diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_nistp256.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp256.c | 2239 |
1 files changed, 0 insertions, 2239 deletions
diff --git a/src/lib/libcrypto/ec/ecp_nistp256.c b/src/lib/libcrypto/ec/ecp_nistp256.c deleted file mode 100644 index 23a2131980..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp256.c +++ /dev/null | |||
| @@ -1,2239 +0,0 @@ | |||
| 1 | /* $OpenBSD: ecp_nistp256.c,v 1.15 2015/02/08 22:25:03 miod Exp $ */ | ||
| 2 | /* | ||
| 3 | * Written by Adam Langley (Google) for the OpenSSL project | ||
| 4 | */ | ||
| 5 | /* | ||
| 6 | * Copyright (c) 2011 Google Inc. | ||
| 7 | * | ||
| 8 | * Permission to use, copy, modify, and distribute this software for any | ||
| 9 | * purpose with or without fee is hereby granted, provided that the above | ||
| 10 | * copyright notice and this permission notice appear in all copies. | ||
| 11 | * | ||
| 12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 19 | */ | ||
| 20 | |||
| 21 | /* | ||
| 22 | * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication | ||
| 23 | * | ||
| 24 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | ||
| 25 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | ||
| 26 | * work which got its smarts from Daniel J. Bernstein's work on the same. | ||
| 27 | */ | ||
| 28 | |||
| 29 | #include <stdint.h> | ||
| 30 | #include <string.h> | ||
| 31 | |||
| 32 | #include <openssl/opensslconf.h> | ||
| 33 | |||
| 34 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
| 35 | |||
| 36 | #include <openssl/err.h> | ||
| 37 | #include "ec_lcl.h" | ||
| 38 | |||
| 39 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
| 40 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
| 41 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
| 42 | typedef __int128_t int128_t; | ||
| 43 | #else | ||
| 44 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
| 45 | #endif | ||
| 46 | |||
| 47 | typedef uint8_t u8; | ||
| 48 | typedef uint32_t u32; | ||
| 49 | typedef uint64_t u64; | ||
| 50 | typedef int64_t s64; | ||
| 51 | |||
| 52 | /* The underlying field. | ||
| 53 | * | ||
| 54 | * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element | ||
| 55 | * of this field into 32 bytes. We call this an felem_bytearray. */ | ||
| 56 | |||
| 57 | typedef u8 felem_bytearray[32]; | ||
| 58 | |||
| 59 | /* These are the parameters of P256, taken from FIPS 186-3, page 86. These | ||
| 60 | * values are big-endian. */ | ||
| 61 | static const felem_bytearray nistp256_curve_params[5] = { | ||
| 62 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ | ||
| 63 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
| 64 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | ||
| 65 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | ||
| 66 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ | ||
| 67 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
| 68 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | ||
| 69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */ | ||
| 70 | {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, | ||
| 71 | 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, | ||
| 72 | 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, | ||
| 73 | 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, | ||
| 74 | {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ | ||
| 75 | 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, | ||
| 76 | 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, | ||
| 77 | 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}, | ||
| 78 | {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ | ||
| 79 | 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, | ||
| 80 | 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, | ||
| 81 | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5} | ||
| 82 | }; | ||
| 83 | |||
| 84 | /* The representation of field elements. | ||
| 85 | * ------------------------------------ | ||
| 86 | * | ||
| 87 | * We represent field elements with either four 128-bit values, eight 128-bit | ||
| 88 | * values, or four 64-bit values. The field element represented is: | ||
| 89 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p) | ||
| 90 | * or: | ||
| 91 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p) | ||
| 92 | * | ||
| 93 | * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits | ||
| 94 | * apart, but are 128-bits wide, the most significant bits of each limb overlap | ||
| 95 | * with the least significant bits of the next. | ||
| 96 | * | ||
| 97 | * A field element with four limbs is an 'felem'. One with eight limbs is a | ||
| 98 | * 'longfelem' | ||
| 99 | * | ||
| 100 | * A field element with four, 64-bit values is called a 'smallfelem'. Small | ||
| 101 | * values are used as intermediate values before multiplication. | ||
| 102 | */ | ||
| 103 | |||
| 104 | #define NLIMBS 4 | ||
| 105 | |||
| 106 | typedef uint128_t limb; | ||
| 107 | typedef limb felem[NLIMBS]; | ||
| 108 | typedef limb longfelem[NLIMBS * 2]; | ||
| 109 | typedef u64 smallfelem[NLIMBS]; | ||
| 110 | |||
| 111 | /* This is the value of the prime as four 64-bit words, little-endian. */ | ||
| 112 | static const u64 kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul}; | ||
| 113 | static const limb bottom32bits = 0xffffffff; | ||
| 114 | static const u64 bottom63bits = 0x7ffffffffffffffful; | ||
| 115 | |||
| 116 | /* bin32_to_felem takes a little-endian byte array and converts it into felem | ||
| 117 | * form. This assumes that the CPU is little-endian. */ | ||
| 118 | static void | ||
| 119 | bin32_to_felem(felem out, const u8 in[32]) | ||
| 120 | { | ||
| 121 | out[0] = *((u64 *) & in[0]); | ||
| 122 | out[1] = *((u64 *) & in[8]); | ||
| 123 | out[2] = *((u64 *) & in[16]); | ||
| 124 | out[3] = *((u64 *) & in[24]); | ||
| 125 | } | ||
| 126 | |||
| 127 | /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian, | ||
| 128 | * 32 byte array. This assumes that the CPU is little-endian. */ | ||
| 129 | static void | ||
| 130 | smallfelem_to_bin32(u8 out[32], const smallfelem in) | ||
| 131 | { | ||
| 132 | *((u64 *) & out[0]) = in[0]; | ||
| 133 | *((u64 *) & out[8]) = in[1]; | ||
| 134 | *((u64 *) & out[16]) = in[2]; | ||
| 135 | *((u64 *) & out[24]) = in[3]; | ||
| 136 | } | ||
| 137 | |||
| 138 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
| 139 | static void | ||
| 140 | flip_endian(u8 * out, const u8 * in, unsigned len) | ||
| 141 | { | ||
| 142 | unsigned i; | ||
| 143 | for (i = 0; i < len; ++i) | ||
| 144 | out[i] = in[len - 1 - i]; | ||
| 145 | } | ||
| 146 | |||
| 147 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | ||
| 148 | static int | ||
| 149 | BN_to_felem(felem out, const BIGNUM * bn) | ||
| 150 | { | ||
| 151 | felem_bytearray b_in; | ||
| 152 | felem_bytearray b_out; | ||
| 153 | unsigned num_bytes; | ||
| 154 | |||
| 155 | /* BN_bn2bin eats leading zeroes */ | ||
| 156 | memset(b_out, 0, sizeof b_out); | ||
| 157 | num_bytes = BN_num_bytes(bn); | ||
| 158 | if (num_bytes > sizeof b_out) { | ||
| 159 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 160 | return 0; | ||
| 161 | } | ||
| 162 | if (BN_is_negative(bn)) { | ||
| 163 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 164 | return 0; | ||
| 165 | } | ||
| 166 | num_bytes = BN_bn2bin(bn, b_in); | ||
| 167 | flip_endian(b_out, b_in, num_bytes); | ||
| 168 | bin32_to_felem(out, b_out); | ||
| 169 | return 1; | ||
| 170 | } | ||
| 171 | |||
| 172 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | ||
| 173 | static BIGNUM * | ||
| 174 | smallfelem_to_BN(BIGNUM * out, const smallfelem in) | ||
| 175 | { | ||
| 176 | felem_bytearray b_in, b_out; | ||
| 177 | smallfelem_to_bin32(b_in, in); | ||
| 178 | flip_endian(b_out, b_in, sizeof b_out); | ||
| 179 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
| 180 | } | ||
| 181 | |||
| 182 | |||
| 183 | /* Field operations | ||
| 184 | * ---------------- */ | ||
| 185 | |||
| 186 | static void | ||
| 187 | smallfelem_one(smallfelem out) | ||
| 188 | { | ||
| 189 | out[0] = 1; | ||
| 190 | out[1] = 0; | ||
| 191 | out[2] = 0; | ||
| 192 | out[3] = 0; | ||
| 193 | } | ||
| 194 | |||
| 195 | static void | ||
| 196 | smallfelem_assign(smallfelem out, const smallfelem in) | ||
| 197 | { | ||
| 198 | out[0] = in[0]; | ||
| 199 | out[1] = in[1]; | ||
| 200 | out[2] = in[2]; | ||
| 201 | out[3] = in[3]; | ||
| 202 | } | ||
| 203 | |||
| 204 | static void | ||
| 205 | felem_assign(felem out, const felem in) | ||
| 206 | { | ||
| 207 | out[0] = in[0]; | ||
| 208 | out[1] = in[1]; | ||
| 209 | out[2] = in[2]; | ||
| 210 | out[3] = in[3]; | ||
| 211 | } | ||
| 212 | |||
| 213 | /* felem_sum sets out = out + in. */ | ||
| 214 | static void | ||
| 215 | felem_sum(felem out, const felem in) | ||
| 216 | { | ||
| 217 | out[0] += in[0]; | ||
| 218 | out[1] += in[1]; | ||
| 219 | out[2] += in[2]; | ||
| 220 | out[3] += in[3]; | ||
| 221 | } | ||
| 222 | |||
| 223 | /* felem_small_sum sets out = out + in. */ | ||
| 224 | static void | ||
| 225 | felem_small_sum(felem out, const smallfelem in) | ||
| 226 | { | ||
| 227 | out[0] += in[0]; | ||
| 228 | out[1] += in[1]; | ||
| 229 | out[2] += in[2]; | ||
| 230 | out[3] += in[3]; | ||
| 231 | } | ||
| 232 | |||
| 233 | /* felem_scalar sets out = out * scalar */ | ||
| 234 | static void | ||
| 235 | felem_scalar(felem out, const u64 scalar) | ||
| 236 | { | ||
| 237 | out[0] *= scalar; | ||
| 238 | out[1] *= scalar; | ||
| 239 | out[2] *= scalar; | ||
| 240 | out[3] *= scalar; | ||
| 241 | } | ||
| 242 | |||
| 243 | /* longfelem_scalar sets out = out * scalar */ | ||
| 244 | static void | ||
| 245 | longfelem_scalar(longfelem out, const u64 scalar) | ||
| 246 | { | ||
| 247 | out[0] *= scalar; | ||
| 248 | out[1] *= scalar; | ||
| 249 | out[2] *= scalar; | ||
| 250 | out[3] *= scalar; | ||
| 251 | out[4] *= scalar; | ||
| 252 | out[5] *= scalar; | ||
| 253 | out[6] *= scalar; | ||
| 254 | out[7] *= scalar; | ||
| 255 | } | ||
| 256 | |||
| 257 | #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) | ||
| 258 | #define two105 (((limb)1) << 105) | ||
| 259 | #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) | ||
| 260 | |||
| 261 | /* zero105 is 0 mod p */ | ||
| 262 | static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9}; | ||
| 263 | |||
| 264 | /* smallfelem_neg sets |out| to |-small| | ||
| 265 | * On exit: | ||
| 266 | * out[i] < out[i] + 2^105 | ||
| 267 | */ | ||
| 268 | static void | ||
| 269 | smallfelem_neg(felem out, const smallfelem small) | ||
| 270 | { | ||
| 271 | /* In order to prevent underflow, we subtract from 0 mod p. */ | ||
| 272 | out[0] = zero105[0] - small[0]; | ||
| 273 | out[1] = zero105[1] - small[1]; | ||
| 274 | out[2] = zero105[2] - small[2]; | ||
| 275 | out[3] = zero105[3] - small[3]; | ||
| 276 | } | ||
| 277 | |||
| 278 | /* felem_diff subtracts |in| from |out| | ||
| 279 | * On entry: | ||
| 280 | * in[i] < 2^104 | ||
| 281 | * On exit: | ||
| 282 | * out[i] < out[i] + 2^105 | ||
| 283 | */ | ||
| 284 | static void | ||
