diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_nistp224.c')
-rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp224.c | 1690 |
1 files changed, 0 insertions, 1690 deletions
diff --git a/src/lib/libcrypto/ec/ecp_nistp224.c b/src/lib/libcrypto/ec/ecp_nistp224.c deleted file mode 100644 index caa4c3facf..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp224.c +++ /dev/null | |||
@@ -1,1690 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_nistp224.c,v 1.30 2022/12/26 07:18:51 jmc Exp $ */ | ||
2 | /* | ||
3 | * Written by Emilia Kasper (Google) for the OpenSSL project. | ||
4 | */ | ||
5 | /* | ||
6 | * Copyright (c) 2011 Google Inc. | ||
7 | * | ||
8 | * Permission to use, copy, modify, and distribute this software for any | ||
9 | * purpose with or without fee is hereby granted, provided that the above | ||
10 | * copyright notice and this permission notice appear in all copies. | ||
11 | * | ||
12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication | ||
23 | * | ||
24 | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation | ||
25 | * and Adam Langley's public domain 64-bit C implementation of curve25519 | ||
26 | */ | ||
27 | |||
28 | #include <stdint.h> | ||
29 | #include <string.h> | ||
30 | |||
31 | #include <openssl/opensslconf.h> | ||
32 | |||
33 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
34 | |||
35 | #include <openssl/err.h> | ||
36 | #include "ec_local.h" | ||
37 | |||
38 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
39 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
40 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
41 | #else | ||
42 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
43 | #endif | ||
44 | |||
45 | typedef uint8_t u8; | ||
46 | typedef uint64_t u64; | ||
47 | typedef int64_t s64; | ||
48 | |||
49 | |||
50 | /******************************************************************************/ | ||
51 | /* INTERNAL REPRESENTATION OF FIELD ELEMENTS | ||
52 | * | ||
53 | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 | ||
54 | * using 64-bit coefficients called 'limbs', | ||
55 | * and sometimes (for multiplication results) as | ||
56 | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 | ||
57 | * using 128-bit coefficients called 'widelimbs'. | ||
58 | * A 4-limb representation is an 'felem'; | ||
59 | * a 7-widelimb representation is a 'widefelem'. | ||
60 | * Even within felems, bits of adjacent limbs overlap, and we don't always | ||
61 | * reduce the representations: we ensure that inputs to each felem | ||
62 | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, | ||
63 | * and fit into a 128-bit word without overflow. The coefficients are then | ||
64 | * again partially reduced to obtain an felem satisfying a_i < 2^57. | ||
65 | * We only reduce to the unique minimal representation at the end of the | ||
66 | * computation. | ||
67 | */ | ||
68 | |||
69 | typedef uint64_t limb; | ||
70 | typedef uint128_t widelimb; | ||
71 | |||
72 | typedef limb felem[4]; | ||
73 | typedef widelimb widefelem[7]; | ||
74 | |||
75 | /* Field element represented as a byte array. | ||
76 | * 28*8 = 224 bits is also the group order size for the elliptic curve, | ||
77 | * and we also use this type for scalars for point multiplication. | ||
78 | */ | ||
79 | typedef u8 felem_bytearray[28]; | ||
80 | |||
81 | static const felem_bytearray nistp224_curve_params[5] = { | ||
82 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */ | ||
83 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00, | ||
84 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}, | ||
85 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */ | ||
86 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF, | ||
87 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE}, | ||
88 | {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */ | ||
89 | 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA, | ||
90 | 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4}, | ||
91 | {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */ | ||
92 | 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22, | ||
93 | 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21}, | ||
94 | {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */ | ||
95 | 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64, | ||
96 | 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34} | ||
97 | }; | ||
98 | |||
99 | /* Precomputed multiples of the standard generator | ||
100 | * Points are given in coordinates (X, Y, Z) where Z normally is 1 | ||
101 | * (0 for the point at infinity). | ||
102 | * For each field element, slice a_0 is word 0, etc. | ||
103 | * | ||
104 | * The table has 2 * 16 elements, starting with the following: | ||
105 | * index | bits | point | ||
106 | * ------+---------+------------------------------ | ||
107 | * 0 | 0 0 0 0 | 0G | ||
108 | * 1 | 0 0 0 1 | 1G | ||
109 | * 2 | 0 0 1 0 | 2^56G | ||
110 | * 3 | 0 0 1 1 | (2^56 + 1)G | ||
111 | * 4 | 0 1 0 0 | 2^112G | ||
112 | * 5 | 0 1 0 1 | (2^112 + 1)G | ||
113 | * 6 | 0 1 1 0 | (2^112 + 2^56)G | ||
114 | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G | ||
115 | * 8 | 1 0 0 0 | 2^168G | ||
116 | * 9 | 1 0 0 1 | (2^168 + 1)G | ||
117 | * 10 | 1 0 1 0 | (2^168 + 2^56)G | ||
118 | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G | ||
119 | * 12 | 1 1 0 0 | (2^168 + 2^112)G | ||
120 | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G | ||
121 | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G | ||
122 | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G | ||
123 | * followed by a copy of this with each element multiplied by 2^28. | ||
124 | * | ||
125 | * The reason for this is so that we can clock bits into four different | ||
126 | * locations when doing simple scalar multiplies against the base point, | ||
127 | * and then another four locations using the second 16 elements. | ||
128 | */ | ||
129 | static const felem gmul[2][16][3] = | ||
130 | {{{{0, 0, 0, 0}, | ||
131 | {0, 0, 0, 0}, | ||
132 | {0, 0, 0, 0}}, | ||
133 | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, | ||
134 | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, | ||
135 | {1, 0, 0, 0}}, | ||
136 | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, | ||
137 | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, | ||
138 | {1, 0, 0, 0}}, | ||
139 | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, | ||
140 | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, | ||
141 | {1, 0, 0, 0}}, | ||
142 | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, | ||
143 | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, | ||
144 | {1, 0, 0, 0}}, | ||
145 | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, | ||
146 | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, | ||
147 | {1, 0, 0, 0}}, | ||
148 | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, | ||
149 | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, | ||
150 | {1, 0, 0, 0}}, | ||
151 | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, | ||
152 | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, | ||
153 | {1, 0, 0, 0}}, | ||
154 | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, | ||
155 | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, | ||
156 | {1, 0, 0, 0}}, | ||
157 | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, | ||
158 | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, | ||
159 | {1, 0, 0, 0}}, | ||
160 | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, | ||
161 | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, | ||
162 | {1, 0, 0, 0}}, | ||
163 | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, | ||
164 | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, | ||
165 | {1, 0, 0, 0}}, | ||
166 | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, | ||
167 | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, | ||
168 | {1, 0, 0, 0}}, | ||
169 | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, | ||
170 | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, | ||
171 | {1, 0, 0, 0}}, | ||
172 | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, | ||
173 | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, | ||
174 | {1, 0, 0, 0}}, | ||
175 | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, | ||
176 | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, | ||
