diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_nistp256.c')
-rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp256.c | 2239 |
1 files changed, 0 insertions, 2239 deletions
diff --git a/src/lib/libcrypto/ec/ecp_nistp256.c b/src/lib/libcrypto/ec/ecp_nistp256.c deleted file mode 100644 index 23a2131980..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp256.c +++ /dev/null | |||
@@ -1,2239 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_nistp256.c,v 1.15 2015/02/08 22:25:03 miod Exp $ */ | ||
2 | /* | ||
3 | * Written by Adam Langley (Google) for the OpenSSL project | ||
4 | */ | ||
5 | /* | ||
6 | * Copyright (c) 2011 Google Inc. | ||
7 | * | ||
8 | * Permission to use, copy, modify, and distribute this software for any | ||
9 | * purpose with or without fee is hereby granted, provided that the above | ||
10 | * copyright notice and this permission notice appear in all copies. | ||
11 | * | ||
12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication | ||
23 | * | ||
24 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | ||
25 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | ||
26 | * work which got its smarts from Daniel J. Bernstein's work on the same. | ||
27 | */ | ||
28 | |||
29 | #include <stdint.h> | ||
30 | #include <string.h> | ||
31 | |||
32 | #include <openssl/opensslconf.h> | ||
33 | |||
34 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
35 | |||
36 | #include <openssl/err.h> | ||
37 | #include "ec_lcl.h" | ||
38 | |||
39 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
40 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
41 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
42 | typedef __int128_t int128_t; | ||
43 | #else | ||
44 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
45 | #endif | ||
46 | |||
47 | typedef uint8_t u8; | ||
48 | typedef uint32_t u32; | ||
49 | typedef uint64_t u64; | ||
50 | typedef int64_t s64; | ||
51 | |||
52 | /* The underlying field. | ||
53 | * | ||
54 | * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element | ||
55 | * of this field into 32 bytes. We call this an felem_bytearray. */ | ||
56 | |||
57 | typedef u8 felem_bytearray[32]; | ||
58 | |||
59 | /* These are the parameters of P256, taken from FIPS 186-3, page 86. These | ||
60 | * values are big-endian. */ | ||
61 | static const felem_bytearray nistp256_curve_params[5] = { | ||
62 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ | ||
63 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
64 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | ||
65 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | ||
66 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ | ||
67 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
68 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | ||
69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */ | ||
70 | {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, | ||
71 | 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, | ||
72 | 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, | ||
73 | 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, | ||
74 | {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ | ||
75 | 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, | ||
76 | 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, | ||
77 | 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}, | ||
78 | {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ | ||
79 | 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, | ||
80 | 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, | ||
81 | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5} | ||
82 | }; | ||
83 | |||
84 | /* The representation of field elements. | ||
85 | * ------------------------------------ | ||
86 | * | ||
87 | * We represent field elements with either four 128-bit values, eight 128-bit | ||
88 | * values, or four 64-bit values. The field element represented is: | ||
89 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p) | ||
90 | * or: | ||
91 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p) | ||
92 | * | ||
93 | * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits | ||
94 | * apart, but are 128-bits wide, the most significant bits of each limb overlap | ||
95 | * with the least significant bits of the next. | ||
96 | * | ||
97 | * A field element with four limbs is an 'felem'. One with eight limbs is a | ||
98 | * 'longfelem' | ||
99 | * | ||
100 | * A field element with four, 64-bit values is called a 'smallfelem'. Small | ||
101 | * values are used as intermediate values before multiplication. | ||
102 | */ | ||
103 | |||
104 | #define NLIMBS 4 | ||
105 | |||
106 | typedef uint128_t limb; | ||
107 | typedef limb felem[NLIMBS]; | ||
108 | typedef limb longfelem[NLIMBS * 2]; | ||
109 | typedef u64 smallfelem[NLIMBS]; | ||
110 | |||