| 285 | felem_diff(felem out, const felem in) | ||
| 286 | { | ||
| 287 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 288 | out[0] += zero105[0]; | ||
| 289 | out[1] += zero105[1]; | ||
| 290 | out[2] += zero105[2]; | ||
| 291 | out[3] += zero105[3]; | ||
| 292 | |||
| 293 | out[0] -= in[0]; | ||
| 294 | out[1] -= in[1]; | ||
| 295 | out[2] -= in[2]; | ||
| 296 | out[3] -= in[3]; | ||
| 297 | } | ||
| 298 | |||
| 299 | #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) | ||
| 300 | #define two107 (((limb)1) << 107) | ||
| 301 | #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) | ||
| 302 | |||
| 303 | /* zero107 is 0 mod p */ | ||
| 304 | static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11}; | ||
| 305 | |||
| 306 | /* An alternative felem_diff for larger inputs |in| | ||
| 307 | * felem_diff_zero107 subtracts |in| from |out| | ||
| 308 | * On entry: | ||
| 309 | * in[i] < 2^106 | ||
| 310 | * On exit: | ||
| 311 | * out[i] < out[i] + 2^107 | ||
| 312 | */ | ||
| 313 | static void | ||
| 314 | felem_diff_zero107(felem out, const felem in) | ||
| 315 | { | ||
| 316 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 317 | out[0] += zero107[0]; | ||
| 318 | out[1] += zero107[1]; | ||
| 319 | out[2] += zero107[2]; | ||
| 320 | out[3] += zero107[3]; | ||
| 321 | |||
| 322 | out[0] -= in[0]; | ||
| 323 | out[1] -= in[1]; | ||
| 324 | out[2] -= in[2]; | ||
| 325 | out[3] -= in[3]; | ||
| 326 | } | ||
| 327 | |||
| 328 | /* longfelem_diff subtracts |in| from |out| | ||
| 329 | * On entry: | ||
| 330 | * in[i] < 7*2^67 | ||
| 331 | * On exit: | ||
| 332 | * out[i] < out[i] + 2^70 + 2^40 | ||
| 333 | */ | ||
| 334 | static void | ||
| 335 | longfelem_diff(longfelem out, const longfelem in) | ||
| 336 | { | ||
| 337 | static const limb two70m8p6 = (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6); | ||
| 338 | static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40); | ||
| 339 | static const limb two70 = (((limb) 1) << 70); | ||
| 340 | static const limb two70m40m38p6 = (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) + (((limb) 1) << 6); | ||
| 341 | static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6); | ||
| 342 | |||
| 343 | /* add 0 mod p to avoid underflow */ | ||
| 344 | out[0] += two70m8p6; | ||
| 345 | out[1] += two70p40; | ||
| 346 | out[2] += two70; | ||
| 347 | out[3] += two70m40m38p6; | ||
| 348 | out[4] += two70m6; | ||
| 349 | out[5] += two70m6; | ||
| 350 | out[6] += two70m6; | ||
| 351 | out[7] += two70m6; | ||
| 352 | |||
| 353 | /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ | ||
| 354 | out[0] -= in[0]; | ||
| 355 | out[1] -= in[1]; | ||
| 356 | out[2] -= in[2]; | ||
| 357 | out[3] -= in[3]; | ||
| 358 | out[4] -= in[4]; | ||
| 359 | out[5] -= in[5]; | ||
| 360 | out[6] -= in[6]; | ||
| 361 | out[7] -= in[7]; | ||
| 362 | } | ||
| 363 | |||
| 364 | #define two64m0 (((limb)1) << 64) - 1 | ||
| 365 | #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 | ||
| 366 | #define two64m46 (((limb)1) << 64) - (((limb)1) << 46) | ||
| 367 | #define two64m32 (((limb)1) << 64) - (((limb)1) << 32) | ||
| 368 | |||
| 369 | /* zero110 is 0 mod p */ | ||
| 370 | static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32}; | ||
| 371 | |||
| 372 | /* felem_shrink converts an felem into a smallfelem. The result isn't quite | ||
| 373 | * minimal as the value may be greater than p. | ||
| 374 | * | ||
| 375 | * On entry: | ||
| 376 | * in[i] < 2^109 | ||
| 377 | * On exit: | ||
| 378 | * out[i] < 2^64 | ||
| 379 | */ | ||
| 380 | static void | ||
| 381 | felem_shrink(smallfelem out, const felem in) | ||
| 382 | { | ||
| 383 | felem tmp; | ||
| 384 | u64 a, b, mask; | ||
| 385 | s64 high, low; | ||
| 386 | static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ | ||
| 387 | |||
| 388 | /* Carry 2->3 */ | ||
| 389 | tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64)); | ||
| 390 | /* tmp[3] < 2^110 */ | ||
| 391 | |||
| 392 | tmp[2] = zero110[2] + (u64) in[2]; | ||
| 393 | tmp[0] = zero110[0] + in[0]; | ||
| 394 | tmp[1] = zero110[1] + in[1]; | ||
| 395 | /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ | ||
| 396 | |||
| 397 | /* | ||
| 398 | * We perform two partial reductions where we eliminate the high-word | ||
| 399 | * of tmp[3]. We don't update the other words till the end. | ||
| 400 | */ | ||
| 401 | a = tmp[3] >> 64; /* a < 2^46 */ | ||
| 402 | tmp[3] = (u64) tmp[3]; | ||
| 403 | tmp[3] -= a; | ||
| 404 | tmp[3] += ((limb) a) << 32; | ||
| 405 | /* tmp[3] < 2^79 */ | ||
| 406 | |||
| 407 | b = a; | ||
| 408 | a = tmp[3] >> 64; /* a < 2^15 */ | ||
| 409 | b += a; /* b < 2^46 + 2^15 < 2^47 */ | ||
| 410 | tmp[3] = (u64) tmp[3]; | ||
| 411 | tmp[3] -= a; | ||
| 412 | tmp[3] += ((limb) a) << 32; | ||
| 413 | /* tmp[3] < 2^64 + 2^47 */ | ||
| 414 | |||
| 415 | /* | ||
| 416 | * This adjusts the other two words to complete the two partial | ||
| 417 | * reductions. | ||
| 418 | */ | ||
| 419 | tmp[0] += b; | ||
| 420 | tmp[1] -= (((limb) b) << 32); | ||
| 421 | |||
| 422 | /* | ||
| 423 | * In order to make space in tmp[3] for the carry from 2 -> 3, we | ||
| 424 | * conditionally subtract kPrime if tmp[3] is large enough. | ||
| 425 | */ | ||
| 426 | high = tmp[3] >> 64; | ||
| 427 | /* As tmp[3] < 2^65, high is either 1 or 0 */ | ||
| 428 | high <<= 63; | ||
| 429 | high >>= 63; | ||
| 430 | /* | ||
| 431 | * high is: all ones if the high word of tmp[3] is 1 all zeros if | ||
| 432 | * the high word of tmp[3] if 0 | ||
| 433 | */ | ||
| 434 | low = tmp[3]; | ||
| 435 | mask = low >> 63; | ||
| 436 | /* | ||
| 437 | * mask is: all ones if the MSB of low is 1 all zeros if the MSB | ||
| 438 | * of low if 0 | ||
| 439 | */ | ||
| 440 | low &= bottom63bits; | ||
| 441 | low -= kPrime3Test; | ||
| 442 | /* if low was greater than kPrime3Test then the MSB is zero */ | ||
| 443 | low = ~low; | ||
| 444 | low >>= 63; | ||
| 445 | /* | ||
| 446 | * low is: all ones if low was > kPrime3Test all zeros if low was | ||
| 447 | * <= kPrime3Test | ||
| 448 | */ | ||
| 449 | mask = (mask & low) | high; | ||
| 450 | tmp[0] -= mask & kPrime[0]; | ||
| 451 | tmp[1] -= mask & kPrime[1]; | ||
| 452 | /* kPrime[2] is zero, so omitted */ | ||
| 453 | tmp[3] -= mask & kPrime[3]; | ||
| 454 | /* tmp[3] < 2**64 - 2**32 + 1 */ | ||
| 455 | |||
| 456 | tmp[1] += ((u64) (tmp[0] >> 64)); | ||
| 457 | tmp[0] = (u64) tmp[0]; | ||
| 458 | tmp[2] += ((u64) (tmp[1] >> 64)); | ||
| 459 | tmp[1] = (u64) tmp[1]; | ||
| 460 | tmp[3] += ((u64) (tmp[2] >> 64)); | ||
| 461 | tmp[2] = (u64) tmp[2]; | ||
| 462 | /* tmp[i] < 2^64 */ | ||
| 463 | |||
| 464 | out[0] = tmp[0]; | ||
| 465 | out[1] = tmp[1]; | ||
| 466 | out[2] = tmp[2]; | ||
| 467 | out[3] = tmp[3]; | ||
| 468 | } | ||
| 469 | |||
| 470 | /* smallfelem_expand converts a smallfelem to an felem */ | ||
| 471 | static void | ||
| 472 | smallfelem_expand(felem out, const smallfelem in) | ||
| 473 | { | ||
| 474 | out[0] = in[0]; | ||
| 475 | out[1] = in[1]; | ||
| 476 | out[2] = in[2]; | ||
| 477 | out[3] = in[3]; | ||
| 478 | } | ||
| 479 | |||
| 480 | /* smallfelem_square sets |out| = |small|^2 | ||
| 481 | * On entry: | ||
| 482 | * small[i] < 2^64 | ||
| 483 | * On exit: | ||
| 484 | * out[i] < 7 * 2^64 < 2^67 | ||
| 485 | */ | ||
| 486 | static void | ||
| 487 | smallfelem_square(longfelem out, const smallfelem small) | ||
| 488 | { | ||
| 489 | limb a; | ||
| 490 | u64 high, low; | ||
| 491 | |||
| 492 | a = ((uint128_t) small[0]) * small[0]; | ||
| 493 | low = a; | ||
| 494 | high = a >> 64; | ||
| 495 | out[0] = low; | ||
| 496 | out[1] = high; | ||
| 497 | |||
| 498 | a = ((uint128_t) small[0]) * small[1]; | ||
| 499 | low = a; | ||
| 500 | high = a >> 64; | ||
| 501 | out[1] += low; | ||
| 502 | out[1] += low; | ||
| 503 | out[2] = high; | ||
| 504 | |||
| 505 | a = ((uint128_t) small[0]) * small[2]; | ||
| 506 | low = a; | ||
| 507 | high = a >> 64; | ||
| 508 | out[2] += low; | ||
| 509 | out[2] *= 2; | ||
| 510 | out[3] = high; | ||
| 511 | |||
| 512 | a = ((uint128_t) small[0]) * small[3]; | ||
| 513 | low = a; | ||
| 514 | high = a >> 64; | ||
| 515 | out[3] += low; | ||
| 516 | out[4] = high; | ||
| 517 | |||
| 518 | a = ((uint128_t) small[1]) * small[2]; | ||
| 519 | low = a; | ||
| 520 | high = a >> 64; | ||
| 521 | out[3] += low; | ||
| 522 | out[3] *= 2; | ||
| 523 | out[4] += high; | ||
| 524 | |||
| 525 | a = ((uint128_t) small[1]) * small[1]; | ||
| 526 | low = a; | ||
| 527 | high = a >> 64; | ||
| 528 | out[2] += low; | ||
| 529 | out[3] += high; | ||
| 530 | |||
| 531 | a = ((uint128_t) small[1]) * small[3]; | ||
| 532 | low = a; | ||
| 533 | high = a >> 64; | ||
| 534 | out[4] += low; | ||
| 535 | out[4] *= 2; | ||
| 536 | out[5] = high; | ||
| 537 | |||
| 538 | a = ((uint128_t) small[2]) * small[3]; | ||
| 539 | low = a; | ||
| 540 | high = a >> 64; | ||
| 541 | out[5] += low; | ||
| 542 | out[5] *= 2; | ||
| 543 | out[6] = high; | ||
| 544 | out[6] += high; | ||
| 545 | |||
| 546 | a = ((uint128_t) small[2]) * small[2]; | ||
| 547 | low = a; | ||
| 548 | high = a >> 64; | ||
| 549 | out[4] += low; | ||
| 550 | out[5] += high; | ||
| 551 | |||
| 552 | a = ((uint128_t) small[3]) * small[3]; | ||
| 553 | low = a; | ||
| 554 | high = a >> 64; | ||
| 555 | out[6] += low; | ||
| 556 | out[7] = high; | ||
| 557 | } | ||
| 558 | |||
| 559 | /* felem_square sets |out| = |in|^2 | ||
| 560 | * On entry: | ||
| 561 | * in[i] < 2^109 | ||
| 562 | * On exit: | ||
| 563 | * out[i] < 7 * 2^64 < 2^67 | ||
| 564 | */ | ||
| 565 | static void | ||
| 566 | felem_square(longfelem out, const felem in) | ||
| 567 | { | ||
| 568 | u64 small[4]; | ||
| 569 | felem_shrink(small, in); | ||
| 570 | smallfelem_square(out, small); | ||
| 571 | } | ||
| 572 | |||
| 573 | /* smallfelem_mul sets |out| = |small1| * |small2| | ||
| 574 | * On entry: | ||
| 575 | * small1[i] < 2^64 | ||
| 576 | * small2[i] < 2^64 | ||
| 577 | * On exit: | ||
| 578 | * out[i] < 7 * 2^64 < 2^67 | ||
| 579 | */ | ||
| 580 | static void | ||
| 581 | smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) | ||
| 582 | { | ||
| 583 | limb a; | ||
| 584 | u64 high, low; | ||
| 585 | |||
| 586 | a = ((uint128_t) small1[0]) * small2[0]; | ||
| 587 | low = a; | ||
| 588 | high = a >> 64; | ||
| 589 | out[0] = low; | ||
| 590 | out[1] = high; | ||
| 591 | |||
| 592 | |||
| 593 | a = ((uint128_t) small1[0]) * small2[1]; | ||
| 594 | low = a; | ||
| 595 | high = a >> 64; | ||
| 596 | out[1] += low; | ||
| 597 | out[2] = high; | ||
| 598 | |||
| 599 | a = ((uint128_t) small1[1]) * small2[0]; | ||
| 600 | low = a; | ||
| 601 | high = a >> 64; | ||
| 602 | out[1] += low; | ||
| 603 | out[2] += high; | ||
| 604 | |||
| 605 | |||
| 606 | a = ((uint128_t) small1[0]) * small2[2]; | ||
| 607 | low = a; | ||
| 608 | high = a >> 64; | ||
| 609 | out[2] += low; | ||
| 610 | out[3] = high; | ||
| 611 | |||
| 612 | a = ((uint128_t) small1[1]) * small2[1]; | ||
| 613 | low = a; | ||
| 614 | high = a >> 64; | ||
| 615 | out[2] += low; | ||
| 616 | out[3] += high; | ||
| 617 | |||
| 618 | a = ((uint128_t) small1[2]) * small2[0]; | ||