177 | {1, 0, 0, 0}}}, | ||
178 | {{{0, 0, 0, 0}, | ||
179 | {0, 0, 0, 0}, | ||
180 | {0, 0, 0, 0}}, | ||
181 | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, | ||
182 | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, | ||
183 | {1, 0, 0, 0}}, | ||
184 | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, | ||
185 | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, | ||
186 | {1, 0, 0, 0}}, | ||
187 | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, | ||
188 | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, | ||
189 | {1, 0, 0, 0}}, | ||
190 | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, | ||
191 | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, | ||
192 | {1, 0, 0, 0}}, | ||
193 | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, | ||
194 | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, | ||
195 | {1, 0, 0, 0}}, | ||
196 | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, | ||
197 | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, | ||
198 | {1, 0, 0, 0}}, | ||
199 | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, | ||
200 | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, | ||
201 | {1, 0, 0, 0}}, | ||
202 | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, | ||
203 | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, | ||
204 | {1, 0, 0, 0}}, | ||
205 | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, | ||
206 | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, | ||
207 | {1, 0, 0, 0}}, | ||
208 | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, | ||
209 | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, | ||
210 | {1, 0, 0, 0}}, | ||
211 | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, | ||
212 | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, | ||
213 | {1, 0, 0, 0}}, | ||
214 | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, | ||
215 | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, | ||
216 | {1, 0, 0, 0}}, | ||
217 | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, | ||
218 | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, | ||
219 | {1, 0, 0, 0}}, | ||
220 | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, | ||
221 | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, | ||
222 | {1, 0, 0, 0}}, | ||
223 | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, | ||
224 | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, | ||
225 | {1, 0, 0, 0}}}}; | ||
226 | |||
227 | /* Precomputation for the group generator. */ | ||
228 | typedef struct { | ||
229 | felem g_pre_comp[2][16][3]; | ||
230 | int references; | ||
231 | } NISTP224_PRE_COMP; | ||
232 | |||
233 | const EC_METHOD * | ||
234 | EC_GFp_nistp224_method(void) | ||
235 | { | ||
236 | static const EC_METHOD ret = { | ||
237 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
238 | .field_type = NID_X9_62_prime_field, | ||
239 | .group_init = ec_GFp_nistp224_group_init, | ||
240 | .group_finish = ec_GFp_simple_group_finish, | ||
241 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
242 | .group_copy = ec_GFp_nist_group_copy, | ||
243 | .group_set_curve = ec_GFp_nistp224_group_set_curve, | ||
244 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
245 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
246 | .group_order_bits = ec_group_simple_order_bits, | ||
247 | .group_check_discriminant = | ||
248 | ec_GFp_simple_group_check_discriminant, | ||
249 | .point_init = ec_GFp_simple_point_init, | ||
250 | .point_finish = ec_GFp_simple_point_finish, | ||
251 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
252 | .point_copy = ec_GFp_simple_point_copy, | ||
253 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
254 | .point_set_Jprojective_coordinates = | ||
255 | ec_GFp_simple_set_Jprojective_coordinates, | ||
256 | .point_get_Jprojective_coordinates = | ||
257 | ec_GFp_simple_get_Jprojective_coordinates, | ||
258 | .point_set_affine_coordinates = | ||
259 | ec_GFp_simple_point_set_affine_coordinates, | ||
260 | .point_get_affine_coordinates = | ||
261 | ec_GFp_nistp224_point_get_affine_coordinates, | ||
262 | .add = ec_GFp_simple_add, | ||
263 | .dbl = ec_GFp_simple_dbl, | ||
264 | .invert = ec_GFp_simple_invert, | ||
265 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
266 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
267 | .point_cmp = ec_GFp_simple_cmp, | ||
268 | .make_affine = ec_GFp_simple_make_affine, | ||
269 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
270 | .mul = ec_GFp_nistp224_points_mul, | ||
271 | .precompute_mult = ec_GFp_nistp224_precompute_mult, | ||
272 | .have_precompute_mult = ec_GFp_nistp224_have_precompute_mult, | ||
273 | .field_mul = ec_GFp_nist_field_mul, | ||
274 | .field_sqr = ec_GFp_nist_field_sqr, | ||
275 | .blind_coordinates = NULL, | ||
276 | }; | ||
277 | |||
278 | return &ret; | ||
279 | } | ||
280 | |||
281 | /* Helper functions to convert field elements to/from internal representation */ | ||
282 | static void | ||
283 | bin28_to_felem(felem out, const u8 in[28]) | ||
284 | { | ||
285 | out[0] = *((const uint64_t *) (in)) & 0x00ffffffffffffff; | ||
286 | out[1] = (*((const uint64_t *) (in + 7))) & 0x00ffffffffffffff; | ||
287 | out[2] = (*((const uint64_t *) (in + 14))) & 0x00ffffffffffffff; | ||
288 | out[3] = (*((const uint64_t *) (in + 21))) & 0x00ffffffffffffff; | ||
289 | } | ||
290 | |||
291 | static void | ||
292 | felem_to_bin28(u8 out[28], const felem in) | ||
293 | { | ||
294 | unsigned i; | ||
295 | for (i = 0; i < 7; ++i) { | ||
296 | out[i] = in[0] >> (8 * i); | ||
297 | out[i + 7] = in[1] >> (8 * i); | ||
298 | out[i + 14] = in[2] >> (8 * i); | ||
299 | out[i + 21] = in[3] >> (8 * i); | ||
300 | } | ||
301 | } | ||
302 | |||
303 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
304 | static void | ||
305 | flip_endian(u8 *out, const u8 *in, unsigned len) | ||
306 | { | ||
307 | unsigned i; | ||
308 | for (i = 0; i < len; ++i) | ||
309 | out[i] = in[len - 1 - i]; | ||
310 | } | ||
311 | |||
312 | /* From OpenSSL BIGNUM to internal representation */ | ||
313 | static int | ||
314 | BN_to_felem(felem out, const BIGNUM *bn) | ||
315 | { | ||
316 | felem_bytearray b_in; | ||
317 | felem_bytearray b_out; | ||
318 | unsigned num_bytes; | ||
319 | |||
320 | /* BN_bn2bin eats leading zeroes */ | ||
321 | memset(b_out, 0, sizeof b_out); | ||
322 | num_bytes = BN_num_bytes(bn); | ||
323 | if (num_bytes > sizeof b_out) { | ||
324 | ECerror(EC_R_BIGNUM_OUT_OF_RANGE); | ||
325 | return 0; | ||
326 | } | ||
327 | if (BN_is_negative(bn)) { | ||
328 | ECerror(EC_R_BIGNUM_OUT_OF_RANGE); | ||
329 | return 0; | ||
330 | } | ||
331 | num_bytes = BN_bn2bin(bn, b_in); | ||
332 | flip_endian(b_out, b_in, num_bytes); | ||
333 | bin28_to_felem(out, b_out); | ||
334 | return 1; | ||
335 | } | ||
336 | |||
337 | /* From internal representation to OpenSSL BIGNUM */ | ||
338 | static BIGNUM * | ||
339 | felem_to_BN(BIGNUM *out, const felem in) | ||
340 | { | ||
341 | felem_bytearray b_in, b_out; | ||
342 | felem_to_bin28(b_in, in); | ||
343 | flip_endian(b_out, b_in, sizeof b_out); | ||
344 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
345 | } | ||
346 | |||
347 | /******************************************************************************/ | ||
348 | /* FIELD OPERATIONS | ||
349 | * | ||
350 | * Field operations, using the internal representation of field elements. | ||
351 | * NB! These operations are specific to our point multiplication and cannot be | ||
352 | * expected to be correct in general - e.g., multiplication with a large scalar | ||
353 | * will cause an overflow. | ||
354 | * | ||
355 | */ | ||
356 | |||
357 | static void | ||
358 | felem_one(felem out) | ||
359 | { | ||
360 | out[0] = 1; | ||
361 | out[1] = 0; | ||
362 | out[2] = 0; | ||
363 | out[3] = 0; | ||
364 | } | ||
365 | |||
366 | static void | ||
367 | felem_assign(felem out, const felem in) | ||
368 | { | ||
369 | out[0] = in[0]; | ||
370 | out[1] = in[1]; | ||
371 | out[2] = in[2]; | ||
372 | out[3] = in[3]; | ||
373 | } | ||
374 | |||
375 | /* Sum two field elements: out += in */ | ||
376 | static void | ||
377 | felem_sum(felem out, const felem in) | ||
378 | { | ||
379 | out[0] += in[0]; | ||
380 | out[1] += in[1]; | ||
381 | out[2] += in[2]; | ||
382 | out[3] += in[3]; | ||
383 | } | ||
384 | |||