111 | /* This is the value of the prime as four 64-bit words, little-endian. */ | ||
112 | static const u64 kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul}; | ||
113 | static const limb bottom32bits = 0xffffffff; | ||
114 | static const u64 bottom63bits = 0x7ffffffffffffffful; | ||
115 | |||
116 | /* bin32_to_felem takes a little-endian byte array and converts it into felem | ||
117 | * form. This assumes that the CPU is little-endian. */ | ||
118 | static void | ||
119 | bin32_to_felem(felem out, const u8 in[32]) | ||
120 | { | ||
121 | out[0] = *((u64 *) & in[0]); | ||
122 | out[1] = *((u64 *) & in[8]); | ||
123 | out[2] = *((u64 *) & in[16]); | ||
124 | out[3] = *((u64 *) & in[24]); | ||
125 | } | ||
126 | |||
127 | /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian, | ||
128 | * 32 byte array. This assumes that the CPU is little-endian. */ | ||
129 | static void | ||
130 | smallfelem_to_bin32(u8 out[32], const smallfelem in) | ||
131 | { | ||
132 | *((u64 *) & out[0]) = in[0]; | ||
133 | *((u64 *) & out[8]) = in[1]; | ||
134 | *((u64 *) & out[16]) = in[2]; | ||
135 | *((u64 *) & out[24]) = in[3]; | ||
136 | } | ||
137 | |||
138 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
139 | static void | ||
140 | flip_endian(u8 * out, const u8 * in, unsigned len) | ||
141 | { | ||
142 | unsigned i; | ||
143 | for (i = 0; i < len; ++i) | ||
144 | out[i] = in[len - 1 - i]; | ||
145 | } | ||
146 | |||
147 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | ||
148 | static int | ||
149 | BN_to_felem(felem out, const BIGNUM * bn) | ||
150 | { | ||
151 | felem_bytearray b_in; | ||
152 | felem_bytearray b_out; | ||
153 | unsigned num_bytes; | ||
154 | |||
155 | /* BN_bn2bin eats leading zeroes */ | ||
156 | memset(b_out, 0, sizeof b_out); | ||
157 | num_bytes = BN_num_bytes(bn); | ||
158 | if (num_bytes > sizeof b_out) { | ||
159 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
160 | return 0; | ||
161 | } | ||
162 | if (BN_is_negative(bn)) { | ||
163 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
164 | return 0; | ||
165 | } | ||
166 | num_bytes = BN_bn2bin(bn, b_in); | ||
167 | flip_endian(b_out, b_in, num_bytes); | ||
168 | bin32_to_felem(out, b_out); | ||
169 | return 1; | ||
170 | } | ||
171 | |||
172 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | ||
173 | static BIGNUM * | ||
174 | smallfelem_to_BN(BIGNUM * out, const smallfelem in) | ||
175 | { | ||
176 | felem_bytearray b_in, b_out; | ||
177 | smallfelem_to_bin32(b_in, in); | ||
178 | flip_endian(b_out, b_in, sizeof b_out); | ||
179 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
180 | } | ||
181 | |||
182 | |||
183 | /* Field operations | ||
184 | * ---------------- */ | ||
185 | |||
186 | static void | ||
187 | smallfelem_one(smallfelem out) | ||
188 | { | ||
189 | out[0] = 1; | ||
190 | out[1] = 0; | ||
191 | out[2] = 0; | ||
192 | out[3] = 0; | ||
193 | } | ||
194 | |||
195 | static void | ||
196 | smallfelem_assign(smallfelem out, const smallfelem in) | ||
197 | { | ||
198 | out[0] = in[0]; | ||
199 | out[1] = in[1]; | ||
200 | out[2] = in[2]; | ||
201 | out[3] = in[3]; | ||
202 | } | ||
203 | |||
204 | static void | ||
205 | felem_assign(felem out, const felem in) | ||
206 | { | ||
207 | out[0] = in[0]; | ||
208 | out[1] = in[1]; | ||
209 | out[2] = in[2]; | ||
210 | out[3] = in[3]; | ||
211 | } | ||
212 | |||
213 | /* felem_sum sets out = out + in. */ | ||
214 | static void | ||
215 | felem_sum(felem out, const felem in) | ||
216 | { | ||
217 | out[0] += in[0]; | ||
218 | out[1] += in[1]; | ||
219 | out[2] += in[2]; | ||
220 | out[3] += in[3]; | ||
221 | } | ||
222 | |||
223 | /* felem_small_sum sets out = out + in. */ | ||
224 | static void | ||
225 | felem_small_sum(felem out, const smallfelem in) | ||
226 | { | ||
227 | out[0] += in[0]; | ||
228 | out[1] += in[1]; | ||
229 | out[2] += in[2]; | ||
230 | out[3] += in[3]; | ||
231 | } | ||
232 | |||
233 | /* felem_scalar sets out = out * scalar */ | ||
234 | static void | ||
235 | felem_scalar(felem out, const u64 scalar) | ||
236 | { | ||
237 | out[0] *= scalar; | ||
238 | out[1] *= scalar; | ||
239 | out[2] *= scalar; | ||
240 | out[3] *= scalar; | ||
241 | } | ||
242 | |||
243 | /* longfelem_scalar sets out = out * scalar */ | ||
244 | static void | ||
245 | longfelem_scalar(longfelem out, const u64 scalar) | ||
246 | { | ||
247 | out[0] *= scalar; | ||
248 | out[1] *= scalar; | ||
249 | out[2] *= scalar; | ||
250 | out[3] *= scalar; | ||
251 | out[4] *= scalar; | ||
252 | out[5] *= scalar; | ||
253 | out[6] *= scalar; | ||
254 | out[7] *= scalar; | ||
255 | } | ||
256 | |||
257 | #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) | ||
258 | #define two105 (((limb)1) << 105) | ||
259 | #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) | ||
260 | |||
261 | /* zero105 is 0 mod p */ | ||
262 | static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9}; | ||