| 619 | low = a; | ||
| 620 | high = a >> 64; | ||
| 621 | out[2] += low; | ||
| 622 | out[3] += high; | ||
| 623 | |||
| 624 | |||
| 625 | a = ((uint128_t) small1[0]) * small2[3]; | ||
| 626 | low = a; | ||
| 627 | high = a >> 64; | ||
| 628 | out[3] += low; | ||
| 629 | out[4] = high; | ||
| 630 | |||
| 631 | a = ((uint128_t) small1[1]) * small2[2]; | ||
| 632 | low = a; | ||
| 633 | high = a >> 64; | ||
| 634 | out[3] += low; | ||
| 635 | out[4] += high; | ||
| 636 | |||
| 637 | a = ((uint128_t) small1[2]) * small2[1]; | ||
| 638 | low = a; | ||
| 639 | high = a >> 64; | ||
| 640 | out[3] += low; | ||
| 641 | out[4] += high; | ||
| 642 | |||
| 643 | a = ((uint128_t) small1[3]) * small2[0]; | ||
| 644 | low = a; | ||
| 645 | high = a >> 64; | ||
| 646 | out[3] += low; | ||
| 647 | out[4] += high; | ||
| 648 | |||
| 649 | |||
| 650 | a = ((uint128_t) small1[1]) * small2[3]; | ||
| 651 | low = a; | ||
| 652 | high = a >> 64; | ||
| 653 | out[4] += low; | ||
| 654 | out[5] = high; | ||
| 655 | |||
| 656 | a = ((uint128_t) small1[2]) * small2[2]; | ||
| 657 | low = a; | ||
| 658 | high = a >> 64; | ||
| 659 | out[4] += low; | ||
| 660 | out[5] += high; | ||
| 661 | |||
| 662 | a = ((uint128_t) small1[3]) * small2[1]; | ||
| 663 | low = a; | ||
| 664 | high = a >> 64; | ||
| 665 | out[4] += low; | ||
| 666 | out[5] += high; | ||
| 667 | |||
| 668 | |||
| 669 | a = ((uint128_t) small1[2]) * small2[3]; | ||
| 670 | low = a; | ||
| 671 | high = a >> 64; | ||
| 672 | out[5] += low; | ||
| 673 | out[6] = high; | ||
| 674 | |||
| 675 | a = ((uint128_t) small1[3]) * small2[2]; | ||
| 676 | low = a; | ||
| 677 | high = a >> 64; | ||
| 678 | out[5] += low; | ||
| 679 | out[6] += high; | ||
| 680 | |||
| 681 | |||
| 682 | a = ((uint128_t) small1[3]) * small2[3]; | ||
| 683 | low = a; | ||
| 684 | high = a >> 64; | ||
| 685 | out[6] += low; | ||
| 686 | out[7] = high; | ||
| 687 | } | ||
| 688 | |||
| 689 | /* felem_mul sets |out| = |in1| * |in2| | ||
| 690 | * On entry: | ||
| 691 | * in1[i] < 2^109 | ||
| 692 | * in2[i] < 2^109 | ||
| 693 | * On exit: | ||
| 694 | * out[i] < 7 * 2^64 < 2^67 | ||
| 695 | */ | ||
| 696 | static void | ||
| 697 | felem_mul(longfelem out, const felem in1, const felem in2) | ||
| 698 | { | ||
| 699 | smallfelem small1, small2; | ||
| 700 | felem_shrink(small1, in1); | ||
| 701 | felem_shrink(small2, in2); | ||
| 702 | smallfelem_mul(out, small1, small2); | ||
| 703 | } | ||
| 704 | |||
| 705 | /* felem_small_mul sets |out| = |small1| * |in2| | ||
| 706 | * On entry: | ||
| 707 | * small1[i] < 2^64 | ||
| 708 | * in2[i] < 2^109 | ||
| 709 | * On exit: | ||
| 710 | * out[i] < 7 * 2^64 < 2^67 | ||
| 711 | */ | ||
| 712 | static void | ||
| 713 | felem_small_mul(longfelem out, const smallfelem small1, const felem in2) | ||
| 714 | { | ||
| 715 | smallfelem small2; | ||
| 716 | felem_shrink(small2, in2); | ||
| 717 | smallfelem_mul(out, small1, small2); | ||
| 718 | } | ||
| 719 | |||
| 720 | #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) | ||
| 721 | #define two100 (((limb)1) << 100) | ||
| 722 | #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) | ||
| 723 | /* zero100 is 0 mod p */ | ||
| 724 | static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4}; | ||
| 725 | |||
| 726 | /* Internal function for the different flavours of felem_reduce. | ||
| 727 | * felem_reduce_ reduces the higher coefficients in[4]-in[7]. | ||
| 728 | * On entry: | ||
| 729 | * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] | ||
| 730 | * out[1] >= in[7] + 2^32*in[4] | ||
| 731 | * out[2] >= in[5] + 2^32*in[5] | ||
| 732 | * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] | ||
| 733 | * On exit: | ||
| 734 | * out[0] <= out[0] + in[4] + 2^32*in[5] | ||
| 735 | * out[1] <= out[1] + in[5] + 2^33*in[6] | ||
| 736 | * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] | ||
| 737 | * out[3] <= out[3] + 2^32*in[4] + 3*in[7] | ||
| 738 | */ | ||
| 739 | static void | ||
| 740 | felem_reduce_(felem out, const longfelem in) | ||
| 741 | { | ||
| 742 | int128_t c; | ||
| 743 | /* combine common terms from below */ | ||
| 744 | c = in[4] + (in[5] << 32); | ||
| 745 | out[0] += c; | ||
| 746 | out[3] -= c; | ||
| 747 | |||
| 748 | c = in[5] - in[7]; | ||
| 749 | out[1] += c; | ||
| 750 | out[2] -= c; | ||
| 751 | |||
| 752 | /* the remaining terms */ | ||
| 753 | /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ | ||
| 754 | out[1] -= (in[4] << 32); | ||
| 755 | out[3] += (in[4] << 32); | ||
| 756 | |||
| 757 | /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ | ||
| 758 | out[2] -= (in[5] << 32); | ||
| 759 | |||
| 760 | /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ | ||
| 761 | out[0] -= in[6]; | ||
| 762 | out[0] -= (in[6] << 32); | ||
| 763 | out[1] += (in[6] << 33); | ||
| 764 | out[2] += (in[6] * 2); | ||
| 765 | out[3] -= (in[6] << 32); | ||
| 766 | |||
| 767 | /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ | ||
| 768 | out[0] -= in[7]; | ||
| 769 | out[0] -= (in[7] << 32); | ||
| 770 | out[2] += (in[7] << 33); | ||
| 771 | out[3] += (in[7] * 3); | ||
| 772 | } | ||
| 773 | |||
| 774 | /* felem_reduce converts a longfelem into an felem. | ||
| 775 | * To be called directly after felem_square or felem_mul. | ||
| 776 | * On entry: | ||
| 777 | * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 | ||
| 778 | * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 | ||
| 779 | * On exit: | ||
| 780 | * out[i] < 2^101 | ||
| 781 | */ | ||
| 782 | static void | ||
| 783 | felem_reduce(felem out, const longfelem in) | ||
| 784 | { | ||
| 785 | out[0] = zero100[0] + in[0]; | ||
| 786 | out[1] = zero100[1] + in[1]; | ||
| 787 | out[2] = zero100[2] + in[2]; | ||
| 788 | out[3] = zero100[3] + in[3]; | ||
| 789 | |||
| 790 | felem_reduce_(out, in); | ||
| 791 | |||
| 792 | /* | ||
| 793 | * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 | ||
| 794 | * out[1] > 2^100 - 2^64 - 7*2^96 > 0 out[2] > 2^100 - 2^36 + 2^4 - | ||
| 795 | * 5*2^64 - 5*2^96 > 0 out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 | ||
| 796 | * - 3*2^96 > 0 | ||
| 797 | * | ||
| 798 | * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 out[1] < 2^100 + | ||
| 799 | * 3*2^64 + 5*2^64 + 3*2^97 < 2^101 out[2] < 2^100 + 5*2^64 + 2^64 + | ||
| 800 | * 3*2^65 + 2^97 < 2^101 out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < | ||
| 801 | * 2^101 | ||
| 802 | */ | ||
| 803 | } | ||
| 804 | |||
| 805 | /* felem_reduce_zero105 converts a larger longfelem into an felem. | ||
| 806 | * On entry: | ||
| 807 | * in[0] < 2^71 | ||
| 808 | * On exit: | ||
| 809 | * out[i] < 2^106 | ||
| 810 | */ | ||
| 811 | static void | ||
| 812 | felem_reduce_zero105(felem out, const longfelem in) | ||
| 813 | { | ||
| 814 | out[0] = zero105[0] + in[0]; | ||
| 815 | out[1] = zero105[1] + in[1]; | ||
| 816 | out[2] = zero105[2] + in[2]; | ||
| 817 | out[3] = zero105[3] + in[3]; | ||
| 818 | |||
| 819 | felem_reduce_(out, in); | ||
| 820 | |||
| 821 | /* | ||
| 822 | * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 | ||
| 823 | * out[1] > 2^105 - 2^71 - 2^103 > 0 out[2] > 2^105 - 2^41 + 2^9 - | ||
| 824 | * 2^71 - 2^103 > 0 out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - | ||
| 825 | * 2^103 > 0 | ||
| 826 | * | ||
| 827 | * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 out[1] < 2^105 + 2^71 + | ||
| 828 | * 2^71 + 2^103 < 2^106 out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < | ||
| 829 | * 2^106 out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 | ||
| 830 | */ | ||
| 831 | } | ||
| 832 | |||
| 833 | /* subtract_u64 sets *result = *result - v and *carry to one if the subtraction | ||
| 834 | * underflowed. */ | ||
| 835 | static void | ||
| 836 | subtract_u64(u64 * result, u64 * carry, u64 v) | ||
| 837 | { | ||
| 838 | uint128_t r = *result; | ||
| 839 | r -= v; | ||
| 840 | *carry = (r >> 64) & 1; | ||
| 841 | *result = (u64) r; | ||
| 842 | } | ||
| 843 | |||
| 844 | /* felem_contract converts |in| to its unique, minimal representation. | ||
| 845 | * On entry: | ||
| 846 | * in[i] < 2^109 | ||
| 847 | */ | ||
| 848 | static void | ||
| 849 | felem_contract(smallfelem out, const felem in) | ||
| 850 | { | ||
| 851 | unsigned i; | ||
| 852 | u64 all_equal_so_far = 0, result = 0, carry; | ||
| 853 | |||
| 854 | felem_shrink(out, in); | ||
| 855 | /* small is minimal except that the value might be > p */ | ||
| 856 | |||
| 857 | all_equal_so_far--; | ||
| 858 | /* | ||
| 859 | * We are doing a constant time test if out >= kPrime. We need to | ||
| 860 | * compare each u64, from most-significant to least significant. For | ||
| 861 | * each one, if all words so far have been equal (m is all ones) then | ||
| 862 | * a non-equal result is the answer. Otherwise we continue. | ||
| 863 | */ | ||
| 864 | for (i = 3; i < 4; i--) { | ||
| 865 | u64 equal; | ||
| 866 | uint128_t a = ((uint128_t) kPrime[i]) - out[i]; | ||
| 867 | /* | ||
| 868 | * if out[i] > kPrime[i] then a will underflow and the high | ||
| 869 | * 64-bits will all be set. | ||
| 870 | */ | ||
| 871 | result |= all_equal_so_far & ((u64) (a >> 64)); | ||
| 872 | |||
| 873 | /* | ||
| 874 | * if kPrime[i] == out[i] then |equal| will be all zeros and | ||
| 875 | * the decrement will make it all ones. | ||
| 876 | */ | ||
| 877 | equal = kPrime[i] ^ out[i]; | ||
| 878 | equal--; | ||
| 879 | equal &= equal << 32; | ||
| 880 | equal &= equal << 16; | ||
| 881 | equal &= equal << 8; | ||
| 882 | equal &= equal << 4; | ||
| 883 | equal &= equal << 2; | ||
| 884 | equal &= equal << 1; | ||
| 885 | equal = ((s64) equal) >> 63; | ||
| 886 | |||
| 887 | all_equal_so_far &= equal; | ||
| 888 | } | ||
| 889 | |||
| 890 | /* | ||
| 891 | * if all_equal_so_far is still all ones then the two values are | ||
| 892 | * equal and so out >= kPrime is true. | ||
| 893 | */ | ||
| 894 | result |= all_equal_so_far; | ||
| 895 | |||
| 896 | /* if out >= kPrime then we subtract kPrime. */ | ||
| 897 | subtract_u64(&out[0], &carry, result & kPrime[0]); | ||
| 898 | subtract_u64(&out[1], &carry, carry); | ||
| 899 | subtract_u64(&out[2], &carry, carry); | ||
| 900 | subtract_u64(&out[3], &carry, carry); | ||
| 901 | |||
| 902 | subtract_u64(&out[1], &carry, result & kPrime[1]); | ||
| 903 | subtract_u64(&out[2], &carry, carry); | ||
| 904 | subtract_u64(&out[3], &carry, carry); | ||
| 905 | |||
| 906 | subtract_u64(&out[2], &carry, result & kPrime[2]); | ||
| 907 | subtract_u64(&out[3], &carry, carry); | ||
| 908 | |||
| 909 | subtract_u64(&out[3], &carry, result & kPrime[3]); | ||
| 910 | } | ||
| 911 | |||
| 912 | static void | ||
| 913 | smallfelem_square_contract(smallfelem out, const smallfelem in) | ||
| 914 | { | ||
| 915 | longfelem longtmp; | ||
| 916 | felem tmp; | ||
| 917 | |||
| 918 | smallfelem_square(longtmp, in); | ||
| 919 | felem_reduce(tmp, longtmp); | ||
| 920 | felem_contract(out, tmp); | ||
| 921 | } | ||
| 922 | |||
| 923 | static void | ||
| 924 | smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2) | ||
| 925 | { | ||
| 926 | longfelem longtmp; | ||
| 927 | felem tmp; | ||