385 | /* Get negative value: out = -in */ | ||
386 | /* Assumes in[i] < 2^57 */ | ||
387 | static void | ||
388 | felem_neg(felem out, const felem in) | ||
389 | { | ||
390 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
391 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
392 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
393 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
394 | |||
395 | /* Set to 0 mod 2^224-2^96+1 to ensure out > in */ | ||
396 | out[0] = two58p2 - in[0]; | ||
397 | out[1] = two58m42m2 - in[1]; | ||
398 | out[2] = two58m2 - in[2]; | ||
399 | out[3] = two58m2 - in[3]; | ||
400 | } | ||
401 | |||
402 | /* Subtract field elements: out -= in */ | ||
403 | /* Assumes in[i] < 2^57 */ | ||
404 | static void | ||
405 | felem_diff(felem out, const felem in) | ||
406 | { | ||
407 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
408 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
409 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
410 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
411 | |||
412 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
413 | out[0] += two58p2; | ||
414 | out[1] += two58m42m2; | ||
415 | out[2] += two58m2; | ||
416 | out[3] += two58m2; | ||
417 | |||
418 | out[0] -= in[0]; | ||
419 | out[1] -= in[1]; | ||
420 | out[2] -= in[2]; | ||
421 | out[3] -= in[3]; | ||
422 | } | ||
423 | |||
424 | /* Subtract in unreduced 128-bit mode: out -= in */ | ||
425 | /* Assumes in[i] < 2^119 */ | ||
426 | static void | ||
427 | widefelem_diff(widefelem out, const widefelem in) | ||
428 | { | ||
429 | static const widelimb two120 = ((widelimb) 1) << 120; | ||
430 | static const widelimb two120m64 = (((widelimb) 1) << 120) - | ||
431 | (((widelimb) 1) << 64); | ||
432 | static const widelimb two120m104m64 = (((widelimb) 1) << 120) - | ||
433 | (((widelimb) 1) << 104) - (((widelimb) 1) << 64); | ||
434 | |||
435 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
436 | out[0] += two120; | ||
437 | out[1] += two120m64; | ||
438 | out[2] += two120m64; | ||
439 | out[3] += two120; | ||
440 | out[4] += two120m104m64; | ||
441 | out[5] += two120m64; | ||
442 | out[6] += two120m64; | ||
443 | |||
444 | out[0] -= in[0]; | ||
445 | out[1] -= in[1]; | ||
446 | out[2] -= in[2]; | ||
447 | out[3] -= in[3]; | ||
448 | out[4] -= in[4]; | ||
449 | out[5] -= in[5]; | ||
450 | out[6] -= in[6]; | ||
451 | } | ||
452 | |||
453 | /* Subtract in mixed mode: out128 -= in64 */ | ||
454 | /* in[i] < 2^63 */ | ||
455 | static void | ||
456 | felem_diff_128_64(widefelem out, const felem in) | ||
457 | { | ||
458 | static const widelimb two64p8 = (((widelimb) 1) << 64) + | ||
459 | (((widelimb) 1) << 8); | ||
460 | static const widelimb two64m8 = (((widelimb) 1) << 64) - | ||
461 | (((widelimb) 1) << 8); | ||
462 | static const widelimb two64m48m8 = (((widelimb) 1) << 64) - | ||
463 | (((widelimb) 1) << 48) - (((widelimb) 1) << 8); | ||
464 | |||
465 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
466 | out[0] += two64p8; | ||
467 | out[1] += two64m48m8; | ||
468 | out[2] += two64m8; | ||
469 | out[3] += two64m8; | ||
470 | |||
471 | out[0] -= in[0]; | ||
472 | out[1] -= in[1]; | ||
473 | out[2] -= in[2]; | ||
474 | out[3] -= in[3]; | ||
475 | } | ||
476 | |||
477 | /* Multiply a field element by a scalar: out = out * scalar | ||
478 | * The scalars we actually use are small, so results fit without overflow */ | ||
479 | static void | ||
480 | felem_scalar(felem out, const limb scalar) | ||
481 | { | ||
482 | out[0] *= scalar; | ||
483 | out[1] *= scalar; | ||
484 | out[2] *= scalar; | ||
485 | out[3] *= scalar; | ||
486 | } | ||
487 | |||
488 | /* Multiply an unreduced field element by a scalar: out = out * scalar | ||
489 | * The scalars we actually use are small, so results fit without overflow */ | ||
490 | static void | ||
491 | widefelem_scalar(widefelem out, const widelimb scalar) | ||
492 | { | ||
493 | out[0] *= scalar; | ||
494 | out[1] *= scalar; | ||
495 | out[2] *= scalar; | ||
496 | out[3] *= scalar; | ||
497 | out[4] *= scalar; | ||
498 | out[5] *= scalar; | ||
499 | out[6] *= scalar; | ||
500 | } | ||
501 | |||
502 | /* Square a field element: out = in^2 */ | ||
503 | static void | ||
504 | felem_square(widefelem out, const felem in) | ||
505 | { | ||
506 | limb tmp0, tmp1, tmp2; | ||
507 | tmp0 = 2 * in[0]; | ||
508 | tmp1 = 2 * in[1]; | ||
509 | tmp2 = 2 * in[2]; | ||
510 | out[0] = ((widelimb) in[0]) * in[0]; | ||
511 | out[1] = ((widelimb) in[0]) * tmp1; | ||
512 | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; | ||
513 | out[3] = ((widelimb) in[3]) * tmp0 + | ||
514 | ((widelimb) in[1]) * tmp2; | ||
515 | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; | ||
516 | out[5] = ((widelimb) in[3]) * tmp2; | ||
517 | out[6] = ((widelimb) in[3]) * in[3]; | ||
518 | } | ||
519 | |||
520 | /* Multiply two field elements: out = in1 * in2 */ | ||
521 | static void | ||
522 | felem_mul(widefelem out, const felem in1, const felem in2) | ||
523 | { | ||
524 | out[0] = ((widelimb) in1[0]) * in2[0]; | ||
525 | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; | ||
526 | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + | ||
527 | ((widelimb) in1[2]) * in2[0]; | ||
528 | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + | ||
529 | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; | ||
530 | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + | ||
531 | ((widelimb) in1[3]) * in2[1]; | ||
532 | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; | ||
533 | out[6] = ((widelimb) in1[3]) * in2[3]; | ||
534 | } | ||
535 | |||
536 | /* Reduce seven 128-bit coefficients to four 64-bit coefficients. | ||
537 | * Requires in[i] < 2^126, | ||
538 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ | ||
539 | static void | ||
540 | felem_reduce(felem out, const widefelem in) | ||
541 | { | ||
542 | static const widelimb two127p15 = (((widelimb) 1) << 127) + | ||
543 | (((widelimb) 1) << 15); | ||
544 | static const widelimb two127m71 = (((widelimb) 1) << 127) - | ||
545 | (((widelimb) 1) << 71); | ||
546 | static const widelimb two127m71m55 = (((widelimb) 1) << 127) - | ||
547 | (((widelimb) 1) << 71) - (((widelimb) 1) << 55); | ||
548 | widelimb output[5]; | ||
549 | |||
550 | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ | ||
551 | output[0] = in[0] + two127p15; | ||
552 | output[1] = in[1] + two127m71m55; | ||
553 | output[2] = in[2] + two127m71; | ||
554 | output[3] = in[3]; | ||
555 | output[4] = in[4]; | ||
556 | |||
557 | /* Eliminate in[4], in[5], in[6] */ | ||
558 | output[4] += in[6] >> 16; | ||
559 | output[3] += (in[6] & 0xffff) << 40; | ||
560 | output[2] -= in[6]; | ||
561 | |||
562 | output[3] += in[5] >> 16; | ||
563 | output[2] += (in[5] & 0xffff) << 40; | ||
564 | output[1] -= in[5]; | ||
565 | |||
566 | output[2] += output[4] >> 16; | ||
567 | output[1] += (output[4] & 0xffff) << 40; | ||
568 | output[0] -= output[4]; | ||
569 | |||
570 | /* Carry 2 -> 3 -> 4 */ | ||
571 | output[3] += output[2] >> 56; | ||
572 | output[2] &= 0x00ffffffffffffff; | ||
573 | |||
574 | output[4] = output[3] >> 56; | ||
575 | output[3] &= 0x00ffffffffffffff; | ||
576 | |||
577 | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ | ||
578 | |||
579 | /* Eliminate output[4] */ | ||
580 | output[2] += output[4] >> 16; | ||
581 | /* output[2] < 2^56 + 2^56 = 2^57 */ | ||
582 | output[1] += (output[4] & 0xffff) << 40; | ||
583 | output[0] -= output[4]; | ||
584 | |||
585 | /* Carry 0 -> 1 -> 2 -> 3 */ | ||
586 | output[1] += output[0] >> 56; | ||
587 | out[0] = output[0] & 0x00ffffffffffffff; | ||
588 | |||
589 | output[2] += output[1] >> 56; | ||
590 | /* output[2] < 2^57 + 2^72 */ | ||
591 | out[1] = output[1] & 0x00ffffffffffffff; | ||
592 | output[3] += output[2] >> 56; | ||
593 | /* output[3] <= 2^56 + 2^16 */ | ||
594 | out[2] = output[2] & 0x00ffffffffffffff; | ||
595 | |||
596 | /* | ||
597 | * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 | ||
598 | * (due to final carry), so out < 2*p | ||
599 | */ | ||
600 | out[3] = output[3]; | ||
601 | } | ||
602 | |||
603 | static void | ||
604 | felem_square_reduce(felem out, const felem in) | ||
605 | { | ||
606 | widefelem tmp; | ||
607 | felem_square(tmp, in); | ||
608 | felem_reduce(out, tmp); | ||
609 | } | ||
610 | |||
611 | static void | ||