263 | |||
264 | /* smallfelem_neg sets |out| to |-small| | ||
265 | * On exit: | ||
266 | * out[i] < out[i] + 2^105 | ||
267 | */ | ||
268 | static void | ||
269 | smallfelem_neg(felem out, const smallfelem small) | ||
270 | { | ||
271 | /* In order to prevent underflow, we subtract from 0 mod p. */ | ||
272 | out[0] = zero105[0] - small[0]; | ||
273 | out[1] = zero105[1] - small[1]; | ||
274 | out[2] = zero105[2] - small[2]; | ||
275 | out[3] = zero105[3] - small[3]; | ||
276 | } | ||
277 | |||
278 | /* felem_diff subtracts |in| from |out| | ||
279 | * On entry: | ||
280 | * in[i] < 2^104 | ||
281 | * On exit: | ||
282 | * out[i] < out[i] + 2^105 | ||
283 | */ | ||
284 | static void | ||
285 | felem_diff(felem out, const felem in) | ||
286 | { | ||
287 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
288 | out[0] += zero105[0]; | ||
289 | out[1] += zero105[1]; | ||
290 | out[2] += zero105[2]; | ||
291 | out[3] += zero105[3]; | ||
292 | |||
293 | out[0] -= in[0]; | ||
294 | out[1] -= in[1]; | ||
295 | out[2] -= in[2]; | ||
296 | out[3] -= in[3]; | ||
297 | } | ||
298 | |||
299 | #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) | ||
300 | #define two107 (((limb)1) << 107) | ||
301 | #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) | ||
302 | |||
303 | /* zero107 is 0 mod p */ | ||
304 | static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11}; | ||
305 | |||
306 | /* An alternative felem_diff for larger inputs |in| | ||
307 | * felem_diff_zero107 subtracts |in| from |out| | ||
308 | * On entry: | ||
309 | * in[i] < 2^106 | ||
310 | * On exit: | ||
311 | * out[i] < out[i] + 2^107 | ||
312 | */ | ||
313 | static void | ||
314 | felem_diff_zero107(felem out, const felem in) | ||
315 | { | ||
316 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
317 | out[0] += zero107[0]; | ||
318 | out[1] += zero107[1]; | ||
319 | out[2] += zero107[2]; | ||
320 | out[3] += zero107[3]; | ||
321 | |||
322 | out[0] -= in[0]; | ||
323 | out[1] -= in[1]; | ||
324 | out[2] -= in[2]; | ||
325 | out[3] -= in[3]; | ||
326 | } | ||
327 | |||
328 | /* longfelem_diff subtracts |in| from |out| | ||
329 | * On entry: | ||
330 | * in[i] < 7*2^67 | ||
331 | * On exit: | ||
332 | * out[i] < out[i] + 2^70 + 2^40 | ||
333 | */ | ||
334 | static void | ||
335 | longfelem_diff(longfelem out, const longfelem in) | ||
336 | { | ||
337 | static const limb two70m8p6 = (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6); | ||
338 | static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40); | ||
339 | static const limb two70 = (((limb) 1) << 70); | ||
340 | static const limb two70m40m38p6 = (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) + (((limb) 1) << 6); | ||
341 | static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6); | ||
342 | |||
343 | /* add 0 mod p to avoid underflow */ | ||
344 | out[0] += two70m8p6; | ||
345 | out[1] += two70p40; | ||
346 | out[2] += two70; | ||
347 | out[3] += two70m40m38p6; | ||
348 | out[4] += two70m6; | ||
349 | out[5] += two70m6; | ||
350 | out[6] += two70m6; | ||
351 | out[7] += two70m6; | ||
352 | |||
353 | /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ | ||
354 | out[0] -= in[0]; | ||
355 | out[1] -= in[1]; | ||
356 | out[2] -= in[2]; | ||
357 | out[3] -= in[3]; | ||
358 | out[4] -= in[4]; | ||
359 | out[5] -= in[5]; | ||
360 | out[6] -= in[6]; | ||
361 | out[7] -= in[7]; | ||
362 | } | ||
363 | |||
364 | #define two64m0 (((limb)1) << 64) - 1 | ||
365 | #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 | ||
366 | #define two64m46 (((limb)1) << 64) - (((limb)1) << 46) | ||
367 | #define two64m32 (((limb)1) << 64) - (((limb)1) << 32) | ||
368 | |||
369 | /* zero110 is 0 mod p */ | ||
370 | static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32}; | ||
371 | |||
372 | /* felem_shrink converts an felem into a smallfelem. The result isn't quite | ||
373 | * minimal as the value may be greater than p. | ||
374 | * | ||
375 | * On entry: | ||
376 | * in[i] < 2^109 | ||
377 | * On exit: | ||
378 | * out[i] < 2^64 | ||
379 | */ | ||
380 | static void | ||
381 | felem_shrink(smallfelem out, const felem in) | ||
382 | { | ||
383 | felem tmp; | ||
384 | u64 a, b, mask; | ||
385 | s64 high, low; | ||
386 | static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ | ||
387 | |||
388 | /* Carry 2->3 */ | ||
389 | tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64)); | ||
390 | /* tmp[3] < 2^110 */ | ||
391 | |||
392 | tmp[2] = zero110[2] + (u64) in[2]; | ||
393 | tmp[0] = zero110[0] + in[0]; | ||
394 | tmp[1] = zero110[1] + in[1]; | ||
395 | /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ | ||
396 | |||
397 | /* | ||
398 | * We perform two partial reductions where we eliminate the high-word | ||
399 | * of tmp[3]. We don't update the other words till the end. | ||
400 | */ | ||
401 | a = tmp[3] >> 64; /* a < 2^46 */ | ||
