][3]) pre_comp, | ||
| 1528 | g_pre_comp); | ||
| 1529 | } else | ||
| 1530 | /* do the multiplication without generator precomputation */ | ||
| 1531 | batch_mul(x_out, y_out, z_out, | ||
| 1532 | (const felem_bytearray(*)) secrets, num_points, | ||
| 1533 | NULL, mixed, (const felem(*)[17][3]) pre_comp, NULL); | ||
| 1534 | /* reduce the output to its unique minimal representation */ | ||
| 1535 | felem_contract(x_in, x_out); | ||
| 1536 | felem_contract(y_in, y_out); | ||
| 1537 | felem_contract(z_in, z_out); | ||
| 1538 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
| 1539 | (!felem_to_BN(z, z_in))) { | ||
| 1540 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1541 | goto err; | ||
| 1542 | } | ||
| 1543 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
| 1544 | |||
| 1545 | err: | ||
| 1546 | BN_CTX_end(ctx); | ||
| 1547 | EC_POINT_free(generator); | ||
| 1548 | BN_CTX_free(new_ctx); | ||
| 1549 | free(secrets); | ||
| 1550 | free(pre_comp); | ||
| 1551 | free(tmp_felems); | ||
| 1552 | return ret; | ||
| 1553 | } | ||
| 1554 | |||
| 1555 | int | ||
| 1556 | ec_GFp_nistp224_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
| 1557 | { | ||
| 1558 | int ret = 0; | ||
| 1559 | NISTP224_PRE_COMP *pre = NULL; | ||
| 1560 | int i, j; | ||
| 1561 | BN_CTX *new_ctx = NULL; | ||
| 1562 | BIGNUM *x, *y; | ||
| 1563 | EC_POINT *generator = NULL; | ||
| 1564 | felem tmp_felems[32]; | ||
| 1565 | |||
| 1566 | /* throw away old precomputation */ | ||
| 1567 | EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup, | ||
| 1568 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free); | ||
| 1569 | if (ctx == NULL) | ||
| 1570 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 1571 | return 0; | ||
| 1572 | BN_CTX_start(ctx); | ||
| 1573 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1574 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
| 1575 | goto err; | ||
| 1576 | /* get the generator */ | ||
| 1577 | if (group->generator == NULL) | ||
| 1578 | goto err; | ||
| 1579 | generator = EC_POINT_new(group); | ||
| 1580 | if (generator == NULL) | ||
| 1581 | goto err; | ||
| 1582 | BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); | ||
| 1583 | BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); | ||
| 1584 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
| 1585 | goto err; | ||
| 1586 | if ((pre = nistp224_pre_comp_new()) == NULL) | ||
| 1587 | goto err; | ||
| 1588 | /* if the generator is the standard one, use built-in precomputation */ | ||
| 1589 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
| 1590 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
| 1591 | ret = 1; | ||
| 1592 | goto err; | ||
| 1593 | } | ||
| 1594 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) || | ||
| 1595 | (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) || | ||
| 1596 | (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z))) | ||
| 1597 | goto err; | ||
| 1598 | /* | ||
| 1599 | * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, | ||
| 1600 | * 2^84*G, 2^140*G, 2^196*G for the second one | ||
| 1601 | */ | ||
| 1602 | for (i = 1; i <= 8; i <<= 1) { | ||
| 1603 | point_double( | ||
| 1604 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
| 1605 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
| 1606 | for (j = 0; j < 27; ++j) { | ||
| 1607 | point_double( | ||
| 1608 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
| 1609 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
| 1610 | } | ||
| 1611 | if (i == 8) | ||
| 1612 | break; | ||
| 1613 | point_double( | ||
| 1614 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
| 1615 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
| 1616 | for (j = 0; j < 27; ++j) { | ||
| 1617 | point_double( | ||
| 1618 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
| 1619 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2]); | ||
| 1620 | } | ||
| 1621 | } | ||
| 1622 | for (i = 0; i < 2; i++) { | ||
| 1623 | /* g_pre_comp[i][0] is the point at infinity */ | ||
| 1624 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
| 1625 | /* the remaining multiples */ | ||
| 1626 | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ | ||
| 1627 | point_add( | ||
| 1628 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], | ||
| 1629 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], | ||
| 1630 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
| 1631 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
| 1632 | pre->g_pre_comp[i][2][2]); | ||
| 1633 | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ | ||
| 1634 | point_add( | ||
| 1635 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], | ||
| 1636 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], | ||
| 1637 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
| 1638 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
| 1639 | pre->g_pre_comp[i][2][2]); | ||
| 1640 | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ | ||
| 1641 | point_add( | ||
| 1642 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], | ||
| 1643 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], | ||
| 1644 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
| 1645 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], | ||
| 1646 | pre->g_pre_comp[i][4][2]); | ||
| 1647 | /* | ||
| 1648 | * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + | ||
| 1649 | * 2^196*G | ||
| 1650 | */ | ||
| 1651 | point_add( | ||
| 1652 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], | ||
| 1653 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], | ||
| 1654 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
| 1655 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
| 1656 | pre->g_pre_comp[i][2][2]); | ||
| 1657 | for (j = 1; j < 8; ++j) { | ||
| 1658 | /* odd multiples: add G resp. 2^28*G */ | ||
| 1659 | point_add( | ||
| 1660 | pre->g_pre_comp[i][2 * j + 1][0], pre->g_pre_comp[i][2 * j + 1][1], | ||
| 1661 | pre->g_pre_comp[i][2 * j + 1][2], pre->g_pre_comp[i][2 * j][0], | ||
| 1662 | pre->g_pre_comp[i][2 * j][1], pre->g_pre_comp[i][2 * j][2], | ||
| 1663 | 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], | ||
| 1664 | pre->g_pre_comp[i][1][2]); | ||
| 1665 | } | ||
| 1666 | } | ||
| 1667 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); | ||
| 1668 | |||
| 1669 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup, | ||
| 1670 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free)) | ||
| 1671 | goto err; | ||
| 1672 | ret = 1; | ||
| 1673 | pre = NULL; | ||
| 1674 | err: | ||
| 1675 | BN_CTX_end(ctx); | ||
| 1676 | EC_POINT_free(generator); | ||
| 1677 | BN_CTX_free(new_ctx); | ||
| 1678 | nistp224_pre_comp_free(pre); | ||
| 1679 | return ret; | ||
| 1680 | } | ||
| 1681 | |||
| 1682 | int | ||
| 1683 | ec_GFp_nistp224_have_precompute_mult(const EC_GROUP * group) | ||
| 1684 | { | ||
| 1685 | if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, | ||
| 1686 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free) | ||
| 1687 | != NULL) | ||
| 1688 | return 1; | ||
| 1689 | else | ||
| 1690 | return 0; | ||
| 1691 | } | ||
| 1692 | |||
| 1693 | #endif | ||