612 | felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
613 | { | ||
614 | widefelem tmp; | ||
615 | felem_mul(tmp, in1, in2); | ||
616 | felem_reduce(out, tmp); | ||
617 | } | ||
618 | |||
619 | /* Reduce to unique minimal representation. | ||
620 | * Requires 0 <= in < 2*p (always call felem_reduce first) */ | ||
621 | static void | ||
622 | felem_contract(felem out, const felem in) | ||
623 | { | ||
624 | static const int64_t two56 = ((limb) 1) << 56; | ||
625 | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ | ||
626 | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ | ||
627 | int64_t tmp[4], a; | ||
628 | tmp[0] = in[0]; | ||
629 | tmp[1] = in[1]; | ||
630 | tmp[2] = in[2]; | ||
631 | tmp[3] = in[3]; | ||
632 | /* Case 1: a = 1 iff in >= 2^224 */ | ||
633 | a = (in[3] >> 56); | ||
634 | tmp[0] -= a; | ||
635 | tmp[1] += a << 40; | ||
636 | tmp[3] &= 0x00ffffffffffffff; | ||
637 | /* | ||
638 | * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all | ||
639 | * 1 and the lower part is non-zero | ||
640 | */ | ||
641 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | | ||
642 | (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); | ||
643 | a &= 0x00ffffffffffffff; | ||
644 | /* turn a into an all-one mask (if a = 0) or an all-zero mask */ | ||
645 | a = (a - 1) >> 63; | ||
646 | /* subtract 2^224 - 2^96 + 1 if a is all-one */ | ||
647 | tmp[3] &= a ^ 0xffffffffffffffff; | ||
648 | tmp[2] &= a ^ 0xffffffffffffffff; | ||
649 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; | ||
650 | tmp[0] -= 1 & a; | ||
651 | |||
652 | /* | ||
653 | * eliminate negative coefficients: if tmp[0] is negative, tmp[1] | ||
654 | * must be non-zero, so we only need one step | ||
655 | */ | ||
656 | a = tmp[0] >> 63; | ||
657 | tmp[0] += two56 & a; | ||
658 | tmp[1] -= 1 & a; | ||
659 | |||
660 | /* carry 1 -> 2 -> 3 */ | ||
661 | tmp[2] += tmp[1] >> 56; | ||
662 | tmp[1] &= 0x00ffffffffffffff; | ||
663 | |||
664 | tmp[3] += tmp[2] >> 56; | ||
665 | tmp[2] &= 0x00ffffffffffffff; | ||
666 | |||
667 | /* Now 0 <= out < p */ | ||
668 | out[0] = tmp[0]; | ||
669 | out[1] = tmp[1]; | ||
670 | out[2] = tmp[2]; | ||
671 | out[3] = tmp[3]; | ||
672 | } | ||
673 | |||
674 | /* Zero-check: returns 1 if input is 0, and 0 otherwise. | ||
675 | * We know that field elements are reduced to in < 2^225, | ||
676 | * so we only need to check three cases: 0, 2^224 - 2^96 + 1, | ||
677 | * and 2^225 - 2^97 + 2 */ | ||
678 | static limb | ||
679 | felem_is_zero(const felem in) | ||
680 | { | ||
681 | limb zero, two224m96p1, two225m97p2; | ||
682 | |||
683 | zero = in[0] | in[1] | in[2] | in[3]; | ||
684 | zero = (((int64_t) (zero) - 1) >> 63) & 1; | ||
685 | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | ||
686 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); | ||
687 | two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; | ||
688 | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | ||
689 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); | ||
690 | two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; | ||
691 | return (zero | two224m96p1 | two225m97p2); | ||
692 | } | ||
693 | |||
694 | static limb | ||
695 | felem_is_zero_int(const felem in) | ||
696 | { | ||
697 | return (int) (felem_is_zero(in) & ((limb) 1)); | ||
698 | } | ||
699 | |||
700 | /* Invert a field element */ | ||
701 | /* Computation chain copied from djb's code */ | ||
702 | static void | ||
703 | felem_inv(felem out, const felem in) | ||
704 | { | ||
705 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
706 | widefelem tmp; | ||
707 | unsigned i; | ||
708 | |||
709 | felem_square(tmp, in); | ||
710 | felem_reduce(ftmp, tmp);/* 2 */ | ||
711 | felem_mul(tmp, in, ftmp); | ||
712 | felem_reduce(ftmp, tmp);/* 2^2 - 1 */ | ||
713 | felem_square(tmp, ftmp); | ||
714 | felem_reduce(ftmp, tmp);/* 2^3 - 2 */ | ||
715 | felem_mul(tmp, in, ftmp); | ||
716 | felem_reduce(ftmp, tmp);/* 2^3 - 1 */ | ||
717 | felem_square(tmp, ftmp); | ||
718 | felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ | ||
719 | felem_square(tmp, ftmp2); | ||
720 | felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ | ||
721 | felem_square(tmp, ftmp2); | ||
722 | felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ | ||
723 | felem_mul(tmp, ftmp2, ftmp); | ||
724 | felem_reduce(ftmp, tmp);/* 2^6 - 1 */ | ||
725 | felem_square(tmp, ftmp); | ||
726 | felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ | ||
727 | for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */ | ||
728 | felem_square(tmp, ftmp2); | ||
729 | felem_reduce(ftmp2, tmp); | ||
730 | } | ||
731 | felem_mul(tmp, ftmp2, ftmp); | ||
732 | felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ | ||
733 | felem_square(tmp, ftmp2); | ||
734 | felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ | ||
735 | for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */ | ||
736 | felem_square(tmp, ftmp3); | ||
737 | felem_reduce(ftmp3, tmp); | ||
738 | } | ||
739 | felem_mul(tmp, ftmp3, ftmp2); | ||
740 | felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ | ||
741 | felem_square(tmp, ftmp2); | ||
742 | felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ | ||
743 | for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */ | ||
744 | felem_square(tmp, ftmp3); | ||
745 | felem_reduce(ftmp3, tmp); | ||
746 | } | ||
747 | felem_mul(tmp, ftmp3, ftmp2); | ||
748 | felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ | ||
749 | felem_square(tmp, ftmp3); | ||
750 | felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ | ||
751 | for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */ | ||
752 | felem_square(tmp, ftmp4); | ||
753 | felem_reduce(ftmp4, tmp); | ||
754 | } | ||
755 | felem_mul(tmp, ftmp3, ftmp4); | ||
756 | felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ | ||
757 | felem_square(tmp, ftmp3); | ||
758 | felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ | ||
759 | for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */ | ||
760 | felem_square(tmp, ftmp4); | ||
761 | felem_reduce(ftmp4, tmp); | ||
762 | } | ||
763 | felem_mul(tmp, ftmp2, ftmp4); | ||
764 | felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ | ||
765 | for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */ | ||
766 | felem_square(tmp, ftmp2); | ||
767 | felem_reduce(ftmp2, tmp); | ||
768 | } | ||
769 | felem_mul(tmp, ftmp2, ftmp); | ||
770 | felem_reduce(ftmp, tmp);/* 2^126 - 1 */ | ||
771 | felem_square(tmp, ftmp); | ||
772 | felem_reduce(ftmp, tmp);/* 2^127 - 2 */ | ||
773 | felem_mul(tmp, ftmp, in); | ||
774 | felem_reduce(ftmp, tmp);/* 2^127 - 1 */ | ||
775 | for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */ | ||
776 | felem_square(tmp, ftmp); | ||
777 | felem_reduce(ftmp, tmp); | ||
778 | } | ||
779 | felem_mul(tmp, ftmp, ftmp3); | ||
780 | felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ | ||
781 | } | ||
782 | |||
783 | /* Copy in constant time: | ||
784 | * if icopy == 1, copy in to out, | ||
785 | * if icopy == 0, copy out to itself. */ | ||
786 | static void | ||
787 | copy_conditional(felem out, const felem in, limb icopy) | ||
788 | { | ||
789 | unsigned i; | ||
790 | /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */ | ||
791 | const limb copy = -icopy; | ||
792 | for (i = 0; i < 4; ++i) { | ||
793 | const limb tmp = copy & (in[i] ^ out[i]); | ||
794 | out[i] ^= tmp; | ||
795 | } | ||
796 | } | ||
797 | |||
798 | /******************************************************************************/ | ||
799 | /* ELLIPTIC CURVE POINT OPERATIONS | ||
800 | * | ||
801 | * Points are represented in Jacobian projective coordinates: | ||
802 | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), | ||
803 | * or to the point at infinity if Z == 0. | ||
804 | * | ||
805 | */ | ||
806 | |||
807 | /* Double an elliptic curve point: | ||
808 | * (X', Y', Z') = 2 * (X, Y, Z), where | ||
809 | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 | ||
810 | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 | ||
811 | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z | ||
812 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, | ||
813 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
814 | static void | ||
815 | point_double(felem x_out, felem y_out, felem z_out, | ||
816 | const felem x_in, const felem y_in, const felem z_in) | ||