402 | tmp[3] = (u64) tmp[3]; | ||
403 | tmp[3] -= a; | ||
404 | tmp[3] += ((limb) a) << 32; | ||
405 | /* tmp[3] < 2^79 */ | ||
406 | |||
407 | b = a; | ||
408 | a = tmp[3] >> 64; /* a < 2^15 */ | ||
409 | b += a; /* b < 2^46 + 2^15 < 2^47 */ | ||
410 | tmp[3] = (u64) tmp[3]; | ||
411 | tmp[3] -= a; | ||
412 | tmp[3] += ((limb) a) << 32; | ||
413 | /* tmp[3] < 2^64 + 2^47 */ | ||
414 | |||
415 | /* | ||
416 | * This adjusts the other two words to complete the two partial | ||
417 | * reductions. | ||
418 | */ | ||
419 | tmp[0] += b; | ||
420 | tmp[1] -= (((limb) b) << 32); | ||
421 | |||
422 | /* | ||
423 | * In order to make space in tmp[3] for the carry from 2 -> 3, we | ||
424 | * conditionally subtract kPrime if tmp[3] is large enough. | ||
425 | */ | ||
426 | high = tmp[3] >> 64; | ||
427 | /* As tmp[3] < 2^65, high is either 1 or 0 */ | ||
428 | high <<= 63; | ||
429 | high >>= 63; | ||
430 | /* | ||
431 | * high is: all ones if the high word of tmp[3] is 1 all zeros if | ||
432 | * the high word of tmp[3] if 0 | ||
433 | */ | ||
434 | low = tmp[3]; | ||
435 | mask = low >> 63; | ||
436 | /* | ||
437 | * mask is: all ones if the MSB of low is 1 all zeros if the MSB | ||
438 | * of low if 0 | ||
439 | */ | ||
440 | low &= bottom63bits; | ||
441 | low -= kPrime3Test; | ||
442 | /* if low was greater than kPrime3Test then the MSB is zero */ | ||
443 | low = ~low; | ||
444 | low >>= 63; | ||
445 | /* | ||
446 | * low is: all ones if low was > kPrime3Test all zeros if low was | ||
447 | * <= kPrime3Test | ||
448 | */ | ||
449 | mask = (mask & low) | high; | ||
450 | tmp[0] -= mask & kPrime[0]; | ||
451 | tmp[1] -= mask & kPrime[1]; | ||
452 | /* kPrime[2] is zero, so omitted */ | ||
453 | tmp[3] -= mask & kPrime[3]; | ||
454 | /* tmp[3] < 2**64 - 2**32 + 1 */ | ||
455 | |||
456 | tmp[1] += ((u64) (tmp[0] >> 64)); | ||
457 | tmp[0] = (u64) tmp[0]; | ||
458 | tmp[2] += ((u64) (tmp[1] >> 64)); | ||
459 | tmp[1] = (u64) tmp[1]; | ||
460 | tmp[3] += ((u64) (tmp[2] >> 64)); | ||
461 | tmp[2] = (u64) tmp[2]; | ||
462 | /* tmp[i] < 2^64 */ | ||
463 | |||
464 | out[0] = tmp[0]; | ||
465 | out[1] = tmp[1]; | ||
466 | out[2] = tmp[2]; | ||
467 | out[3] = tmp[3]; | ||
468 | } | ||
469 | |||
470 | /* smallfelem_expand converts a smallfelem to an felem */ | ||
471 | static void | ||
472 | smallfelem_expand(felem out, const smallfelem in) | ||
473 | { | ||
474 | out[0] = in[0]; | ||
475 | out[1] = in[1]; | ||
476 | out[2] = in[2]; | ||
477 | out[3] = in[3]; | ||
478 | } | ||
479 | |||
480 | /* smallfelem_square sets |out| = |small|^2 | ||
481 | * On entry: | ||
482 | * small[i] < 2^64 | ||
483 | * On exit: | ||
484 | * out[i] < 7 * 2^64 < 2^67 | ||
485 | */ | ||
486 | static void | ||
487 | smallfelem_square(longfelem out, const smallfelem small) | ||
488 | { | ||
489 | limb a; | ||
490 | u64 high, low; | ||
491 | |||
492 | a = ((uint128_t) small[0]) * small[0]; | ||
493 | low = a; | ||
494 | high = a >> 64; | ||
495 | out[0] = low; | ||
496 | out[1] = high; | ||
497 | |||
498 | a = ((uint128_t) small[0]) * small[1]; | ||
499 | low = a; | ||
500 | high = a >> 64; | ||
501 | out[1] += low; | ||
502 | out[1] += low; | ||
503 | out[2] = high; | ||
504 | |||
505 | a = ((uint128_t) small[0]) * small[2]; | ||
506 | low = a; | ||
507 | high = a >> 64; | ||
508 | out[2] += low; | ||
509 | out[2] *= 2; | ||
510 | out[3] = high; | ||
511 | |||
512 | a = ((uint128_t) small[0]) * small[3]; | ||
513 | low = a; | ||
514 | high = a >> 64; | ||
515 | out[3] += low; | ||
516 | out[4] = high; | ||
517 | |||
518 | a = ((uint128_t) small[1]) * small[2]; | ||
519 | low = a; | ||
520 | high = a >> 64; | ||
521 | out[3] += low; | ||
522 | out[3] *= 2; | ||
523 | out[4] += high; | ||
524 | |||
525 | a = ((uint128_t) small[1]) * small[1]; | ||
526 | low = a; | ||
527 | high = a >> 64; | ||
528 | out[2] += low; | ||
529 | out[3] += high; | ||
530 | |||
531 | a = ((uint128_t) small[1]) * small[3]; | ||
532 | low = a; | ||
533 | high = a >> 64; | ||
534 | out[4] += low; | ||
535 | out[4] *= 2; | ||
536 | out[5] = high; | ||
537 | |||
538 | a = ((uint128_t) small[2]) * small[3]; | ||
539 | low = a; | ||
540 | high = a >> 64; | ||
541 | out[5] += low; | ||
542 | out[5] *= 2; | ||
543 | out[6] = high; | ||
544 | out[6] += high; | ||
545 | |||
546 | a = ((uint128_t) small[2]) * small[2]; | ||
547 | low = a; | ||
548 | high = a >> 64; | ||
549 | out[4] += low; | ||
550 | out[5] += high; | ||
551 | |||
552 | a = ((uint128_t) small[3]) * small[3]; | ||
553 | low = a; | ||
554 | high = a >> 64; | ||
555 | out[6] += low; | ||
556 | out[7] = high; | ||
557 | } | ||
558 | |||
559 | /* felem_square sets |out| = |in|^2 | ||
560 | * On entry: | ||
561 | * in[i] < 2^109 | ||
562 | * On exit: | ||
563 | * out[i] < 7 * 2^64 < 2^67 | ||
564 | */ | ||
565 | static void | ||
566 | felem_square(longfelem out, const felem in) | ||