| 928 | |||
| 929 | smallfelem_mul(longtmp, in1, in2); | ||
| 930 | felem_reduce(tmp, longtmp); | ||
| 931 | felem_contract(out, tmp); | ||
| 932 | } | ||
| 933 | |||
| 934 | /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | ||
| 935 | * otherwise. | ||
| 936 | * On entry: | ||
| 937 | * small[i] < 2^64 | ||
| 938 | */ | ||
| 939 | static limb | ||
| 940 | smallfelem_is_zero(const smallfelem small) | ||
| 941 | { | ||
| 942 | limb result; | ||
| 943 | u64 is_p; | ||
| 944 | |||
| 945 | u64 is_zero = small[0] | small[1] | small[2] | small[3]; | ||
| 946 | is_zero--; | ||
| 947 | is_zero &= is_zero << 32; | ||
| 948 | is_zero &= is_zero << 16; | ||
| 949 | is_zero &= is_zero << 8; | ||
| 950 | is_zero &= is_zero << 4; | ||
| 951 | is_zero &= is_zero << 2; | ||
| 952 | is_zero &= is_zero << 1; | ||
| 953 | is_zero = ((s64) is_zero) >> 63; | ||
| 954 | |||
| 955 | is_p = (small[0] ^ kPrime[0]) | | ||
| 956 | (small[1] ^ kPrime[1]) | | ||
| 957 | (small[2] ^ kPrime[2]) | | ||
| 958 | (small[3] ^ kPrime[3]); | ||
| 959 | is_p--; | ||
| 960 | is_p &= is_p << 32; | ||
| 961 | is_p &= is_p << 16; | ||
| 962 | is_p &= is_p << 8; | ||
| 963 | is_p &= is_p << 4; | ||
| 964 | is_p &= is_p << 2; | ||
| 965 | is_p &= is_p << 1; | ||
| 966 | is_p = ((s64) is_p) >> 63; | ||
| 967 | |||
| 968 | is_zero |= is_p; | ||
| 969 | |||
| 970 | result = is_zero; | ||
| 971 | result |= ((limb) is_zero) << 64; | ||
| 972 | return result; | ||
| 973 | } | ||
| 974 | |||
| 975 | static int | ||
| 976 | smallfelem_is_zero_int(const smallfelem small) | ||
| 977 | { | ||
| 978 | return (int) (smallfelem_is_zero(small) & ((limb) 1)); | ||
| 979 | } | ||
| 980 | |||
| 981 | /* felem_inv calculates |out| = |in|^{-1} | ||
| 982 | * | ||
| 983 | * Based on Fermat's Little Theorem: | ||
| 984 | * a^p = a (mod p) | ||
| 985 | * a^{p-1} = 1 (mod p) | ||
| 986 | * a^{p-2} = a^{-1} (mod p) | ||
| 987 | */ | ||
| 988 | static void | ||
| 989 | felem_inv(felem out, const felem in) | ||
| 990 | { | ||
| 991 | felem ftmp, ftmp2; | ||
| 992 | /* each e_I will hold |in|^{2^I - 1} */ | ||
| 993 | felem e2, e4, e8, e16, e32, e64; | ||
| 994 | longfelem tmp; | ||
| 995 | unsigned i; | ||
| 996 | |||
| 997 | felem_square(tmp, in); | ||
| 998 | felem_reduce(ftmp, tmp);/* 2^1 */ | ||
| 999 | felem_mul(tmp, in, ftmp); | ||
| 1000 | felem_reduce(ftmp, tmp);/* 2^2 - 2^0 */ | ||
| 1001 | felem_assign(e2, ftmp); | ||
| 1002 | felem_square(tmp, ftmp); | ||
| 1003 | felem_reduce(ftmp, tmp);/* 2^3 - 2^1 */ | ||
| 1004 | felem_square(tmp, ftmp); | ||
| 1005 | felem_reduce(ftmp, tmp);/* 2^4 - 2^2 */ | ||
| 1006 | felem_mul(tmp, ftmp, e2); | ||
| 1007 | felem_reduce(ftmp, tmp);/* 2^4 - 2^0 */ | ||
| 1008 | felem_assign(e4, ftmp); | ||
| 1009 | felem_square(tmp, ftmp); | ||
| 1010 | felem_reduce(ftmp, tmp);/* 2^5 - 2^1 */ | ||
| 1011 | felem_square(tmp, ftmp); | ||
| 1012 | felem_reduce(ftmp, tmp);/* 2^6 - 2^2 */ | ||
| 1013 | felem_square(tmp, ftmp); | ||
| 1014 | felem_reduce(ftmp, tmp);/* 2^7 - 2^3 */ | ||
| 1015 | felem_square(tmp, ftmp); | ||
| 1016 | felem_reduce(ftmp, tmp);/* 2^8 - 2^4 */ | ||
| 1017 | felem_mul(tmp, ftmp, e4); | ||
| 1018 | felem_reduce(ftmp, tmp);/* 2^8 - 2^0 */ | ||
| 1019 | felem_assign(e8, ftmp); | ||
| 1020 | for (i = 0; i < 8; i++) { | ||
| 1021 | felem_square(tmp, ftmp); | ||
| 1022 | felem_reduce(ftmp, tmp); | ||
| 1023 | } /* 2^16 - 2^8 */ | ||
| 1024 | felem_mul(tmp, ftmp, e8); | ||
| 1025 | felem_reduce(ftmp, tmp);/* 2^16 - 2^0 */ | ||
| 1026 | felem_assign(e16, ftmp); | ||
| 1027 | for (i = 0; i < 16; i++) { | ||
| 1028 | felem_square(tmp, ftmp); | ||
| 1029 | felem_reduce(ftmp, tmp); | ||
| 1030 | } /* 2^32 - 2^16 */ | ||
| 1031 | felem_mul(tmp, ftmp, e16); | ||
| 1032 | felem_reduce(ftmp, tmp);/* 2^32 - 2^0 */ | ||
| 1033 | felem_assign(e32, ftmp); | ||
| 1034 | for (i = 0; i < 32; i++) { | ||
| 1035 | felem_square(tmp, ftmp); | ||
| 1036 | felem_reduce(ftmp, tmp); | ||
| 1037 | } /* 2^64 - 2^32 */ | ||
| 1038 | felem_assign(e64, ftmp); | ||
| 1039 | felem_mul(tmp, ftmp, in); | ||
| 1040 | felem_reduce(ftmp, tmp);/* 2^64 - 2^32 + 2^0 */ | ||
| 1041 | for (i = 0; i < 192; i++) { | ||
| 1042 | felem_square(tmp, ftmp); | ||
| 1043 | felem_reduce(ftmp, tmp); | ||
| 1044 | } /* 2^256 - 2^224 + 2^192 */ | ||
| 1045 | |||
| 1046 | felem_mul(tmp, e64, e32); | ||
| 1047 | felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */ | ||
| 1048 | for (i = 0; i < 16; i++) { | ||
| 1049 | felem_square(tmp, ftmp2); | ||
| 1050 | felem_reduce(ftmp2, tmp); | ||
| 1051 | } /* 2^80 - 2^16 */ | ||
| 1052 | felem_mul(tmp, ftmp2, e16); | ||
| 1053 | felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */ | ||
| 1054 | for (i = 0; i < 8; i++) { | ||
| 1055 | felem_square(tmp, ftmp2); | ||
| 1056 | felem_reduce(ftmp2, tmp); | ||
| 1057 | } /* 2^88 - 2^8 */ | ||
| 1058 | felem_mul(tmp, ftmp2, e8); | ||
| 1059 | felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */ | ||
| 1060 | for (i = 0; i < 4; i++) { | ||
| 1061 | felem_square(tmp, ftmp2); | ||
| 1062 | felem_reduce(ftmp2, tmp); | ||
| 1063 | } /* 2^92 - 2^4 */ | ||
| 1064 | felem_mul(tmp, ftmp2, e4); | ||
| 1065 | felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */ | ||
| 1066 | felem_square(tmp, ftmp2); | ||
| 1067 | felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */ | ||
| 1068 | felem_square(tmp, ftmp2); | ||
| 1069 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */ | ||
| 1070 | felem_mul(tmp, ftmp2, e2); | ||
| 1071 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */ | ||
| 1072 | felem_square(tmp, ftmp2); | ||
| 1073 | felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */ | ||
| 1074 | felem_square(tmp, ftmp2); | ||
| 1075 | felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */ | ||
| 1076 | felem_mul(tmp, ftmp2, in); | ||
| 1077 | felem_reduce(ftmp2, tmp); /* 2^96 - 3 */ | ||
| 1078 | |||
| 1079 | felem_mul(tmp, ftmp2, ftmp); | ||
| 1080 | felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | ||
| 1081 | } | ||
| 1082 | |||
| 1083 | static void | ||
| 1084 | smallfelem_inv_contract(smallfelem out, const smallfelem in) | ||
| 1085 | { | ||
| 1086 | felem tmp; | ||
| 1087 | |||
| 1088 | smallfelem_expand(tmp, in); | ||
| 1089 | felem_inv(tmp, tmp); | ||
| 1090 | felem_contract(out, tmp); | ||
| 1091 | } | ||
| 1092 | |||
| 1093 | /* Group operations | ||
| 1094 | * ---------------- | ||
| 1095 | * | ||
| 1096 | * Building on top of the field operations we have the operations on the | ||
| 1097 | * elliptic curve group itself. Points on the curve are represented in Jacobian | ||
| 1098 | * coordinates */ | ||
| 1099 | |||
| 1100 | /* point_double calculates 2*(x_in, y_in, z_in) | ||
| 1101 | * | ||
| 1102 | * The method is taken from: | ||
| 1103 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | ||
| 1104 | * | ||
| 1105 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | ||
| 1106 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
| 1107 | static void | ||
| 1108 | point_double(felem x_out, felem y_out, felem z_out, | ||
| 1109 | const felem x_in, const felem y_in, const felem z_in) | ||
| 1110 | { | ||
| 1111 | longfelem tmp, tmp2; | ||
| 1112 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
| 1113 | smallfelem small1, small2; | ||
| 1114 | |||
| 1115 | felem_assign(ftmp, x_in); | ||
| 1116 | /* ftmp[i] < 2^106 */ | ||
| 1117 | felem_assign(ftmp2, x_in); | ||
| 1118 | /* ftmp2[i] < 2^106 */ | ||
| 1119 | |||
| 1120 | /* delta = z^2 */ | ||
| 1121 | felem_square(tmp, z_in); | ||
| 1122 | felem_reduce(delta, tmp); | ||
| 1123 | /* delta[i] < 2^101 */ | ||
| 1124 | |||
| 1125 | /* gamma = y^2 */ | ||
| 1126 | felem_square(tmp, y_in); | ||
| 1127 | felem_reduce(gamma, tmp); | ||
| 1128 | /* gamma[i] < 2^101 */ | ||
| 1129 | felem_shrink(small1, gamma); | ||
| 1130 | |||
| 1131 | /* beta = x*gamma */ | ||
| 1132 | felem_small_mul(tmp, small1, x_in); | ||
| 1133 | felem_reduce(beta, tmp); | ||
| 1134 | /* beta[i] < 2^101 */ | ||
| 1135 | |||
| 1136 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
| 1137 | felem_diff(ftmp, delta); | ||
| 1138 | /* ftmp[i] < 2^105 + 2^106 < 2^107 */ | ||
| 1139 | felem_sum(ftmp2, delta); | ||
| 1140 | /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ | ||
| 1141 | felem_scalar(ftmp2, 3); | ||
| 1142 | /* ftmp2[i] < 3 * 2^107 < 2^109 */ | ||
| 1143 | felem_mul(tmp, ftmp, ftmp2); | ||
| 1144 | felem_reduce(alpha, tmp); | ||
| 1145 | /* alpha[i] < 2^101 */ | ||
| 1146 | felem_shrink(small2, alpha); | ||
| 1147 | |||
| 1148 | /* x' = alpha^2 - 8*beta */ | ||
| 1149 | smallfelem_square(tmp, small2); | ||
| 1150 | felem_reduce(x_out, tmp); | ||
| 1151 | felem_assign(ftmp, beta); | ||
| 1152 | felem_scalar(ftmp, 8); | ||
| 1153 | /* ftmp[i] < 8 * 2^101 = 2^104 */ | ||
| 1154 | felem_diff(x_out, ftmp); | ||
| 1155 | /* x_out[i] < 2^105 + 2^101 < 2^106 */ | ||
| 1156 | |||
| 1157 | /* z' = (y + z)^2 - gamma - delta */ | ||
| 1158 | felem_sum(delta, gamma); | ||
| 1159 | /* delta[i] < 2^101 + 2^101 = 2^102 */ | ||
| 1160 | felem_assign(ftmp, y_in); | ||
| 1161 | felem_sum(ftmp, z_in); | ||
| 1162 | /* ftmp[i] < 2^106 + 2^106 = 2^107 */ | ||
| 1163 | felem_square(tmp, ftmp); | ||
| 1164 | felem_reduce(z_out, tmp); | ||
| 1165 | felem_diff(z_out, delta); | ||
| 1166 | /* z_out[i] < 2^105 + 2^101 < 2^106 */ | ||
| 1167 | |||
| 1168 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
| 1169 | felem_scalar(beta, 4); | ||
| 1170 | /* beta[i] < 4 * 2^101 = 2^103 */ | ||
| 1171 | felem_diff_zero107(beta, x_out); | ||
| 1172 | /* beta[i] < 2^107 + 2^103 < 2^108 */ | ||
| 1173 | felem_small_mul(tmp, small2, beta); | ||
| 1174 | /* tmp[i] < 7 * 2^64 < 2^67 */ | ||
| 1175 | smallfelem_square(tmp2, small1); | ||
| 1176 | /* tmp2[i] < 7 * 2^64 */ | ||
| 1177 | longfelem_scalar(tmp2, 8); | ||
| 1178 | /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ | ||
| 1179 | longfelem_diff(tmp, tmp2); | ||
| 1180 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | ||
| 1181 | felem_reduce_zero105(y_out, tmp); | ||
| 1182 | /* y_out[i] < 2^106 */ | ||
| 1183 | } | ||
| 1184 | |||
| 1185 | /* point_double_small is the same as point_double, except that it operates on | ||
| 1186 | * smallfelems */ | ||
| 1187 | static void | ||
| 1188 | point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, | ||
| 1189 | const smallfelem x_in, const smallfelem y_in, const smallfelem z_in) | ||
| 1190 | { | ||
| 1191 | felem felem_x_out, felem_y_out, felem_z_out; | ||
| 1192 | felem felem_x_in, felem_y_in, felem_z_in; | ||
| 1193 | |||
| 1194 | smallfelem_expand(felem_x_in, x_in); | ||
| 1195 | smallfelem_expand(felem_y_in, y_in); | ||
| 1196 | smallfelem_expand(felem_z_in, z_in); | ||
| 1197 | point_double(felem_x_out, felem_y_out, felem_z_out, | ||
| 1198 | felem_x_in, felem_y_in, felem_z_in); | ||
| 1199 | felem_shrink(x_out, felem_x_out); | ||
| 1200 | felem_shrink(y_out, felem_y_out); | ||
| 1201 | felem_shrink(z_out, felem_z_out); | ||
| 1202 | } | ||
| 1203 | |||
| 1204 | /* copy_conditional copies in to out iff mask is all ones. */ | ||
| 1205 | static void | ||