817 | { | ||
818 | widefelem tmp, tmp2; | ||
819 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
820 | |||
821 | felem_assign(ftmp, x_in); | ||
822 | felem_assign(ftmp2, x_in); | ||
823 | |||
824 | /* delta = z^2 */ | ||
825 | felem_square(tmp, z_in); | ||
826 | felem_reduce(delta, tmp); | ||
827 | |||
828 | /* gamma = y^2 */ | ||
829 | felem_square(tmp, y_in); | ||
830 | felem_reduce(gamma, tmp); | ||
831 | |||
832 | /* beta = x*gamma */ | ||
833 | felem_mul(tmp, x_in, gamma); | ||
834 | felem_reduce(beta, tmp); | ||
835 | |||
836 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
837 | felem_diff(ftmp, delta); | ||
838 | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
839 | felem_sum(ftmp2, delta); | ||
840 | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ | ||
841 | felem_scalar(ftmp2, 3); | ||
842 | /* ftmp2[i] < 3 * 2^58 < 2^60 */ | ||
843 | felem_mul(tmp, ftmp, ftmp2); | ||
844 | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ | ||
845 | felem_reduce(alpha, tmp); | ||
846 | |||
847 | /* x' = alpha^2 - 8*beta */ | ||
848 | felem_square(tmp, alpha); | ||
849 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
850 | felem_assign(ftmp, beta); | ||
851 | felem_scalar(ftmp, 8); | ||
852 | /* ftmp[i] < 8 * 2^57 = 2^60 */ | ||
853 | felem_diff_128_64(tmp, ftmp); | ||
854 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
855 | felem_reduce(x_out, tmp); | ||
856 | |||
857 | /* z' = (y + z)^2 - gamma - delta */ | ||
858 | felem_sum(delta, gamma); | ||
859 | /* delta[i] < 2^57 + 2^57 = 2^58 */ | ||
860 | felem_assign(ftmp, y_in); | ||
861 | felem_sum(ftmp, z_in); | ||
862 | /* ftmp[i] < 2^57 + 2^57 = 2^58 */ | ||
863 | felem_square(tmp, ftmp); | ||
864 | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ | ||
865 | felem_diff_128_64(tmp, delta); | ||
866 | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ | ||
867 | felem_reduce(z_out, tmp); | ||
868 | |||
869 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
870 | felem_scalar(beta, 4); | ||
871 | /* beta[i] < 4 * 2^57 = 2^59 */ | ||
872 | felem_diff(beta, x_out); | ||
873 | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ | ||
874 | felem_mul(tmp, alpha, beta); | ||
875 | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ | ||
876 | felem_square(tmp2, gamma); | ||
877 | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
878 | widefelem_scalar(tmp2, 8); | ||
879 | /* tmp2[i] < 8 * 2^116 = 2^119 */ | ||
880 | widefelem_diff(tmp, tmp2); | ||
881 | /* tmp[i] < 2^119 + 2^120 < 2^121 */ | ||
882 | felem_reduce(y_out, tmp); | ||
883 | } | ||
884 | |||
885 | /* Add two elliptic curve points: | ||
886 | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where | ||
887 | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - | ||
888 | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 | ||
889 | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - | ||
890 | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 | ||
891 | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) | ||
892 | * | ||
893 | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. | ||
894 | */ | ||
895 | |||
896 | /* This function is not entirely constant-time: | ||
897 | * it includes a branch for checking whether the two input points are equal, | ||
898 | * (while not equal to the point at infinity). | ||
899 | * This case never happens during single point multiplication, | ||
900 | * so there is no timing leak for ECDH or ECDSA signing. */ | ||
901 | static void | ||
902 | point_add(felem x3, felem y3, felem z3, | ||
903 | const felem x1, const felem y1, const felem z1, | ||
904 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
905 | { | ||
906 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; | ||
907 | widefelem tmp, tmp2; | ||
908 | limb z1_is_zero, z2_is_zero, x_equal, y_equal; | ||
909 | |||
910 | if (!mixed) { | ||
911 | /* ftmp2 = z2^2 */ | ||
912 | felem_square(tmp, z2); | ||
913 | felem_reduce(ftmp2, tmp); | ||
914 | |||
915 | /* ftmp4 = z2^3 */ | ||
916 | felem_mul(tmp, ftmp2, z2); | ||
917 | felem_reduce(ftmp4, tmp); | ||
918 | |||
919 | /* ftmp4 = z2^3*y1 */ | ||
920 | felem_mul(tmp2, ftmp4, y1); | ||
921 | felem_reduce(ftmp4, tmp2); | ||
922 | |||
923 | /* ftmp2 = z2^2*x1 */ | ||
924 | felem_mul(tmp2, ftmp2, x1); | ||
925 | felem_reduce(ftmp2, tmp2); | ||
926 | } else { | ||
927 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
928 | |||
929 | /* ftmp4 = z2^3*y1 */ | ||
930 | felem_assign(ftmp4, y1); | ||
931 | |||
932 | /* ftmp2 = z2^2*x1 */ | ||
933 | felem_assign(ftmp2, x1); | ||
934 | } | ||
935 | |||
936 | /* ftmp = z1^2 */ | ||
937 | felem_square(tmp, z1); | ||
938 | felem_reduce(ftmp, tmp); | ||
939 | |||
940 | /* ftmp3 = z1^3 */ | ||
941 | felem_mul(tmp, ftmp, z1); | ||
942 | felem_reduce(ftmp3, tmp); | ||
943 | |||
944 | /* tmp = z1^3*y2 */ | ||
945 | felem_mul(tmp, ftmp3, y2); | ||
946 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
947 | |||
948 | /* ftmp3 = z1^3*y2 - z2^3*y1 */ | ||
949 | felem_diff_128_64(tmp, ftmp4); | ||
950 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
951 | felem_reduce(ftmp3, tmp); | ||
952 | |||
953 | /* tmp = z1^2*x2 */ | ||
954 | felem_mul(tmp, ftmp, x2); | ||
955 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
956 | |||
957 | /* ftmp = z1^2*x2 - z2^2*x1 */ | ||
958 | felem_diff_128_64(tmp, ftmp2); | ||
959 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
960 | felem_reduce(ftmp, tmp); | ||
961 | |||
962 | /* | ||
963 | * the formulae are incorrect if the points are equal so we check for | ||
964 | * this and do doubling if this happens | ||
965 | */ | ||
966 | x_equal = felem_is_zero(ftmp); | ||
967 | y_equal = felem_is_zero(ftmp3); | ||
968 | z1_is_zero = felem_is_zero(z1); | ||
969 | z2_is_zero = felem_is_zero(z2); | ||
970 | /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ | ||
971 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
972 | point_double(x3, y3, z3, x1, y1, z1); | ||
973 | return; | ||
974 | } | ||
975 | /* ftmp5 = z1*z2 */ | ||
976 | if (!mixed) { | ||
977 | felem_mul(tmp, z1, z2); | ||
978 | felem_reduce(ftmp5, tmp); | ||
979 | } else { | ||
980 | /* special case z2 = 0 is handled later */ | ||
981 | felem_assign(ftmp5, z1); | ||
982 | } | ||
983 | |||
984 | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ | ||
985 | felem_mul(tmp, ftmp, ftmp5); | ||
986 | felem_reduce(z_out, tmp); | ||
987 | |||
988 | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ | ||
989 | felem_assign(ftmp5, ftmp); | ||
990 | felem_square(tmp, ftmp); | ||
991 | felem_reduce(ftmp, tmp); | ||
992 | |||
993 | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ | ||
994 | felem_mul(tmp, ftmp, ftmp5); | ||
995 | felem_reduce(ftmp5, tmp); | ||
996 | |||
997 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
998 | felem_mul(tmp, ftmp2, ftmp); | ||
999 | felem_reduce(ftmp2, tmp); | ||
1000 | |||
1001 | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ | ||
1002 | felem_mul(tmp, ftmp4, ftmp5); | ||
1003 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
1004 | |||
1005 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ | ||
1006 | felem_square(tmp2, ftmp3); | ||
1007 | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ | ||
1008 | |||
1009 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ | ||
1010 | felem_diff_128_64(tmp2, ftmp5); | ||
1011 | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
1012 | |||
1013 | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
1014 | felem_assign(ftmp5, ftmp2); | ||
1015 | felem_scalar(ftmp5, 2); | ||
1016 | /* ftmp5[i] < 2 * 2^57 = 2^58 */ | ||
1017 | |||
1018 | /* | ||
1019 | * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - | ||
1020 | * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 | ||
1021 | */ | ||
1022 | felem_diff_128_64(tmp2, ftmp5); | ||
1023 | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ | ||
1024 | felem_reduce(x_out, tmp2); | ||
1025 | |||
1026 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ | ||
1027 | felem_diff(ftmp2, x_out); | ||
1028 | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
1029 | |||
1030 | /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */ | ||
1031 | felem_mul(tmp2, ftmp3, ftmp2); | ||
1032 | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ | ||
1033 | |||
1034 | /* | ||
1035 | * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - | ||