567 | { | ||
568 | u64 small[4]; | ||
569 | felem_shrink(small, in); | ||
570 | smallfelem_square(out, small); | ||
571 | } | ||
572 | |||
573 | /* smallfelem_mul sets |out| = |small1| * |small2| | ||
574 | * On entry: | ||
575 | * small1[i] < 2^64 | ||
576 | * small2[i] < 2^64 | ||
577 | * On exit: | ||
578 | * out[i] < 7 * 2^64 < 2^67 | ||
579 | */ | ||
580 | static void | ||
581 | smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) | ||
582 | { | ||
583 | limb a; | ||
584 | u64 high, low; | ||
585 | |||
586 | a = ((uint128_t) small1[0]) * small2[0]; | ||
587 | low = a; | ||
588 | high = a >> 64; | ||
589 | out[0] = low; | ||
590 | out[1] = high; | ||
591 | |||
592 | |||
593 | a = ((uint128_t) small1[0]) * small2[1]; | ||
594 | low = a; | ||
595 | high = a >> 64; | ||
596 | out[1] += low; | ||
597 | out[2] = high; | ||
598 | |||
599 | a = ((uint128_t) small1[1]) * small2[0]; | ||
600 | low = a; | ||
601 | high = a >> 64; | ||
602 | out[1] += low; | ||
603 | out[2] += high; | ||
604 | |||
605 | |||
606 | a = ((uint128_t) small1[0]) * small2[2]; | ||
607 | low = a; | ||
608 | high = a >> 64; | ||
609 | out[2] += low; | ||
610 | out[3] = high; | ||
611 | |||
612 | a = ((uint128_t) small1[1]) * small2[1]; | ||
613 | low = a; | ||
614 | high = a >> 64; | ||
615 | out[2] += low; | ||
616 | out[3] += high; | ||
617 | |||
618 | a = ((uint128_t) small1[2]) * small2[0]; | ||
619 | low = a; | ||
620 | high = a >> 64; | ||
621 | out[2] += low; | ||
622 | out[3] += high; | ||
623 | |||
624 | |||
625 | a = ((uint128_t) small1[0]) * small2[3]; | ||
626 | low = a; | ||
627 | high = a >> 64; | ||
628 | out[3] += low; | ||
629 | out[4] = high; | ||
630 | |||
631 | a = ((uint128_t) small1[1]) * small2[2]; | ||
632 | low = a; | ||
633 | high = a >> 64; | ||
634 | out[3] += low; | ||
635 | out[4] += high; | ||
636 | |||
637 | a = ((uint128_t) small1[2]) * small2[1]; | ||
638 | low = a; | ||
639 | high = a >> 64; | ||
640 | out[3] += low; | ||
641 | out[4] += high; | ||
642 | |||
643 | a = ((uint128_t) small1[3]) * small2[0]; | ||
644 | low = a; | ||
645 | high = a >> 64; | ||
646 | out[3] += low; | ||
647 | out[4] += high; | ||
648 | |||
649 | |||
650 | a = ((uint128_t) small1[1]) * small2[3]; | ||
651 | low = a; | ||
652 | high = a >> 64; | ||
653 | out[4] += low; | ||
654 | out[5] = high; | ||
655 | |||
656 | a = ((uint128_t) small1[2]) * small2[2]; | ||
657 | low = a; | ||
658 | high = a >> 64; | ||
659 | out[4] += low; | ||
660 | out[5] += high; | ||
661 | |||
662 | a = ((uint128_t) small1[3]) * small2[1]; | ||
663 | low = a; | ||
664 | high = a >> 64; | ||
665 | out[4] += low; | ||
666 | out[5] += high; | ||
667 | |||
668 | |||
669 | a = ((uint128_t) small1[2]) * small2[3]; | ||
670 | low = a; | ||
671 | high = a >> 64; | ||
672 | out[5] += low; | ||
673 | out[6] = high; | ||
674 | |||
675 | a = ((uint128_t) small1[3]) * small2[2]; | ||
676 | low = a; | ||
677 | high = a >> 64; | ||
678 | out[5] += low; | ||
679 | out[6] += high; | ||
680 | |||
681 | |||
682 | a = ((uint128_t) small1[3]) * small2[3]; | ||
683 | low = a; | ||
684 | high = a >> 64; | ||
685 | out[6] += low; | ||
686 | out[7] = high; | ||
687 | } | ||
688 | |||
689 | /* felem_mul sets |out| = |in1| * |in2| | ||
690 | * On entry: | ||
691 | * in1[i] < 2^109 | ||
692 | * in2[i] < 2^109 | ||
693 | * On exit: | ||
694 | * out[i] < 7 * 2^64 < 2^67 | ||
695 | */ | ||
696 | static void | ||
697 | felem_mul(longfelem out, const felem in1, const felem in2) | ||
698 | { | ||
699 | smallfelem small1, small2; | ||
700 | felem_shrink(small1, in1); | ||
701 | felem_shrink(small2, in2); | ||
702 | smallfelem_mul(out, small1, small2); | ||
703 | } | ||
704 | |||
705 | /* felem_small_mul sets |out| = |small1| * |in2| | ||
706 | * On entry: | ||
707 | * small1[i] < 2^64 | ||
708 | * in2[i] < 2^109 | ||
709 | * On exit: | ||
710 | * out[i] < 7 * 2^64 < 2^67 | ||
711 | */ | ||
712 | static void | ||
713 | felem_small_mul(longfelem out, const smallfelem small1, const felem in2) | ||
714 | { | ||
715 | smallfelem small2; | ||
716 | felem_shrink(small2, in2); | ||
717 | smallfelem_mul(out, small1, small2); | ||
718 | } | ||
719 | |||
720 | #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) | ||
721 | #define two100 (((limb)1) << 100) | ||
722 | #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) | ||
723 | /* zero100 is 0 mod p */ | ||
724 | static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4}; | ||
725 | |||
726 | /* Internal function for the different flavours of felem_reduce. | ||
727 | * felem_reduce_ reduces the higher coefficients in[4]-in[7]. | ||
728 | * On entry: | ||
729 | * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] | ||
730 | * out[1] >= in[7] + 2^32*in[4] | ||
731 | * out[2] >= in[5] + 2^32*in[5] | ||
732 | * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] | ||
733 | * On exit: | ||
734 | * out[0] <= out[0] + in[4] + 2^32*in[5] | ||