| 1206 | copy_conditional(felem out, const felem in, limb mask) | ||
| 1207 | { | ||
| 1208 | unsigned i; | ||
| 1209 | for (i = 0; i < NLIMBS; ++i) { | ||
| 1210 | const limb tmp = mask & (in[i] ^ out[i]); | ||
| 1211 | out[i] ^= tmp; | ||
| 1212 | } | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | /* copy_small_conditional copies in to out iff mask is all ones. */ | ||
| 1216 | static void | ||
| 1217 | copy_small_conditional(felem out, const smallfelem in, limb mask) | ||
| 1218 | { | ||
| 1219 | unsigned i; | ||
| 1220 | const u64 mask64 = mask; | ||
| 1221 | for (i = 0; i < NLIMBS; ++i) { | ||
| 1222 | out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask); | ||
| 1223 | } | ||
| 1224 | } | ||
| 1225 | |||
| 1226 | /* point_add calcuates (x1, y1, z1) + (x2, y2, z2) | ||
| 1227 | * | ||
| 1228 | * The method is taken from: | ||
| 1229 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | ||
| 1230 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | ||
| 1231 | * | ||
| 1232 | * This function includes a branch for checking whether the two input points | ||
| 1233 | * are equal, (while not equal to the point at infinity). This case never | ||
| 1234 | * happens during single point multiplication, so there is no timing leak for | ||
| 1235 | * ECDH or ECDSA signing. */ | ||
| 1236 | static void | ||
| 1237 | point_add(felem x3, felem y3, felem z3, | ||
| 1238 | const felem x1, const felem y1, const felem z1, | ||
| 1239 | const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2) | ||
| 1240 | { | ||
| 1241 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | ||
| 1242 | longfelem tmp, tmp2; | ||
| 1243 | smallfelem small1, small2, small3, small4, small5; | ||
| 1244 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; | ||
| 1245 | |||
| 1246 | felem_shrink(small3, z1); | ||
| 1247 | |||
| 1248 | z1_is_zero = smallfelem_is_zero(small3); | ||
| 1249 | z2_is_zero = smallfelem_is_zero(z2); | ||
| 1250 | |||
| 1251 | /* ftmp = z1z1 = z1**2 */ | ||
| 1252 | smallfelem_square(tmp, small3); | ||
| 1253 | felem_reduce(ftmp, tmp); | ||
| 1254 | /* ftmp[i] < 2^101 */ | ||
| 1255 | felem_shrink(small1, ftmp); | ||
| 1256 | |||
| 1257 | if (!mixed) { | ||
| 1258 | /* ftmp2 = z2z2 = z2**2 */ | ||
| 1259 | smallfelem_square(tmp, z2); | ||
| 1260 | felem_reduce(ftmp2, tmp); | ||
| 1261 | /* ftmp2[i] < 2^101 */ | ||
| 1262 | felem_shrink(small2, ftmp2); | ||
| 1263 | |||
| 1264 | felem_shrink(small5, x1); | ||
| 1265 | |||
| 1266 | /* u1 = ftmp3 = x1*z2z2 */ | ||
| 1267 | smallfelem_mul(tmp, small5, small2); | ||
| 1268 | felem_reduce(ftmp3, tmp); | ||
| 1269 | /* ftmp3[i] < 2^101 */ | ||
| 1270 | |||
| 1271 | /* ftmp5 = z1 + z2 */ | ||
| 1272 | felem_assign(ftmp5, z1); | ||
| 1273 | felem_small_sum(ftmp5, z2); | ||
| 1274 | /* ftmp5[i] < 2^107 */ | ||
| 1275 | |||
| 1276 | /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ | ||
| 1277 | felem_square(tmp, ftmp5); | ||
| 1278 | felem_reduce(ftmp5, tmp); | ||
| 1279 | /* ftmp2 = z2z2 + z1z1 */ | ||
| 1280 | felem_sum(ftmp2, ftmp); | ||
| 1281 | /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ | ||
| 1282 | felem_diff(ftmp5, ftmp2); | ||
| 1283 | /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ | ||
| 1284 | |||
| 1285 | /* ftmp2 = z2 * z2z2 */ | ||
| 1286 | smallfelem_mul(tmp, small2, z2); | ||
| 1287 | felem_reduce(ftmp2, tmp); | ||
| 1288 | |||
| 1289 | /* s1 = ftmp2 = y1 * z2**3 */ | ||
| 1290 | felem_mul(tmp, y1, ftmp2); | ||
| 1291 | felem_reduce(ftmp6, tmp); | ||
| 1292 | /* ftmp6[i] < 2^101 */ | ||
| 1293 | } else { | ||
| 1294 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
| 1295 | |||
| 1296 | /* u1 = ftmp3 = x1*z2z2 */ | ||
| 1297 | felem_assign(ftmp3, x1); | ||
| 1298 | /* ftmp3[i] < 2^106 */ | ||
| 1299 | |||
| 1300 | /* ftmp5 = 2z1z2 */ | ||
| 1301 | felem_assign(ftmp5, z1); | ||
| 1302 | felem_scalar(ftmp5, 2); | ||
| 1303 | /* ftmp5[i] < 2*2^106 = 2^107 */ | ||
| 1304 | |||
| 1305 | /* s1 = ftmp2 = y1 * z2**3 */ | ||
| 1306 | felem_assign(ftmp6, y1); | ||
| 1307 | /* ftmp6[i] < 2^106 */ | ||
| 1308 | } | ||
| 1309 | |||
| 1310 | /* u2 = x2*z1z1 */ | ||
| 1311 | smallfelem_mul(tmp, x2, small1); | ||
| 1312 | felem_reduce(ftmp4, tmp); | ||
| 1313 | |||
| 1314 | /* h = ftmp4 = u2 - u1 */ | ||
| 1315 | felem_diff_zero107(ftmp4, ftmp3); | ||
| 1316 | /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ | ||
| 1317 | felem_shrink(small4, ftmp4); | ||
| 1318 | |||
| 1319 | x_equal = smallfelem_is_zero(small4); | ||
| 1320 | |||
| 1321 | /* z_out = ftmp5 * h */ | ||
| 1322 | felem_small_mul(tmp, small4, ftmp5); | ||
| 1323 | felem_reduce(z_out, tmp); | ||
| 1324 | /* z_out[i] < 2^101 */ | ||
| 1325 | |||
| 1326 | /* ftmp = z1 * z1z1 */ | ||
| 1327 | smallfelem_mul(tmp, small1, small3); | ||
| 1328 | felem_reduce(ftmp, tmp); | ||
| 1329 | |||
| 1330 | /* s2 = tmp = y2 * z1**3 */ | ||
| 1331 | felem_small_mul(tmp, y2, ftmp); | ||
| 1332 | felem_reduce(ftmp5, tmp); | ||
| 1333 | |||
| 1334 | /* r = ftmp5 = (s2 - s1)*2 */ | ||
| 1335 | felem_diff_zero107(ftmp5, ftmp6); | ||
| 1336 | /* ftmp5[i] < 2^107 + 2^107 = 2^108 */ | ||
| 1337 | felem_scalar(ftmp5, 2); | ||
| 1338 | /* ftmp5[i] < 2^109 */ | ||
| 1339 | felem_shrink(small1, ftmp5); | ||
| 1340 | y_equal = smallfelem_is_zero(small1); | ||
| 1341 | |||
| 1342 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
| 1343 | point_double(x3, y3, z3, x1, y1, z1); | ||
| 1344 | return; | ||
| 1345 | } | ||
| 1346 | /* I = ftmp = (2h)**2 */ | ||
| 1347 | felem_assign(ftmp, ftmp4); | ||
| 1348 | felem_scalar(ftmp, 2); | ||
| 1349 | /* ftmp[i] < 2*2^108 = 2^109 */ | ||
| 1350 | felem_square(tmp, ftmp); | ||
| 1351 | felem_reduce(ftmp, tmp); | ||
| 1352 | |||
| 1353 | /* J = ftmp2 = h * I */ | ||
| 1354 | felem_mul(tmp, ftmp4, ftmp); | ||
| 1355 | felem_reduce(ftmp2, tmp); | ||
| 1356 | |||
| 1357 | /* V = ftmp4 = U1 * I */ | ||
| 1358 | felem_mul(tmp, ftmp3, ftmp); | ||
| 1359 | felem_reduce(ftmp4, tmp); | ||
| 1360 | |||
| 1361 | /* x_out = r**2 - J - 2V */ | ||
| 1362 | smallfelem_square(tmp, small1); | ||
| 1363 | felem_reduce(x_out, tmp); | ||
| 1364 | felem_assign(ftmp3, ftmp4); | ||
| 1365 | felem_scalar(ftmp4, 2); | ||
| 1366 | felem_sum(ftmp4, ftmp2); | ||
| 1367 | /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ | ||
| 1368 | felem_diff(x_out, ftmp4); | ||
| 1369 | /* x_out[i] < 2^105 + 2^101 */ | ||
| 1370 | |||
| 1371 | /* y_out = r(V-x_out) - 2 * s1 * J */ | ||
| 1372 | felem_diff_zero107(ftmp3, x_out); | ||
| 1373 | /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ | ||
| 1374 | felem_small_mul(tmp, small1, ftmp3); | ||
| 1375 | felem_mul(tmp2, ftmp6, ftmp2); | ||
| 1376 | longfelem_scalar(tmp2, 2); | ||
| 1377 | /* tmp2[i] < 2*2^67 = 2^68 */ | ||
| 1378 | longfelem_diff(tmp, tmp2); | ||
| 1379 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | ||
| 1380 | felem_reduce_zero105(y_out, tmp); | ||
| 1381 | /* y_out[i] < 2^106 */ | ||
| 1382 | |||
| 1383 | copy_small_conditional(x_out, x2, z1_is_zero); | ||
| 1384 | copy_conditional(x_out, x1, z2_is_zero); | ||
| 1385 | copy_small_conditional(y_out, y2, z1_is_zero); | ||
| 1386 | copy_conditional(y_out, y1, z2_is_zero); | ||
| 1387 | copy_small_conditional(z_out, z2, z1_is_zero); | ||
| 1388 | copy_conditional(z_out, z1, z2_is_zero); | ||
| 1389 | felem_assign(x3, x_out); | ||
| 1390 | felem_assign(y3, y_out); | ||
| 1391 | felem_assign(z3, z_out); | ||
| 1392 | } | ||
| 1393 | |||
| 1394 | /* point_add_small is the same as point_add, except that it operates on | ||
| 1395 | * smallfelems */ | ||
| 1396 | static void | ||
| 1397 | point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, | ||
| 1398 | smallfelem x1, smallfelem y1, smallfelem z1, | ||
| 1399 | smallfelem x2, smallfelem y2, smallfelem z2) | ||
| 1400 | { | ||
| 1401 | felem felem_x3, felem_y3, felem_z3; | ||
| 1402 | felem felem_x1, felem_y1, felem_z1; | ||
| 1403 | smallfelem_expand(felem_x1, x1); | ||
| 1404 | smallfelem_expand(felem_y1, y1); | ||
| 1405 | smallfelem_expand(felem_z1, z1); | ||
| 1406 | point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2); | ||
| 1407 | felem_shrink(x3, felem_x3); | ||
| 1408 | felem_shrink(y3, felem_y3); | ||
| 1409 | felem_shrink(z3, felem_z3); | ||
| 1410 | } | ||
| 1411 | |||
| 1412 | /* Base point pre computation | ||
| 1413 | * -------------------------- | ||
| 1414 | * | ||
| 1415 | * Two different sorts of precomputed tables are used in the following code. | ||
| 1416 | * Each contain various points on the curve, where each point is three field | ||
| 1417 | * elements (x, y, z). | ||
| 1418 | * | ||
| 1419 | * For the base point table, z is usually 1 (0 for the point at infinity). | ||
| 1420 | * This table has 2 * 16 elements, starting with the following: | ||
| 1421 | * index | bits | point | ||
| 1422 | * ------+---------+------------------------------ | ||
| 1423 | * 0 | 0 0 0 0 | 0G | ||
| 1424 | * 1 | 0 0 0 1 | 1G | ||
| 1425 | * 2 | 0 0 1 0 | 2^64G | ||
| 1426 | * 3 | 0 0 1 1 | (2^64 + 1)G | ||
| 1427 | * 4 | 0 1 0 0 | 2^128G | ||
| 1428 | * 5 | 0 1 0 1 | (2^128 + 1)G | ||
| 1429 | * 6 | 0 1 1 0 | (2^128 + 2^64)G | ||
| 1430 | * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G | ||
| 1431 | * 8 | 1 0 0 0 | 2^192G | ||
| 1432 | * 9 | 1 0 0 1 | (2^192 + 1)G | ||
| 1433 | * 10 | 1 0 1 0 | (2^192 + 2^64)G | ||
| 1434 | * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G | ||
| 1435 | * 12 | 1 1 0 0 | (2^192 + 2^128)G | ||
| 1436 | * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G | ||
| 1437 | * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G | ||
| 1438 | * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G | ||
| 1439 | * followed by a copy of this with each element multiplied by 2^32. | ||
| 1440 | * | ||
| 1441 | * The reason for this is so that we can clock bits into four different | ||
| 1442 | * locations when doing simple scalar multiplies against the base point, | ||
| 1443 | * and then another four locations using the second 16 elements. | ||
| 1444 | * | ||
| 1445 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ | ||
| 1446 | |||
| 1447 | /* gmul is the table of precomputed base points */ | ||
| 1448 | static const smallfelem gmul[2][16][3] = | ||
| 1449 | {{{{0, 0, 0, 0}, | ||
| 1450 | {0, 0, 0, 0}, | ||
| 1451 | {0, 0, 0, 0}}, | ||
| 1452 | {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247}, | ||
| 1453 | {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b}, | ||
| 1454 | {1, 0, 0, 0}}, | ||
| 1455 | {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5}, | ||
| 1456 | {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d}, | ||
| 1457 | {1, 0, 0, 0}}, | ||
| 1458 | {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f}, | ||
| 1459 | {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644}, | ||
| 1460 | {1, 0, 0, 0}}, | ||
| 1461 | {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67}, | ||
| 1462 | {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee}, | ||
| 1463 | {1, 0, 0, 0}}, | ||
| 1464 | {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff}, | ||
| 1465 | {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b}, | ||