1036 | * x_out) - z2^3*y1*(z1^2*x2 - z2^2*x1)^3 | ||
1037 | */ | ||
1038 | widefelem_diff(tmp2, tmp); | ||
1039 | /* tmp2[i] < 2^118 + 2^120 < 2^121 */ | ||
1040 | felem_reduce(y_out, tmp2); | ||
1041 | |||
1042 | /* | ||
1043 | * the result (x_out, y_out, z_out) is incorrect if one of the inputs | ||
1044 | * is the point at infinity, so we need to check for this separately | ||
1045 | */ | ||
1046 | |||
1047 | /* if point 1 is at infinity, copy point 2 to output, and vice versa */ | ||
1048 | copy_conditional(x_out, x2, z1_is_zero); | ||
1049 | copy_conditional(x_out, x1, z2_is_zero); | ||
1050 | copy_conditional(y_out, y2, z1_is_zero); | ||
1051 | copy_conditional(y_out, y1, z2_is_zero); | ||
1052 | copy_conditional(z_out, z2, z1_is_zero); | ||
1053 | copy_conditional(z_out, z1, z2_is_zero); | ||
1054 | felem_assign(x3, x_out); | ||
1055 | felem_assign(y3, y_out); | ||
1056 | felem_assign(z3, z_out); | ||
1057 | } | ||
1058 | |||
1059 | /* select_point selects the |idx|th point from a precomputation table and | ||
1060 | * copies it to out. */ | ||
1061 | static void | ||
1062 | select_point(const u64 idx, unsigned int size, const felem pre_comp[ /* size */ ][3], felem out[3]) | ||
1063 | { | ||
1064 | unsigned i, j; | ||
1065 | limb *outlimbs = &out[0][0]; | ||
1066 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
1067 | |||
1068 | for (i = 0; i < size; i++) { | ||
1069 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
1070 | u64 mask = i ^ idx; | ||
1071 | mask |= mask >> 4; | ||
1072 | mask |= mask >> 2; | ||
1073 | mask |= mask >> 1; | ||
1074 | mask &= 1; | ||
1075 | mask--; | ||
1076 | for (j = 0; j < 4 * 3; j++) | ||
1077 | outlimbs[j] |= inlimbs[j] & mask; | ||
1078 | } | ||
1079 | } | ||
1080 | |||
1081 | /* get_bit returns the |i|th bit in |in| */ | ||
1082 | static char | ||
1083 | get_bit(const felem_bytearray in, unsigned i) | ||
1084 | { | ||
1085 | if (i >= 224) | ||
1086 | return 0; | ||
1087 | return (in[i >> 3] >> (i & 7)) & 1; | ||
1088 | } | ||
1089 | |||
1090 | /* Interleaved point multiplication using precomputed point multiples: | ||
1091 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
1092 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
1093 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
1094 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
1095 | static void | ||
1096 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
1097 | const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, | ||
1098 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3]) | ||
1099 | { | ||
1100 | int i, skip; | ||
1101 | unsigned num; | ||
1102 | unsigned gen_mul = (g_scalar != NULL); | ||
1103 | felem nq[3], tmp[4]; | ||
1104 | u64 bits; | ||
1105 | u8 sign, digit; | ||
1106 | |||
1107 | /* set nq to the point at infinity */ | ||
1108 | memset(nq, 0, 3 * sizeof(felem)); | ||
1109 | |||
1110 | /* | ||
1111 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
1112 | * multiples of the generator (two in each of the last 28 rounds) and | ||
1113 | * additions of other points multiples (every 5th round). | ||
1114 | */ | ||
1115 | skip = 1; /* save two point operations in the first | ||
1116 | * round */ | ||
1117 | for (i = (num_points ? 220 : 27); i >= 0; --i) { | ||
1118 | /* double */ | ||
1119 | if (!skip) | ||
1120 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
1121 | |||
1122 | /* add multiples of the generator */ | ||
1123 | if (gen_mul && (i <= 27)) { | ||
1124 | /* first, look 28 bits upwards */ | ||
1125 | bits = get_bit(g_scalar, i + 196) << 3; | ||
1126 | bits |= get_bit(g_scalar, i + 140) << 2; | ||
1127 | bits |= get_bit(g_scalar, i + 84) << 1; | ||
1128 | bits |= get_bit(g_scalar, i + 28); | ||
1129 | /* select the point to add, in constant time */ | ||
1130 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
1131 | |||
1132 | if (!skip) { | ||
1133 | point_add(nq[0], nq[1], nq[2], | ||
1134 | nq[0], nq[1], nq[2], | ||
1135 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1136 | } else { | ||
1137 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1138 | skip = 0; | ||
1139 | } | ||
1140 | |||
1141 | /* second, look at the current position */ | ||
1142 | bits = get_bit(g_scalar, i + 168) << 3; | ||
1143 | bits |= get_bit(g_scalar, i + 112) << 2; | ||
1144 | bits |= get_bit(g_scalar, i + 56) << 1; | ||
1145 | bits |= get_bit(g_scalar, i); | ||
1146 | /* select the point to add, in constant time */ | ||
1147 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
1148 | point_add(nq[0], nq[1], nq[2], | ||
1149 | nq[0], nq[1], nq[2], | ||
1150 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1151 | } | ||
1152 | /* do other additions every 5 doublings */ | ||
1153 | if (num_points && (i % 5 == 0)) { | ||
1154 | /* loop over all scalars */ | ||
1155 | for (num = 0; num < num_points; ++num) { | ||
1156 | bits = get_bit(scalars[num], i + 4) << 5; | ||
1157 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
1158 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
1159 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
1160 | bits |= get_bit(scalars[num], i) << 1; | ||
1161 | bits |= get_bit(scalars[num], i - 1); | ||
1162 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
1163 | |||
1164 | /* select the point to add or subtract */ | ||
1165 | select_point(digit, 17, pre_comp[num], tmp); | ||
1166 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the | ||
1167 | * negative point */ | ||
1168 | copy_conditional(tmp[1], tmp[3], sign); | ||
1169 | |||
1170 | if (!skip) { | ||
1171 | point_add(nq[0], nq[1], nq[2], | ||
1172 | nq[0], nq[1], nq[2], | ||
1173 | mixed, tmp[0], tmp[1], tmp[2]); | ||
1174 | } else { | ||
1175 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1176 | skip = 0; | ||
1177 | } | ||
1178 | } | ||
1179 | } | ||
1180 | } | ||
1181 | felem_assign(x_out, nq[0]); | ||
1182 | felem_assign(y_out, nq[1]); | ||
1183 | felem_assign(z_out, nq[2]); | ||
1184 | } | ||
1185 | |||
1186 | /******************************************************************************/ | ||
1187 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
1188 | */ | ||
1189 | |||
1190 | static NISTP224_PRE_COMP * | ||
1191 | nistp224_pre_comp_new() | ||
1192 | { | ||
1193 | NISTP224_PRE_COMP *ret = NULL; | ||
1194 | ret = malloc(sizeof *ret); | ||
1195 | if (!ret) { | ||
1196 | ECerror(ERR_R_MALLOC_FAILURE); | ||
1197 | return ret; | ||
1198 | } | ||
1199 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
1200 | ret->references = 1; | ||
1201 | return ret; | ||
1202 | } | ||
1203 | |||
1204 | static void * | ||
1205 | nistp224_pre_comp_dup(void *src_) | ||
1206 | { | ||
1207 | NISTP224_PRE_COMP *src = src_; | ||
1208 | |||
1209 | /* no need to actually copy, these objects never change! */ | ||
1210 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1211 | |||
1212 | return src_; | ||
1213 | } | ||
1214 | |||
1215 | static void | ||
1216 | nistp224_pre_comp_free(void *pre_) | ||
1217 | { | ||
1218 | int i; | ||
1219 | NISTP224_PRE_COMP *pre = pre_; | ||
1220 | |||
1221 | if (!pre) | ||
1222 | return; | ||
1223 | |||
1224 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1225 | if (i > 0) | ||
1226 | return; | ||
1227 | |||
1228 | free(pre); | ||
1229 | } | ||
1230 | |||
1231 | static void | ||
1232 | nistp224_pre_comp_clear_free(void *pre_) | ||
1233 | { | ||
1234 | int i; | ||
1235 | NISTP224_PRE_COMP *pre = pre_; | ||
1236 | |||
1237 | if (!pre) | ||
1238 | return; | ||
1239 | |||
1240 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1241 | if (i > 0) | ||
1242 | return; | ||
1243 | |||
1244 | freezero(pre, sizeof *pre); | ||
1245 | } | ||
1246 | |||
1247 | /******************************************************************************/ | ||
1248 | /* OPENSSL EC_METHOD FUNCTIONS | ||
1249 | */ | ||
1250 | |||
1251 | int | ||
1252 | ec_GFp_nistp224_group_init(EC_GROUP *group) | ||
1253 | { | ||
1254 | int ret; | ||
1255 | ret = ec_GFp_simple_group_init(group); | ||
1256 | group->a_is_minus3 = 1; | ||
1257 | return ret; | ||
1258 | } | ||
1259 | |||
1260 | int | ||
1261 | ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, | ||
1262 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
1263 | { | ||
1264 | int ret = 0; | ||
1265 | BN_CTX *new_ctx = NULL; | ||
1266 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