735 | * out[1] <= out[1] + in[5] + 2^33*in[6] | ||
736 | * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] | ||
737 | * out[3] <= out[3] + 2^32*in[4] + 3*in[7] | ||
738 | */ | ||
739 | static void | ||
740 | felem_reduce_(felem out, const longfelem in) | ||
741 | { | ||
742 | int128_t c; | ||
743 | /* combine common terms from below */ | ||
744 | c = in[4] + (in[5] << 32); | ||
745 | out[0] += c; | ||
746 | out[3] -= c; | ||
747 | |||
748 | c = in[5] - in[7]; | ||
749 | out[1] += c; | ||
750 | out[2] -= c; | ||
751 | |||
752 | /* the remaining terms */ | ||
753 | /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ | ||
754 | out[1] -= (in[4] << 32); | ||
755 | out[3] += (in[4] << 32); | ||
756 | |||
757 | /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ | ||
758 | out[2] -= (in[5] << 32); | ||
759 | |||
760 | /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ | ||
761 | out[0] -= in[6]; | ||
762 | out[0] -= (in[6] << 32); | ||
763 | out[1] += (in[6] << 33); | ||
764 | out[2] += (in[6] * 2); | ||
765 | out[3] -= (in[6] << 32); | ||
766 | |||
767 | /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ | ||
768 | out[0] -= in[7]; | ||
769 | out[0] -= (in[7] << 32); | ||
770 | out[2] += (in[7] << 33); | ||
771 | out[3] += (in[7] * 3); | ||
772 | } | ||
773 | |||
774 | /* felem_reduce converts a longfelem into an felem. | ||
775 | * To be called directly after felem_square or felem_mul. | ||
776 | * On entry: | ||
777 | * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 | ||
778 | * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 | ||
779 | * On exit: | ||
780 | * out[i] < 2^101 | ||
781 | */ | ||
782 | static void | ||
783 | felem_reduce(felem out, const longfelem in) | ||
784 | { | ||
785 | out[0] = zero100[0] + in[0]; | ||
786 | out[1] = zero100[1] + in[1]; | ||
787 | out[2] = zero100[2] + in[2]; | ||
788 | out[3] = zero100[3] + in[3]; | ||
789 | |||
790 | felem_reduce_(out, in); | ||
791 | |||
792 | /* | ||
793 | * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 | ||
794 | * out[1] > 2^100 - 2^64 - 7*2^96 > 0 out[2] > 2^100 - 2^36 + 2^4 - | ||
795 | * 5*2^64 - 5*2^96 > 0 out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 | ||
796 | * - 3*2^96 > 0 | ||
797 | * | ||
798 | * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 out[1] < 2^100 + | ||
799 | * 3*2^64 + 5*2^64 + 3*2^97 < 2^101 out[2] < 2^100 + 5*2^64 + 2^64 + | ||
800 | * 3*2^65 + 2^97 < 2^101 out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < | ||
801 | * 2^101 | ||
802 | */ | ||
803 | } | ||
804 | |||
805 | /* felem_reduce_zero105 converts a larger longfelem into an felem. | ||
806 | * On entry: | ||
807 | * in[0] < 2^71 | ||
808 | * On exit: | ||
809 | * out[i] < 2^106 | ||
810 | */ | ||
811 | static void | ||
812 | felem_reduce_zero105(felem out, const longfelem in) | ||
813 | { | ||
814 | out[0] = zero105[0] + in[0]; | ||
815 | out[1] = zero105[1] + in[1]; | ||
816 | out[2] = zero105[2] + in[2]; | ||
817 | out[3] = zero105[3] + in[3]; | ||
818 | |||
819 | felem_reduce_(out, in); | ||
820 | |||
821 | /* | ||
822 | * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 | ||
823 | * out[1] > 2^105 - 2^71 - 2^103 > 0 out[2] > 2^105 - 2^41 + 2^9 - | ||
824 | * 2^71 - 2^103 > 0 out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - | ||
825 | * 2^103 > 0 | ||
826 | * | ||
827 | * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 out[1] < 2^105 + 2^71 + | ||
828 | * 2^71 + 2^103 < 2^106 out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < | ||
829 | * 2^106 out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 | ||
830 | */ | ||
831 | } | ||
832 | |||
833 | /* subtract_u64 sets *result = *result - v and *carry to one if the subtraction | ||
834 | * underflowed. */ | ||
835 | static void | ||
836 | subtract_u64(u64 * result, u64 * carry, u64 v) | ||
837 | { | ||
838 | uint128_t r = *result; | ||
839 | r -= v; | ||
840 | *carry = (r >> 64) & 1; | ||
841 | *result = (u64) r; | ||
842 | } | ||
843 | |||
844 | /* felem_contract converts |in| to its unique, minimal representation. | ||
845 | * On entry: | ||
846 | * in[i] < 2^109 | ||
847 | */ | ||
848 | static void | ||
849 | felem_contract(smallfelem out, const felem in) | ||
850 | { | ||
851 | unsigned i; | ||
852 | u64 all_equal_so_far = 0, result = 0, carry; | ||
853 | |||
854 | felem_shrink(out, in); | ||
855 | /* small is minimal except that the value might be > p */ | ||
856 | |||
857 | all_equal_so_far--; | ||
858 | /* | ||
859 | * We are doing a constant time test if out >= kPrime. We need to | ||
860 | * compare each u64, from most-significant to least significant. For | ||
861 | * each one, if all words so far have been equal (m is all ones) then | ||
862 | * a non-equal result is the answer. Otherwise we continue. | ||
863 | */ | ||
864 | for (i = 3; i < 4; i--) { | ||
865 | u64 equal; | ||