| 1466 | {1, 0, 0, 0}}, | ||
| 1467 | {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8}, | ||
| 1468 | {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851}, | ||
| 1469 | {1, 0, 0, 0}}, | ||
| 1470 | {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea}, | ||
| 1471 | {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b}, | ||
| 1472 | {1, 0, 0, 0}}, | ||
| 1473 | {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276}, | ||
| 1474 | {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816}, | ||
| 1475 | {1, 0, 0, 0}}, | ||
| 1476 | {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad}, | ||
| 1477 | {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663}, | ||
| 1478 | {1, 0, 0, 0}}, | ||
| 1479 | {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d}, | ||
| 1480 | {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321}, | ||
| 1481 | {1, 0, 0, 0}}, | ||
| 1482 | {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287}, | ||
| 1483 | {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6}, | ||
| 1484 | {1, 0, 0, 0}}, | ||
| 1485 | {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466}, | ||
| 1486 | {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20}, | ||
| 1487 | {1, 0, 0, 0}}, | ||
| 1488 | {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9}, | ||
| 1489 | {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61}, | ||
| 1490 | {1, 0, 0, 0}}, | ||
| 1491 | {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a}, | ||
| 1492 | {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc}, | ||
| 1493 | {1, 0, 0, 0}}, | ||
| 1494 | {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c}, | ||
| 1495 | {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab}, | ||
| 1496 | {1, 0, 0, 0}}}, | ||
| 1497 | {{{0, 0, 0, 0}, | ||
| 1498 | {0, 0, 0, 0}, | ||
| 1499 | {0, 0, 0, 0}}, | ||
| 1500 | {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89}, | ||
| 1501 | {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624}, | ||
| 1502 | {1, 0, 0, 0}}, | ||
| 1503 | {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6}, | ||
| 1504 | {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1}, | ||
| 1505 | {1, 0, 0, 0}}, | ||
| 1506 | {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a}, | ||
| 1507 | {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593}, | ||
| 1508 | {1, 0, 0, 0}}, | ||
| 1509 | {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617}, | ||
| 1510 | {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7}, | ||
| 1511 | {1, 0, 0, 0}}, | ||
| 1512 | {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276}, | ||
| 1513 | {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a}, | ||
| 1514 | {1, 0, 0, 0}}, | ||
| 1515 | {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908}, | ||
| 1516 | {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e}, | ||
| 1517 | {1, 0, 0, 0}}, | ||
| 1518 | {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7}, | ||
| 1519 | {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec}, | ||
| 1520 | {1, 0, 0, 0}}, | ||
| 1521 | {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee}, | ||
| 1522 | {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6}, | ||
| 1523 | {1, 0, 0, 0}}, | ||
| 1524 | {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109}, | ||
| 1525 | {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5}, | ||
| 1526 | {1, 0, 0, 0}}, | ||
| 1527 | {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba}, | ||
| 1528 | {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44}, | ||
| 1529 | {1, 0, 0, 0}}, | ||
| 1530 | {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b}, | ||
| 1531 | {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc}, | ||
| 1532 | {1, 0, 0, 0}}, | ||
| 1533 | {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107}, | ||
| 1534 | {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387}, | ||
| 1535 | {1, 0, 0, 0}}, | ||
| 1536 | {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503}, | ||
| 1537 | {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be}, | ||
| 1538 | {1, 0, 0, 0}}, | ||
| 1539 | {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9}, | ||
| 1540 | {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a}, | ||
| 1541 | {1, 0, 0, 0}}, | ||
| 1542 | {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6}, | ||
| 1543 | {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81}, | ||
| 1544 | {1, 0, 0, 0}}}}; | ||
| 1545 | |||
| 1546 | /* select_point selects the |idx|th point from a precomputation table and | ||
| 1547 | * copies it to out. */ | ||
| 1548 | static void | ||
| 1549 | select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3]) | ||
| 1550 | { | ||
| 1551 | unsigned i, j; | ||
| 1552 | u64 *outlimbs = &out[0][0]; | ||
| 1553 | memset(outlimbs, 0, 3 * sizeof(smallfelem)); | ||
| 1554 | |||
| 1555 | for (i = 0; i < size; i++) { | ||
| 1556 | const u64 *inlimbs = (u64 *) & pre_comp[i][0][0]; | ||
| 1557 | u64 mask = i ^ idx; | ||
| 1558 | mask |= mask >> 4; | ||
| 1559 | mask |= mask >> 2; | ||
| 1560 | mask |= mask >> 1; | ||
| 1561 | mask &= 1; | ||
| 1562 | mask--; | ||
| 1563 | for (j = 0; j < NLIMBS * 3; j++) | ||
| 1564 | outlimbs[j] |= inlimbs[j] & mask; | ||
| 1565 | } | ||
| 1566 | } | ||
| 1567 | |||
| 1568 | /* get_bit returns the |i|th bit in |in| */ | ||
| 1569 | static char | ||
| 1570 | get_bit(const felem_bytearray in, int i) | ||
| 1571 | { | ||
| 1572 | if ((i < 0) || (i >= 256)) | ||
| 1573 | return 0; | ||
| 1574 | return (in[i >> 3] >> (i & 7)) & 1; | ||
| 1575 | } | ||
| 1576 | |||
| 1577 | /* Interleaved point multiplication using precomputed point multiples: | ||
| 1578 | * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], | ||
| 1579 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
| 1580 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
| 1581 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
| 1582 | static void | ||
| 1583 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
| 1584 | const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, | ||
| 1585 | const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3]) | ||
| 1586 | { | ||
| 1587 | int i, skip; | ||
| 1588 | unsigned num, gen_mul = (g_scalar != NULL); | ||
| 1589 | felem nq[3], ftmp; | ||
| 1590 | smallfelem tmp[3]; | ||
| 1591 | u64 bits; | ||
| 1592 | u8 sign, digit; | ||
| 1593 | |||
| 1594 | /* set nq to the point at infinity */ | ||
| 1595 | memset(nq, 0, 3 * sizeof(felem)); | ||
| 1596 | |||
| 1597 | /* | ||
| 1598 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
| 1599 | * multiples of the generator (two in each of the last 32 rounds) and | ||
| 1600 | * additions of other points multiples (every 5th round). | ||
| 1601 | */ | ||
| 1602 | skip = 1; /* save two point operations in the first | ||
| 1603 | * round */ | ||
| 1604 | for (i = (num_points ? 255 : 31); i >= 0; --i) { | ||
| 1605 | /* double */ | ||
| 1606 | if (!skip) | ||
| 1607 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
| 1608 | |||
| 1609 | /* add multiples of the generator */ | ||
| 1610 | if (gen_mul && (i <= 31)) { | ||
| 1611 | /* first, look 32 bits upwards */ | ||
| 1612 | bits = get_bit(g_scalar, i + 224) << 3; | ||
| 1613 | bits |= get_bit(g_scalar, i + 160) << 2; | ||
| 1614 | bits |= get_bit(g_scalar, i + 96) << 1; | ||
| 1615 | bits |= get_bit(g_scalar, i + 32); | ||
| 1616 | /* select the point to add, in constant time */ | ||
| 1617 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
| 1618 | |||
| 1619 | if (!skip) { | ||
| 1620 | point_add(nq[0], nq[1], nq[2], | ||
| 1621 | nq[0], nq[1], nq[2], | ||
| 1622 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
| 1623 | } else { | ||
| 1624 | smallfelem_expand(nq[0], tmp[0]); | ||
| 1625 | smallfelem_expand(nq[1], tmp[1]); | ||
| 1626 | smallfelem_expand(nq[2], tmp[2]); | ||
| 1627 | skip = 0; | ||
| 1628 | } | ||
| 1629 | |||
| 1630 | /* second, look at the current position */ | ||
| 1631 | bits = get_bit(g_scalar, i + 192) << 3; | ||
| 1632 | bits |= get_bit(g_scalar, i + 128) << 2; | ||
| 1633 | bits |= get_bit(g_scalar, i + 64) << 1; | ||
| 1634 | bits |= get_bit(g_scalar, i); | ||
| 1635 | /* select the point to add, in constant time */ | ||
| 1636 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
| 1637 | point_add(nq[0], nq[1], nq[2], | ||
| 1638 | nq[0], nq[1], nq[2], | ||
| 1639 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
| 1640 | } | ||
| 1641 | /* do other additions every 5 doublings */ | ||
| 1642 | if (num_points && (i % 5 == 0)) { | ||
| 1643 | /* loop over all scalars */ | ||
| 1644 | for (num = 0; num < num_points; ++num) { | ||
| 1645 | bits = get_bit(scalars[num], i + 4) << 5; | ||
| 1646 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
| 1647 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
| 1648 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
| 1649 | bits |= get_bit(scalars[num], i) << 1; | ||
| 1650 | bits |= get_bit(scalars[num], i - 1); | ||
| 1651 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
| 1652 | |||
| 1653 | /* | ||
| 1654 | * select the point to add or subtract, in | ||
| 1655 | * constant time | ||
| 1656 | */ | ||
| 1657 | select_point(digit, 17, pre_comp[num], tmp); | ||
| 1658 | smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the | ||
| 1659 | * negative point */ | ||
| 1660 | copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1)); | ||
| 1661 | felem_contract(tmp[1], ftmp); | ||
| 1662 | |||
| 1663 | if (!skip) { | ||
| 1664 | point_add(nq[0], nq[1], nq[2], | ||
| 1665 | nq[0], nq[1], nq[2], | ||
| 1666 | mixed, tmp[0], tmp[1], tmp[2]); | ||
| 1667 | } else { | ||
| 1668 | smallfelem_expand(nq[0], tmp[0]); | ||
| 1669 | smallfelem_expand(nq[1], tmp[1]); | ||
| 1670 | smallfelem_expand(nq[2], tmp[2]); | ||
| 1671 | skip = 0; | ||
| 1672 | } | ||
| 1673 | } | ||
| 1674 | } | ||
| 1675 | } | ||
| 1676 | felem_assign(x_out, nq[0]); | ||
| 1677 | felem_assign(y_out, nq[1]); | ||
| 1678 | felem_assign(z_out, nq[2]); | ||
| 1679 | } | ||
| 1680 | |||
| 1681 | /* Precomputation for the group generator. */ | ||
| 1682 | typedef struct { | ||
| 1683 | smallfelem g_pre_comp[2][16][3]; | ||
| 1684 | int references; | ||
| 1685 | } NISTP256_PRE_COMP; | ||
| 1686 | |||
| 1687 | const EC_METHOD * | ||
| 1688 | EC_GFp_nistp256_method(void) | ||
| 1689 | { | ||
| 1690 | static const EC_METHOD ret = { | ||
| 1691 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
| 1692 | .field_type = NID_X9_62_prime_field, | ||
| 1693 | .group_init = ec_GFp_nistp256_group_init, | ||
| 1694 | .group_finish = ec_GFp_simple_group_finish, | ||
| 1695 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
| 1696 | .group_copy = ec_GFp_nist_group_copy, | ||
| 1697 | .group_set_curve = ec_GFp_nistp256_group_set_curve, | ||
| 1698 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
| 1699 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
| 1700 | .group_check_discriminant = | ||
| 1701 | ec_GFp_simple_group_check_discriminant, | ||