1267 | |||
1268 | if (ctx == NULL) | ||
1269 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1270 | return 0; | ||
1271 | BN_CTX_start(ctx); | ||
1272 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
1273 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
1274 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
1275 | goto err; | ||
1276 | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
1277 | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
1278 | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
1279 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
1280 | (BN_cmp(curve_b, b))) { | ||
1281 | ECerror(EC_R_WRONG_CURVE_PARAMETERS); | ||
1282 | goto err; | ||
1283 | } | ||
1284 | group->field_mod_func = BN_nist_mod_224; | ||
1285 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
1286 | err: | ||
1287 | BN_CTX_end(ctx); | ||
1288 | BN_CTX_free(new_ctx); | ||
1289 | return ret; | ||
1290 | } | ||
1291 | |||
1292 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
1293 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
1294 | int | ||
1295 | ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, | ||
1296 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
1297 | { | ||
1298 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
1299 | widefelem tmp; | ||
1300 | |||
1301 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
1302 | ECerror(EC_R_POINT_AT_INFINITY); | ||
1303 | return 0; | ||
1304 | } | ||
1305 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
1306 | (!BN_to_felem(z1, &point->Z))) | ||
1307 | return 0; | ||
1308 | felem_inv(z2, z1); | ||
1309 | felem_square(tmp, z2); | ||
1310 | felem_reduce(z1, tmp); | ||
1311 | felem_mul(tmp, x_in, z1); | ||
1312 | felem_reduce(x_in, tmp); | ||
1313 | felem_contract(x_out, x_in); | ||
1314 | if (x != NULL) { | ||
1315 | if (!felem_to_BN(x, x_out)) { | ||
1316 | ECerror(ERR_R_BN_LIB); | ||
1317 | return 0; | ||
1318 | } | ||
1319 | } | ||
1320 | felem_mul(tmp, z1, z2); | ||
1321 | felem_reduce(z1, tmp); | ||
1322 | felem_mul(tmp, y_in, z1); | ||
1323 | felem_reduce(y_in, tmp); | ||
1324 | felem_contract(y_out, y_in); | ||
1325 | if (y != NULL) { | ||
1326 | if (!felem_to_BN(y, y_out)) { | ||
1327 | ECerror(ERR_R_BN_LIB); | ||
1328 | return 0; | ||
1329 | } | ||
1330 | } | ||
1331 | return 1; | ||
1332 | } | ||
1333 | |||
1334 | static void | ||
1335 | make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) | ||
1336 | { | ||
1337 | /* | ||
1338 | * Runs in constant time, unless an input is the point at infinity | ||
1339 | * (which normally shouldn't happen). | ||
1340 | */ | ||
1341 | ec_GFp_nistp_points_make_affine_internal( | ||
1342 | num, | ||
1343 | points, | ||
1344 | sizeof(felem), | ||
1345 | tmp_felems, | ||
1346 | (void (*) (void *)) felem_one, | ||
1347 | (int (*) (const void *)) felem_is_zero_int, | ||
1348 | (void (*) (void *, const void *)) felem_assign, | ||
1349 | (void (*) (void *, const void *)) felem_square_reduce, | ||
1350 | (void (*) (void *, const void *, const void *)) felem_mul_reduce, | ||
1351 | (void (*) (void *, const void *)) felem_inv, | ||
1352 | (void (*) (void *, const void *)) felem_contract); | ||
1353 | } | ||
1354 | |||
1355 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
1356 | * Result is stored in r (r can equal one of the inputs). */ | ||
1357 | int | ||
1358 | ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, | ||
1359 | const BIGNUM *scalar, size_t num, const EC_POINT *points[], | ||
1360 | const BIGNUM *scalars[], BN_CTX *ctx) | ||
1361 | { | ||
1362 | int ret = 0; | ||
1363 | int j; | ||
1364 | unsigned i; | ||
1365 | int mixed = 0; | ||
1366 | BN_CTX *new_ctx = NULL; | ||
1367 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
1368 | felem_bytearray g_secret; | ||
1369 | felem_bytearray *secrets = NULL; | ||
1370 | felem(*pre_comp)[17][3] = NULL; | ||
1371 | felem *tmp_felems = NULL; | ||
1372 | felem_bytearray tmp; | ||
1373 | unsigned num_bytes; | ||
1374 | int have_pre_comp = 0; | ||
1375 | size_t num_points = num; | ||
1376 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
1377 | NISTP224_PRE_COMP *pre = NULL; | ||
1378 | const felem(*g_pre_comp)[16][3] = NULL; | ||
1379 | EC_POINT *generator = NULL; | ||
1380 | const EC_POINT *p = NULL; | ||
1381 | const BIGNUM *p_scalar = NULL; | ||
1382 | |||
1383 | if (ctx == NULL) | ||
1384 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1385 | return 0; | ||
1386 | BN_CTX_start(ctx); | ||
1387 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1388 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
1389 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
1390 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
1391 | goto err; | ||
1392 | |||
1393 | if (scalar != NULL) { | ||
1394 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
1395 | nistp224_pre_comp_dup, nistp224_pre_comp_free, | ||
1396 | nistp224_pre_comp_clear_free); | ||
1397 | if (pre) | ||
1398 | /* we have precomputation, try to use it */ | ||
1399 | g_pre_comp = (const felem(*)[16][3]) pre->g_pre_comp; | ||
1400 | else | ||
1401 | /* try to use the standard precomputation */ | ||
1402 | g_pre_comp = &gmul[0]; | ||
1403 | generator = EC_POINT_new(group); | ||
1404 | if (generator == NULL) | ||
1405 | goto err; | ||
1406 | /* get the generator from precomputation */ | ||
1407 | if (!felem_to_BN(x, g_pre_comp[0][1][0]) || | ||
1408 | !felem_to_BN(y, g_pre_comp[0][1][1]) || | ||
1409 | !felem_to_BN(z, g_pre_comp[0][1][2])) { | ||
1410 | ECerror(ERR_R_BN_LIB); | ||
1411 | goto err; | ||
1412 | } | ||
1413 | if (!EC_POINT_set_Jprojective_coordinates(group, generator, | ||
1414 | x, y, z, ctx)) | ||
1415 | goto err; | ||
1416 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
1417 | /* precomputation matches generator */ | ||
1418 | have_pre_comp = 1; | ||
1419 | else | ||
1420 | /* | ||
1421 | * we don't have valid precomputation: treat the | ||
1422 | * generator as a random point | ||
1423 | */ | ||
1424 | num_points = num_points + 1; | ||
1425 | } | ||
1426 | if (num_points > 0) { | ||
1427 | if (num_points >= 3) { | ||
1428 | /* | ||
1429 | * unless we precompute multiples for just one or two | ||
1430 | * points, converting those into affine form is time | ||
1431 | * well spent | ||
1432 | */ | ||
1433 | mixed = 1; | ||
1434 | } | ||
1435 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
1436 | pre_comp = calloc(num_points, 17 * 3 * sizeof(felem)); | ||
1437 | if (mixed) { | ||
1438 | /* XXX should do more int overflow checking */ | ||
1439 | tmp_felems = reallocarray(NULL, | ||
1440 | (num_points * 17 + 1), sizeof(felem)); | ||
1441 | } | ||
1442 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) { | ||
1443 | ECerror(ERR_R_MALLOC_FAILURE); | ||
1444 | goto err; | ||
1445 | } | ||
1446 | /* | ||
1447 | * we treat NULL scalars as 0, and NULL points as points at | ||
1448 | * infinity, i.e., they contribute nothing to the linear | ||
1449 | * combination | ||
1450 | */ | ||
1451 | for (i = 0; i < num_points; ++i) { | ||
1452 | if (i == num) | ||
1453 | /* the generator */ | ||
1454 | { | ||
1455 | p = EC_GROUP_get0_generator(group); | ||
1456 | p_scalar = scalar; | ||
1457 | } else | ||
1458 | /* the i^th point */ | ||
1459 | { | ||
1460 | p = points[i]; | ||
1461 | p_scalar = scalars[i]; | ||
1462 | } | ||
1463 | if ((p_scalar != NULL) && (p != NULL)) { | ||
1464 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
1465 | if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar))) { | ||
1466 | /* | ||
1467 | * this is an unusual input, and we | ||
1468 | * don't guarantee constant-timeness | ||
1469 | */ | ||
1470 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
1471 | ECerror(ERR_R_BN_LIB); | ||
1472 | goto err; | ||
1473 | } | ||
1474 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1475 | } else | ||
1476 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
1477 | flip_endian(secrets[i], tmp, num_bytes); | ||
1478 | /* precompute multiples */ | ||
1479 | if ((!BN_to_felem(x_out, &p->X)) || | ||
1480 | (!BN_to_felem(y_out, &p->Y)) || | ||
1481 | (!BN_to_felem(z_out, &p->Z))) | ||
1482 | goto err; | ||
1483 | felem_assign(pre_comp[i][1][0], x_out); | ||
1484 | felem_assign(pre_comp[i][1][1], y_out); | ||
1485 | felem_assign(pre_comp[i][1][2], z_out); | ||