866 | uint128_t a = ((uint128_t) kPrime[i]) - out[i]; | ||
867 | /* | ||
868 | * if out[i] > kPrime[i] then a will underflow and the high | ||
869 | * 64-bits will all be set. | ||
870 | */ | ||
871 | result |= all_equal_so_far & ((u64) (a >> 64)); | ||
872 | |||
873 | /* | ||
874 | * if kPrime[i] == out[i] then |equal| will be all zeros and | ||
875 | * the decrement will make it all ones. | ||
876 | */ | ||
877 | equal = kPrime[i] ^ out[i]; | ||
878 | equal--; | ||
879 | equal &= equal << 32; | ||
880 | equal &= equal << 16; | ||
881 | equal &= equal << 8; | ||
882 | equal &= equal << 4; | ||
883 | equal &= equal << 2; | ||
884 | equal &= equal << 1; | ||
885 | equal = ((s64) equal) >> 63; | ||
886 | |||
887 | all_equal_so_far &= equal; | ||
888 | } | ||
889 | |||
890 | /* | ||
891 | * if all_equal_so_far is still all ones then the two values are | ||
892 | * equal and so out >= kPrime is true. | ||
893 | */ | ||
894 | result |= all_equal_so_far; | ||
895 | |||
896 | /* if out >= kPrime then we subtract kPrime. */ | ||
897 | subtract_u64(&out[0], &carry, result & kPrime[0]); | ||
898 | subtract_u64(&out[1], &carry, carry); | ||
899 | subtract_u64(&out[2], &carry, carry); | ||
900 | subtract_u64(&out[3], &carry, carry); | ||
901 | |||
902 | subtract_u64(&out[1], &carry, result & kPrime[1]); | ||
903 | subtract_u64(&out[2], &carry, carry); | ||
904 | subtract_u64(&out[3], &carry, carry); | ||
905 | |||
906 | subtract_u64(&out[2], &carry, result & kPrime[2]); | ||
907 | subtract_u64(&out[3], &carry, carry); | ||
908 | |||
909 | subtract_u64(&out[3], &carry, result & kPrime[3]); | ||
910 | } | ||
911 | |||
912 | static void | ||
913 | smallfelem_square_contract(smallfelem out, const smallfelem in) | ||
914 | { | ||
915 | longfelem longtmp; | ||
916 | felem tmp; | ||
917 | |||
918 | smallfelem_square(longtmp, in); | ||
919 | felem_reduce(tmp, longtmp); | ||
920 | felem_contract(out, tmp); | ||
921 | } | ||
922 | |||
923 | static void | ||
924 | smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2) | ||
925 | { | ||
926 | longfelem longtmp; | ||
927 | felem tmp; | ||
928 | |||
929 | smallfelem_mul(longtmp, in1, in2); | ||
930 | felem_reduce(tmp, longtmp); | ||
931 | felem_contract(out, tmp); | ||
932 | } | ||
933 | |||
934 | /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | ||
935 | * otherwise. | ||
936 | * On entry: | ||
937 | * small[i] < 2^64 | ||
938 | */ | ||
939 | static limb | ||
940 | smallfelem_is_zero(const smallfelem small) | ||
941 | { | ||
942 | limb result; | ||
943 | u64 is_p; | ||
944 | |||
945 | u64 is_zero = small[0] | small[1] | small[2] | small[3]; | ||
946 | is_zero--; | ||
947 | is_zero &= is_zero << 32; | ||
948 | is_zero &= is_zero << 16; | ||
949 | is_zero &= is_zero << 8; | ||
950 | is_zero &= is_zero << 4; | ||
951 | is_zero &= is_zero << 2; | ||
952 | is_zero &= is_zero << 1; | ||
953 | is_zero = ((s64) is_zero) >> 63; | ||
954 | |||
955 | is_p = (small[0] ^ kPrime[0]) | | ||
956 | (small[1] ^ kPrime[1]) | | ||
957 | (small[2] ^ kPrime[2]) | | ||
958 | (small[3] ^ kPrime[3]); | ||
959 | is_p--; | ||
960 | is_p &= is_p << 32; | ||
961 | is_p &= is_p << 16; | ||
962 | is_p &= is_p << 8; | ||
963 | is_p &= is_p << 4; | ||
964 | is_p &= is_p << 2; | ||
965 | is_p &= is_p << 1; | ||
966 | is_p = ((s64) is_p) >> 63; | ||
967 | |||
968 | is_zero |= is_p; | ||
969 | |||
970 | result = is_zero; | ||
971 | result |= ((limb) is_zero) << 64; | ||
972 | return result; | ||
973 | } | ||
974 | |||
975 | static int | ||
976 | smallfelem_is_zero_int(const smallfelem small) | ||
977 | { | ||
978 | return (int) (smallfelem_is_zero(small) & ((limb) 1)); | ||
979 | } | ||
980 | |||
981 | /* felem_inv calculates |out| = |in|^{-1} | ||
982 | * | ||
983 | * Based on Fermat's Little Theorem: | ||
984 | * a^p = a (mod p) | ||
985 | * a^{p-1} = 1 (mod p) | ||
986 | * a^{p-2} = a^{-1} (mod p) | ||
987 | */ | ||
988 | static void | ||
989 | felem_inv(felem out, const felem in) | ||
990 | { | ||
991 | felem ftmp, ftmp2; | ||
992 | /* each e_I will hold |in|^{2^I - 1} */ | ||
993 | felem e2, e4, e8, e16, e32, e64; | ||
994 | longfelem tmp; | ||
995 | unsigned i; | ||
996 | |||
997 | felem_square(tmp, in); | ||
998 | felem_reduce(ftmp, tmp);/* 2^1 */ | ||
999 | felem_mul(tmp, in, ftmp); | ||
1000 | felem_reduce(ftmp, tmp);/* 2^2 - 2^0 */ | ||
1001 | felem_assign(e2, ftmp); | ||
1002 | felem_square(tmp, ftmp); | ||
1003 | felem_reduce(ftmp, tmp);/* 2^3 - 2^1 */ | ||
1004 | felem_square(tmp, ftmp); | ||
1005 | felem_reduce(ftmp, tmp);/* 2^4 - 2^2 */ | ||
1006 | felem_mul(tmp, ftmp, e2); | ||
1007 | felem_reduce(ftmp, tmp);/* 2^4 - 2^0 */ | ||
1008 | felem_assign(e4, ftmp); | ||
1009 | felem_square(tmp, ftmp); | ||
1010 | felem_reduce(ftmp, tmp);/* 2^5 - 2^1 */ | ||
1011 | felem_square(tmp, ftmp); | ||
1012 | felem_reduce(ftmp, tmp);/* 2^6 - 2^2 */ | ||
1013 | felem_square(tmp, ftmp); | ||