| 1702 | .point_init = ec_GFp_simple_point_init, | ||
| 1703 | .point_finish = ec_GFp_simple_point_finish, | ||
| 1704 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
| 1705 | .point_copy = ec_GFp_simple_point_copy, | ||
| 1706 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
| 1707 | .point_set_Jprojective_coordinates_GFp = | ||
| 1708 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
| 1709 | .point_get_Jprojective_coordinates_GFp = | ||
| 1710 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
| 1711 | .point_set_affine_coordinates = | ||
| 1712 | ec_GFp_simple_point_set_affine_coordinates, | ||
| 1713 | .point_get_affine_coordinates = | ||
| 1714 | ec_GFp_nistp256_point_get_affine_coordinates, | ||
| 1715 | .add = ec_GFp_simple_add, | ||
| 1716 | .dbl = ec_GFp_simple_dbl, | ||
| 1717 | .invert = ec_GFp_simple_invert, | ||
| 1718 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
| 1719 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
| 1720 | .point_cmp = ec_GFp_simple_cmp, | ||
| 1721 | .make_affine = ec_GFp_simple_make_affine, | ||
| 1722 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
| 1723 | .mul = ec_GFp_nistp256_points_mul, | ||
| 1724 | .precompute_mult = ec_GFp_nistp256_precompute_mult, | ||
| 1725 | .have_precompute_mult = ec_GFp_nistp256_have_precompute_mult, | ||
| 1726 | .field_mul = ec_GFp_nist_field_mul, | ||
| 1727 | .field_sqr = ec_GFp_nist_field_sqr | ||
| 1728 | }; | ||
| 1729 | |||
| 1730 | return &ret; | ||
| 1731 | } | ||
| 1732 | |||
| 1733 | /******************************************************************************/ | ||
| 1734 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
| 1735 | */ | ||
| 1736 | |||
| 1737 | static NISTP256_PRE_COMP * | ||
| 1738 | nistp256_pre_comp_new() | ||
| 1739 | { | ||
| 1740 | NISTP256_PRE_COMP *ret = NULL; | ||
| 1741 | ret = malloc(sizeof *ret); | ||
| 1742 | if (!ret) { | ||
| 1743 | ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
| 1744 | return ret; | ||
| 1745 | } | ||
| 1746 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
| 1747 | ret->references = 1; | ||
| 1748 | return ret; | ||
| 1749 | } | ||
| 1750 | |||
| 1751 | static void * | ||
| 1752 | nistp256_pre_comp_dup(void *src_) | ||
| 1753 | { | ||
| 1754 | NISTP256_PRE_COMP *src = src_; | ||
| 1755 | |||
| 1756 | /* no need to actually copy, these objects never change! */ | ||
| 1757 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1758 | |||
| 1759 | return src_; | ||
| 1760 | } | ||
| 1761 | |||
| 1762 | static void | ||
| 1763 | nistp256_pre_comp_free(void *pre_) | ||
| 1764 | { | ||
| 1765 | int i; | ||
| 1766 | NISTP256_PRE_COMP *pre = pre_; | ||
| 1767 | |||
| 1768 | if (!pre) | ||
| 1769 | return; | ||
| 1770 | |||
| 1771 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1772 | if (i > 0) | ||
| 1773 | return; | ||
| 1774 | |||
| 1775 | free(pre); | ||
| 1776 | } | ||
| 1777 | |||
| 1778 | static void | ||
| 1779 | nistp256_pre_comp_clear_free(void *pre_) | ||
| 1780 | { | ||
| 1781 | int i; | ||
| 1782 | NISTP256_PRE_COMP *pre = pre_; | ||
| 1783 | |||
| 1784 | if (!pre) | ||
| 1785 | return; | ||
| 1786 | |||
| 1787 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1788 | if (i > 0) | ||
| 1789 | return; | ||
| 1790 | |||
| 1791 | OPENSSL_cleanse(pre, sizeof *pre); | ||
| 1792 | free(pre); | ||
| 1793 | } | ||
| 1794 | |||
| 1795 | /******************************************************************************/ | ||
| 1796 | /* OPENSSL EC_METHOD FUNCTIONS | ||
| 1797 | */ | ||
| 1798 | |||
| 1799 | int | ||
| 1800 | ec_GFp_nistp256_group_init(EC_GROUP * group) | ||
| 1801 | { | ||
| 1802 | int ret; | ||
| 1803 | ret = ec_GFp_simple_group_init(group); | ||
| 1804 | group->a_is_minus3 = 1; | ||
| 1805 | return ret; | ||
| 1806 | } | ||
| 1807 | |||
| 1808 | int | ||
| 1809 | ec_GFp_nistp256_group_set_curve(EC_GROUP * group, const BIGNUM * p, | ||
| 1810 | const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
| 1811 | { | ||
| 1812 | int ret = 0; | ||
| 1813 | BN_CTX *new_ctx = NULL; | ||
| 1814 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
| 1815 | |||
| 1816 | if (ctx == NULL) | ||
| 1817 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 1818 | return 0; | ||
| 1819 | BN_CTX_start(ctx); | ||
| 1820 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
| 1821 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
| 1822 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
| 1823 | goto err; | ||
| 1824 | BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
| 1825 | BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
| 1826 | BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
| 1827 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
| 1828 | (BN_cmp(curve_b, b))) { | ||
| 1829 | ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE, | ||
| 1830 | EC_R_WRONG_CURVE_PARAMETERS); | ||
| 1831 | goto err; | ||
| 1832 | } | ||
| 1833 | group->field_mod_func = BN_nist_mod_256; | ||
| 1834 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
| 1835 | err: | ||
| 1836 | BN_CTX_end(ctx); | ||
| 1837 | BN_CTX_free(new_ctx); | ||
| 1838 | return ret; | ||
| 1839 | } | ||
| 1840 | |||
| 1841 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
| 1842 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
| 1843 | int | ||
| 1844 | ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group, | ||
| 1845 | const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
| 1846 | { | ||
| 1847 | felem z1, z2, x_in, y_in; | ||
| 1848 | smallfelem x_out, y_out; | ||
| 1849 | longfelem tmp; | ||
| 1850 | |||
| 1851 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
| 1852 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
| 1853 | EC_R_POINT_AT_INFINITY); | ||
| 1854 | return 0; | ||
| 1855 | } | ||
| 1856 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
| 1857 | (!BN_to_felem(z1, &point->Z))) | ||
| 1858 | return 0; | ||
| 1859 | felem_inv(z2, z1); | ||
| 1860 | felem_square(tmp, z2); | ||
| 1861 | felem_reduce(z1, tmp); | ||
| 1862 | felem_mul(tmp, x_in, z1); | ||
| 1863 | felem_reduce(x_in, tmp); | ||
| 1864 | felem_contract(x_out, x_in); | ||
| 1865 | if (x != NULL) { | ||
| 1866 | if (!smallfelem_to_BN(x, x_out)) { | ||
| 1867 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
| 1868 | ERR_R_BN_LIB); | ||
| 1869 | return 0; | ||
| 1870 | } | ||
| 1871 | } | ||
| 1872 | felem_mul(tmp, z1, z2); | ||
| 1873 | felem_reduce(z1, tmp); | ||
| 1874 | felem_mul(tmp, y_in, z1); | ||
| 1875 | felem_reduce(y_in, tmp); | ||
| 1876 | felem_contract(y_out, y_in); | ||
| 1877 | if (y != NULL) { | ||
| 1878 | if (!smallfelem_to_BN(y, y_out)) { | ||
| 1879 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
| 1880 | ERR_R_BN_LIB); | ||
| 1881 | return 0; | ||
| 1882 | } | ||
| 1883 | } | ||
| 1884 | return 1; | ||
| 1885 | } | ||
| 1886 | |||
| 1887 | static void | ||
| 1888 | make_points_affine(size_t num, smallfelem points[ /* num */ ][3], smallfelem tmp_smallfelems[ /* num+1 */ ]) | ||
| 1889 | { | ||
| 1890 | /* | ||
| 1891 | * Runs in constant time, unless an input is the point at infinity | ||
| 1892 | * (which normally shouldn't happen). | ||
| 1893 | */ | ||
| 1894 | ec_GFp_nistp_points_make_affine_internal( | ||
| 1895 | num, | ||
| 1896 | points, | ||
| 1897 | sizeof(smallfelem), | ||
| 1898 | tmp_smallfelems, | ||
| 1899 | (void (*) (void *)) smallfelem_one, | ||
| 1900 | (int (*) (const void *)) smallfelem_is_zero_int, | ||
| 1901 | (void (*) (void *, const void *)) smallfelem_assign, | ||
| 1902 | (void (*) (void *, const void *)) smallfelem_square_contract, | ||
| 1903 | (void (*) (void *, const void *, const void *)) smallfelem_mul_contract, | ||
| 1904 | (void (*) (void *, const void *)) smallfelem_inv_contract, | ||
| 1905 | (void (*) (void *, const void *)) smallfelem_assign /* nothing to contract */ ); | ||
| 1906 | } | ||
| 1907 | |||
| 1908 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
| 1909 | * Result is stored in r (r can equal one of the inputs). */ | ||
| 1910 | int | ||
| 1911 | ec_GFp_nistp256_points_mul(const EC_GROUP * group, EC_POINT * r, | ||
| 1912 | const BIGNUM * scalar, size_t num, const EC_POINT * points[], | ||
| 1913 | const BIGNUM * scalars[], BN_CTX * ctx) | ||
| 1914 | { | ||
| 1915 | int ret = 0; | ||
| 1916 | int j; | ||
| 1917 | int mixed = 0; | ||
| 1918 | BN_CTX *new_ctx = NULL; | ||
| 1919 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
| 1920 | felem_bytearray g_secret; | ||
| 1921 | felem_bytearray *secrets = NULL; | ||
| 1922 | smallfelem(*pre_comp)[17][3] = NULL; | ||
| 1923 | smallfelem *tmp_smallfelems = NULL; | ||
| 1924 | felem_bytearray tmp; | ||
| 1925 | unsigned i, num_bytes; | ||
| 1926 | int have_pre_comp = 0; | ||
| 1927 | size_t num_points = num; | ||
| 1928 | smallfelem x_in, y_in, z_in; | ||
| 1929 | felem x_out, y_out, z_out; | ||
| 1930 | NISTP256_PRE_COMP *pre = NULL; | ||
| 1931 | const smallfelem(*g_pre_comp)[16][3] = NULL; | ||
| 1932 | EC_POINT *generator = NULL; | ||
| 1933 | const EC_POINT *p = NULL; | ||
| 1934 | const BIGNUM *p_scalar = NULL; | ||
| 1935 | |||
| 1936 | if (ctx == NULL) | ||
| 1937 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 1938 | return 0; | ||
| 1939 | BN_CTX_start(ctx); | ||
| 1940 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1941 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
| 1942 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
| 1943 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
| 1944 | goto err; | ||
| 1945 | |||
| 1946 | if (scalar != NULL) { | ||
| 1947 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
| 1948 | nistp256_pre_comp_dup, nistp256_pre_comp_free, | ||
| 1949 | nistp256_pre_comp_clear_free); | ||
| 1950 | if (pre) | ||
| 1951 | /* we have precomputation, try to use it */ | ||
| 1952 | g_pre_comp = (const smallfelem(*)[16][3]) pre->g_pre_comp; | ||
| 1953 | else | ||
| 1954 | /* try to use the standard precomputation */ | ||
| 1955 | g_pre_comp = &gmul[0]; | ||
| 1956 | generator = EC_POINT_new(group); | ||
| 1957 | if (generator == NULL) | ||
| 1958 | goto err; | ||
| 1959 | /* get the generator from precomputation */ | ||
| 1960 | if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || | ||
| 1961 | !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || | ||
| 1962 | !smallfelem_to_BN(z, g_pre_comp[0][1][2])) { | ||
| 1963 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1964 | goto err; | ||
| 1965 | } | ||
| 1966 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
| 1967 | generator, x, y, z, ctx)) | ||
| 1968 | goto err; | ||
| 1969 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 1970 | /* precomputation matches generator */ | ||
| 1971 | have_pre_comp = 1; | ||
| 1972 | else | ||
| 1973 | /* | ||
| 1974 | * we don't have valid precomputation: treat the | ||
| 1975 | * generator as a random point | ||
| 1976 | */ | ||
| 1977 | num_points++; | ||
| 1978 | } | ||
| 1979 | if (num_points > 0) { | ||
| 1980 | if (num_points >= 3) { | ||
| 1981 | /* | ||
| 1982 | * unless we precompute multiples for just one or two | ||