1486 | for (j = 2; j <= 16; ++j) { | ||
1487 | if (j & 1) { | ||
1488 | point_add( | ||
1489 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1490 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
1491 | 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
1492 | } else { | ||
1493 | point_double( | ||
1494 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1495 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
1496 | } | ||
1497 | } | ||
1498 | } | ||
1499 | } | ||
1500 | if (mixed) | ||
1501 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
1502 | } | ||
1503 | /* the scalar for the generator */ | ||
1504 | if ((scalar != NULL) && (have_pre_comp)) { | ||
1505 | memset(g_secret, 0, sizeof g_secret); | ||
1506 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
1507 | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { | ||
1508 | /* | ||
1509 | * this is an unusual input, and we don't guarantee | ||
1510 | * constant-timeness | ||
1511 | */ | ||
1512 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
1513 | ECerror(ERR_R_BN_LIB); | ||
1514 | goto err; | ||
1515 | } | ||
1516 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1517 | } else | ||
1518 | num_bytes = BN_bn2bin(scalar, tmp); | ||
1519 | flip_endian(g_secret, tmp, num_bytes); | ||
1520 | /* do the multiplication with generator precomputation */ | ||
1521 | batch_mul(x_out, y_out, z_out, | ||
1522 | (const felem_bytearray(*)) secrets, num_points, | ||
1523 | g_secret, | ||
1524 | mixed, (const felem(*)[17][3]) pre_comp, | ||
1525 | g_pre_comp); | ||
1526 | } else | ||
1527 | /* do the multiplication without generator precomputation */ | ||
1528 | batch_mul(x_out, y_out, z_out, | ||
1529 | (const felem_bytearray(*)) secrets, num_points, | ||
1530 | NULL, mixed, (const felem(*)[17][3]) pre_comp, NULL); | ||
1531 | /* reduce the output to its unique minimal representation */ | ||
1532 | felem_contract(x_in, x_out); | ||
1533 | felem_contract(y_in, y_out); | ||
1534 | felem_contract(z_in, z_out); | ||
1535 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
1536 | (!felem_to_BN(z, z_in))) { | ||
1537 | ECerror(ERR_R_BN_LIB); | ||
1538 | goto err; | ||
1539 | } | ||
1540 | ret = EC_POINT_set_Jprojective_coordinates(group, r, x, y, z, ctx); | ||
1541 | |||
1542 | err: | ||
1543 | BN_CTX_end(ctx); | ||
1544 | EC_POINT_free(generator); | ||
1545 | BN_CTX_free(new_ctx); | ||
1546 | free(secrets); | ||
1547 | free(pre_comp); | ||
1548 | free(tmp_felems); | ||
1549 | return ret; | ||
1550 | } | ||
1551 | |||
1552 | int | ||
1553 | ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
1554 | { | ||
1555 | int ret = 0; | ||
1556 | NISTP224_PRE_COMP *pre = NULL; | ||
1557 | int i, j; | ||
1558 | BN_CTX *new_ctx = NULL; | ||
1559 | BIGNUM *x, *y; | ||
1560 | EC_POINT *generator = NULL; | ||
1561 | felem tmp_felems[32]; | ||
1562 | |||
1563 | /* throw away old precomputation */ | ||
1564 | EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup, | ||
1565 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free); | ||
1566 | if (ctx == NULL) | ||
1567 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1568 | return 0; | ||
1569 | BN_CTX_start(ctx); | ||
1570 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1571 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
1572 | goto err; | ||
1573 | /* get the generator */ | ||
1574 | if (group->generator == NULL) | ||
1575 | goto err; | ||
1576 | generator = EC_POINT_new(group); | ||
1577 | if (generator == NULL) | ||
1578 | goto err; | ||
1579 | BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); | ||
1580 | BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); | ||
1581 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) | ||
1582 | goto err; | ||
1583 | if ((pre = nistp224_pre_comp_new()) == NULL) | ||
1584 | goto err; | ||
1585 | /* if the generator is the standard one, use built-in precomputation */ | ||
1586 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
1587 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
1588 | ret = 1; | ||
1589 | goto err; | ||
1590 | } | ||
1591 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) || | ||
1592 | (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) || | ||
1593 | (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z))) | ||
1594 | goto err; | ||
1595 | /* | ||
1596 | * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, | ||
1597 | * 2^84*G, 2^140*G, 2^196*G for the second one | ||
1598 | */ | ||
1599 | for (i = 1; i <= 8; i <<= 1) { | ||
1600 | point_double( | ||
1601 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
1602 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
1603 | for (j = 0; j < 27; ++j) { | ||
1604 | point_double( | ||
1605 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
1606 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
1607 | } | ||
1608 | if (i == 8) | ||
1609 | break; | ||
1610 | point_double( | ||
1611 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
1612 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
1613 | for (j = 0; j < 27; ++j) { | ||
1614 | point_double( | ||
1615 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
1616 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2]); | ||
1617 | } | ||
1618 | } | ||
1619 | for (i = 0; i < 2; i++) { | ||
1620 | /* g_pre_comp[i][0] is the point at infinity */ | ||
1621 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
1622 | /* the remaining multiples */ | ||
1623 | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ | ||
1624 | point_add( | ||
1625 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], | ||
1626 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], | ||
1627 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
1628 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1629 | pre->g_pre_comp[i][2][2]); | ||
1630 | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ | ||
1631 | point_add( | ||
1632 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], | ||
1633 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], | ||
1634 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
1635 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1636 | pre->g_pre_comp[i][2][2]); | ||
1637 | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ | ||
1638 | point_add( | ||
1639 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], | ||
1640 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], | ||
1641 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
1642 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], | ||
1643 | pre->g_pre_comp[i][4][2]); | ||
1644 | /* | ||
1645 | * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + | ||
1646 | * 2^196*G | ||
1647 | */ | ||
1648 | point_add( | ||
1649 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], | ||
1650 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], | ||
1651 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
1652 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1653 | pre->g_pre_comp[i][2][2]); | ||
1654 | for (j = 1; j < 8; ++j) { | ||
1655 | /* odd multiples: add G resp. 2^28*G */ | ||
1656 | point_add( | ||
1657 | pre->g_pre_comp[i][2 * j + 1][0], pre->g_pre_comp[i][2 * j + 1][1], | ||
1658 | pre->g_pre_comp[i][2 * j + 1][2], pre->g_pre_comp[i][2 * j][0], | ||
1659 | pre->g_pre_comp[i][2 * j][1], pre->g_pre_comp[i][2 * j][2], | ||
1660 | 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], | ||
1661 | pre->g_pre_comp[i][1][2]); | ||
1662 | } | ||
1663 | } | ||
1664 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); | ||
1665 | |||
1666 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup, | ||
1667 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free)) | ||
1668 | goto err; | ||
1669 | ret = 1; | ||
1670 | pre = NULL; | ||
1671 | err: | ||
1672 | BN_CTX_end(ctx); | ||
1673 | EC_POINT_free(generator); | ||
1674 | BN_CTX_free(new_ctx); | ||
1675 | nistp224_pre_comp_free(pre); | ||
1676 | return ret; | ||
1677 | } | ||
1678 | |||
1679 | int | ||
1680 | ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) | ||
1681 | { | ||
1682 | if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, | ||
1683 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free) | ||
1684 | != NULL) | ||
1685 | return 1; | ||
1686 | else | ||
1687 | return 0; | ||
1688 | } | ||
1689 | |||
1690 | #endif | ||