| 1983 | * points, converting those into affine form is time | ||
| 1984 | * well spent | ||
| 1985 | */ | ||
| 1986 | mixed = 1; | ||
| 1987 | } | ||
| 1988 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
| 1989 | pre_comp = calloc(num_points, 17 * 3 * sizeof(smallfelem)); | ||
| 1990 | if (mixed) { | ||
| 1991 | /* XXX should do more int overflow checking */ | ||
| 1992 | tmp_smallfelems = reallocarray(NULL, | ||
| 1993 | (num_points * 17 + 1), sizeof(smallfelem)); | ||
| 1994 | } | ||
| 1995 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL))) { | ||
| 1996 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
| 1997 | goto err; | ||
| 1998 | } | ||
| 1999 | /* | ||
| 2000 | * we treat NULL scalars as 0, and NULL points as points at | ||
| 2001 | * infinity, i.e., they contribute nothing to the linear | ||
| 2002 | * combination | ||
| 2003 | */ | ||
| 2004 | for (i = 0; i < num_points; ++i) { | ||
| 2005 | if (i == num) | ||
| 2006 | /* | ||
| 2007 | * we didn't have a valid precomputation, so | ||
| 2008 | * we pick the generator | ||
| 2009 | */ | ||
| 2010 | { | ||
| 2011 | p = EC_GROUP_get0_generator(group); | ||
| 2012 | p_scalar = scalar; | ||
| 2013 | } else | ||
| 2014 | /* the i^th point */ | ||
| 2015 | { | ||
| 2016 | p = points[i]; | ||
| 2017 | p_scalar = scalars[i]; | ||
| 2018 | } | ||
| 2019 | if ((p_scalar != NULL) && (p != NULL)) { | ||
| 2020 | /* reduce scalar to 0 <= scalar < 2^256 */ | ||
| 2021 | if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar))) { | ||
| 2022 | /* | ||
| 2023 | * this is an unusual input, and we | ||
| 2024 | * don't guarantee constant-timeness | ||
| 2025 | */ | ||
| 2026 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
| 2027 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
| 2028 | goto err; | ||
| 2029 | } | ||
| 2030 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 2031 | } else | ||
| 2032 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
| 2033 | flip_endian(secrets[i], tmp, num_bytes); | ||
| 2034 | /* precompute multiples */ | ||
| 2035 | if ((!BN_to_felem(x_out, &p->X)) || | ||
| 2036 | (!BN_to_felem(y_out, &p->Y)) || | ||
| 2037 | (!BN_to_felem(z_out, &p->Z))) | ||
| 2038 | goto err; | ||
| 2039 | felem_shrink(pre_comp[i][1][0], x_out); | ||
| 2040 | felem_shrink(pre_comp[i][1][1], y_out); | ||
| 2041 | felem_shrink(pre_comp[i][1][2], z_out); | ||
| 2042 | for (j = 2; j <= 16; ++j) { | ||
| 2043 | if (j & 1) { | ||
| 2044 | point_add_small( | ||
| 2045 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 2046 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
| 2047 | pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
| 2048 | } else { | ||
| 2049 | point_double_small( | ||
| 2050 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 2051 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
| 2052 | } | ||
| 2053 | } | ||
| 2054 | } | ||
| 2055 | } | ||
| 2056 | if (mixed) | ||
| 2057 | make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems); | ||
| 2058 | } | ||
| 2059 | /* the scalar for the generator */ | ||
| 2060 | if ((scalar != NULL) && (have_pre_comp)) { | ||
| 2061 | memset(g_secret, 0, sizeof(g_secret)); | ||
| 2062 | /* reduce scalar to 0 <= scalar < 2^256 */ | ||
| 2063 | if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) { | ||
| 2064 | /* | ||
| 2065 | * this is an unusual input, and we don't guarantee | ||
| 2066 | * constant-timeness | ||
| 2067 | */ | ||
| 2068 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
| 2069 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
| 2070 | goto err; | ||
| 2071 | } | ||
| 2072 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 2073 | } else | ||
| 2074 | num_bytes = BN_bn2bin(scalar, tmp); | ||
| 2075 | flip_endian(g_secret, tmp, num_bytes); | ||
| 2076 | /* do the multiplication with generator precomputation */ | ||
| 2077 | batch_mul(x_out, y_out, z_out, | ||
| 2078 | (const felem_bytearray(*)) secrets, num_points, | ||
| 2079 | g_secret, | ||
| 2080 | mixed, (const smallfelem(*)[17][3]) pre_comp, | ||
| 2081 | g_pre_comp); | ||
| 2082 | } else | ||
| 2083 | /* do the multiplication without generator precomputation */ | ||
| 2084 | batch_mul(x_out, y_out, z_out, | ||
| 2085 | (const felem_bytearray(*)) secrets, num_points, | ||
| 2086 | NULL, mixed, (const smallfelem(*)[17][3]) pre_comp, NULL); | ||
| 2087 | /* reduce the output to its unique minimal representation */ | ||
| 2088 | felem_contract(x_in, x_out); | ||
| 2089 | felem_contract(y_in, y_out); | ||
| 2090 | felem_contract(z_in, z_out); | ||
| 2091 | if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || | ||
| 2092 | (!smallfelem_to_BN(z, z_in))) { | ||
| 2093 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
| 2094 | goto err; | ||
| 2095 | } | ||
| 2096 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
| 2097 | |||
| 2098 | err: | ||
| 2099 | BN_CTX_end(ctx); | ||
| 2100 | EC_POINT_free(generator); | ||
| 2101 | BN_CTX_free(new_ctx); | ||
| 2102 | free(secrets); | ||
| 2103 | free(pre_comp); | ||
| 2104 | free(tmp_smallfelems); | ||
| 2105 | return ret; | ||
| 2106 | } | ||
| 2107 | |||
| 2108 | int | ||
| 2109 | ec_GFp_nistp256_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
| 2110 | { | ||
| 2111 | int ret = 0; | ||
| 2112 | NISTP256_PRE_COMP *pre = NULL; | ||
| 2113 | int i, j; | ||
| 2114 | BN_CTX *new_ctx = NULL; | ||
| 2115 | BIGNUM *x, *y; | ||
| 2116 | EC_POINT *generator = NULL; | ||
| 2117 | smallfelem tmp_smallfelems[32]; | ||
| 2118 | felem x_tmp, y_tmp, z_tmp; | ||
| 2119 | |||
| 2120 | /* throw away old precomputation */ | ||
| 2121 | EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup, | ||
| 2122 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free); | ||
| 2123 | if (ctx == NULL) | ||
| 2124 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 2125 | return 0; | ||
| 2126 | BN_CTX_start(ctx); | ||
| 2127 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 2128 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
| 2129 | goto err; | ||
| 2130 | /* get the generator */ | ||
| 2131 | if (group->generator == NULL) | ||
| 2132 | goto err; | ||
| 2133 | generator = EC_POINT_new(group); | ||
| 2134 | if (generator == NULL) | ||
| 2135 | goto err; | ||
| 2136 | BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x); | ||
| 2137 | BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y); | ||
| 2138 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
| 2139 | goto err; | ||
| 2140 | if ((pre = nistp256_pre_comp_new()) == NULL) | ||
| 2141 | goto err; | ||
| 2142 | /* if the generator is the standard one, use built-in precomputation */ | ||
| 2143 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
| 2144 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
| 2145 | ret = 1; | ||
| 2146 | goto err; | ||
| 2147 | } | ||
| 2148 | if ((!BN_to_felem(x_tmp, &group->generator->X)) || | ||
| 2149 | (!BN_to_felem(y_tmp, &group->generator->Y)) || | ||
| 2150 | (!BN_to_felem(z_tmp, &group->generator->Z))) | ||
| 2151 | goto err; | ||
| 2152 | felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); | ||
| 2153 | felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); | ||
| 2154 | felem_shrink(pre->g_pre_comp[0][1][2], z_tmp); | ||
| 2155 | /* | ||
| 2156 | * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, | ||
| 2157 | * 2^96*G, 2^160*G, 2^224*G for the second one | ||
| 2158 | */ | ||
| 2159 | for (i = 1; i <= 8; i <<= 1) { | ||
| 2160 | point_double_small( | ||
| 2161 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
| 2162 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
| 2163 | for (j = 0; j < 31; ++j) { | ||
| 2164 | point_double_small( | ||
| 2165 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
| 2166 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
| 2167 | } | ||
| 2168 | if (i == 8) | ||
| 2169 | break; | ||
| 2170 | point_double_small( | ||
| 2171 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
| 2172 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
| 2173 | for (j = 0; j < 31; ++j) { | ||
| 2174 | point_double_small( | ||
| 2175 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
| 2176 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2]); | ||
| 2177 | } | ||
| 2178 | } | ||
| 2179 | for (i = 0; i < 2; i++) { | ||
| 2180 | /* g_pre_comp[i][0] is the point at infinity */ | ||
| 2181 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
| 2182 | /* the remaining multiples */ | ||
| 2183 | /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */ | ||
| 2184 | point_add_small( | ||
| 2185 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2], | ||
| 2186 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
| 2187 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
| 2188 | /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */ | ||
| 2189 | point_add_small( | ||
| 2190 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2], | ||
| 2191 | pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
| 2192 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
| 2193 | /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */ | ||
| 2194 | point_add_small( | ||
| 2195 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
| 2196 | pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
| 2197 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]); | ||
| 2198 | /* | ||
| 2199 | * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + | ||
| 2200 | * 2^224*G | ||
| 2201 | */ | ||
| 2202 | point_add_small( | ||
| 2203 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2], | ||
| 2204 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
| 2205 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
| 2206 | for (j = 1; j < 8; ++j) { | ||
| 2207 | /* odd multiples: add G resp. 2^32*G */ | ||
| 2208 | point_add_small( | ||
| 2209 | pre->g_pre_comp[i][2 * j + 1][0], pre->g_pre_comp[i][2 * j + 1][1], pre->g_pre_comp[i][2 * j + 1][2], | ||
| 2210 | pre->g_pre_comp[i][2 * j][0], pre->g_pre_comp[i][2 * j][1], pre->g_pre_comp[i][2 * j][2], | ||
| 2211 | pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]); | ||
| 2212 | } | ||
| 2213 | } | ||
| 2214 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); | ||
| 2215 | |||
| 2216 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup, | ||
| 2217 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free)) | ||
| 2218 | goto err; | ||
| 2219 | ret = 1; | ||
| 2220 | pre = NULL; | ||
| 2221 | err: | ||
| 2222 | BN_CTX_end(ctx); | ||
| 2223 | EC_POINT_free(generator); | ||
| 2224 | BN_CTX_free(new_ctx); | ||
| 2225 | nistp256_pre_comp_free(pre); | ||
| 2226 | return ret; | ||
| 2227 | } | ||
| 2228 | |||
| 2229 | int | ||
| 2230 | ec_GFp_nistp256_have_precompute_mult(const EC_GROUP * group) | ||
| 2231 | { | ||
| 2232 | if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup, | ||
| 2233 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free) | ||
| 2234 | != NULL) | ||
| 2235 | return 1; | ||
| 2236 | else | ||
| 2237 | return 0; | ||
| 2238 | } | ||
| 2239 | #endif | ||