1014 | felem_reduce(ftmp, tmp);/* 2^7 - 2^3 */ | ||
1015 | felem_square(tmp, ftmp); | ||
1016 | felem_reduce(ftmp, tmp);/* 2^8 - 2^4 */ | ||
1017 | felem_mul(tmp, ftmp, e4); | ||
1018 | felem_reduce(ftmp, tmp);/* 2^8 - 2^0 */ | ||
1019 | felem_assign(e8, ftmp); | ||
1020 | for (i = 0; i < 8; i++) { | ||
1021 | felem_square(tmp, ftmp); | ||
1022 | felem_reduce(ftmp, tmp); | ||
1023 | } /* 2^16 - 2^8 */ | ||
1024 | felem_mul(tmp, ftmp, e8); | ||
1025 | felem_reduce(ftmp, tmp);/* 2^16 - 2^0 */ | ||
1026 | felem_assign(e16, ftmp); | ||
1027 | for (i = 0; i < 16; i++) { | ||
1028 | felem_square(tmp, ftmp); | ||
1029 | felem_reduce(ftmp, tmp); | ||
1030 | } /* 2^32 - 2^16 */ | ||
1031 | felem_mul(tmp, ftmp, e16); | ||
1032 | felem_reduce(ftmp, tmp);/* 2^32 - 2^0 */ | ||
1033 | felem_assign(e32, ftmp); | ||
1034 | for (i = 0; i < 32; i++) { | ||
1035 | felem_square(tmp, ftmp); | ||
1036 | felem_reduce(ftmp, tmp); | ||
1037 | } /* 2^64 - 2^32 */ | ||
1038 | felem_assign(e64, ftmp); | ||
1039 | felem_mul(tmp, ftmp, in); | ||
1040 | felem_reduce(ftmp, tmp);/* 2^64 - 2^32 + 2^0 */ | ||
1041 | for (i = 0; i < 192; i++) { | ||
1042 | felem_square(tmp, ftmp); | ||
1043 | felem_reduce(ftmp, tmp); | ||
1044 | } /* 2^256 - 2^224 + 2^192 */ | ||
1045 | |||
1046 | felem_mul(tmp, e64, e32); | ||
1047 | felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */ | ||
1048 | for (i = 0; i < 16; i++) { | ||
1049 | felem_square(tmp, ftmp2); | ||
1050 | felem_reduce(ftmp2, tmp); | ||
1051 | } /* 2^80 - 2^16 */ | ||
1052 | felem_mul(tmp, ftmp2, e16); | ||
1053 | felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */ | ||
1054 | for (i = 0; i < 8; i++) { | ||
1055 | felem_square(tmp, ftmp2); | ||
1056 | felem_reduce(ftmp2, tmp); | ||
1057 | } /* 2^88 - 2^8 */ | ||
1058 | felem_mul(tmp, ftmp2, e8); | ||
1059 | felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */ | ||
1060 | for (i = 0; i < 4; i++) { | ||
1061 | felem_square(tmp, ftmp2); | ||
1062 | felem_reduce(ftmp2, tmp); | ||
1063 | } /* 2^92 - 2^4 */ | ||
1064 | felem_mul(tmp, ftmp2, e4); | ||
1065 | felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */ | ||
1066 | felem_square(tmp, ftmp2); | ||
1067 | felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */ | ||
1068 | felem_square(tmp, ftmp2); | ||
1069 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */ | ||
1070 | felem_mul(tmp, ftmp2, e2); | ||
1071 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */ | ||
1072 | felem_square(tmp, ftmp2); | ||
1073 | felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */ | ||
1074 | felem_square(tmp, ftmp2); | ||
1075 | felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */ | ||
1076 | felem_mul(tmp, ftmp2, in); | ||
1077 | felem_reduce(ftmp2, tmp); /* 2^96 - 3 */ | ||
1078 | |||
1079 | felem_mul(tmp, ftmp2, ftmp); | ||
1080 | felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | ||
1081 | } | ||
1082 | |||
1083 | static void | ||
1084 | smallfelem_inv_contract(smallfelem out, const smallfelem in) | ||
1085 | { | ||
1086 | felem tmp; | ||
1087 | |||
1088 | smallfelem_expand(tmp, in); | ||
1089 | felem_inv(tmp, tmp); | ||
1090 | felem_contract(out, tmp); | ||
1091 | } | ||
1092 | |||
1093 | /* Group operations | ||
1094 | * ---------------- | ||
1095 | * | ||
1096 | * Building on top of the field operations we have the operations on the | ||
1097 | * elliptic curve group itself. Points on the curve are represented in Jacobian | ||
1098 | * coordinates */ | ||
1099 | |||
1100 | /* point_double calculates 2*(x_in, y_in, z_in) | ||
1101 | * | ||
1102 | * The method is taken from: | ||
1103 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | ||
1104 | * | ||
1105 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | ||
1106 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
1107 | static void | ||
1108 | point_double(felem x_out, felem y_out, felem z_out, | ||
1109 | const felem x_in, const felem y_in, const felem z_in) | ||
1110 | { | ||
1111 | longfelem tmp, tmp2; | ||
1112 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
1113 | smallfelem small1, small2; | ||
1114 | |||
1115 | felem_assign(ftmp, x_in); | ||
1116 | /* ftmp[i] < 2^106 */ | ||
1117 | felem_assign(ftmp2, x_in); | ||
1118 | /* ftmp2[i] < 2^106 */ | ||
1119 | |||
1120 | /* delta = z^2 */ | ||
1121 | felem_square(tmp, z_in); | ||
1122 | felem_reduce(delta, tmp); | ||
1123 | /* delta[i] < 2^101 */ | ||
1124 | |||
1125 | /* gamma = y^2 */ | ||
1126 | felem_square(tmp, y_in); | ||
1127 | felem_reduce(gamma, tmp); | ||
1128 | /* gamma[i] < 2^101 */ | ||
1129 | felem_shrink(small1, gamma); | ||
1130 | |||
1131 | /* beta = x*gamma */ | ||
1132 | felem_small_mul(tmp, small1, x_in); | ||
1133 | felem_reduce(beta, tmp); | ||
1134 | /* beta[i] < 2^101 */ | ||
1135 | |||
1136 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
1137 | felem_diff(ftmp, delta); | ||
1138 | /* ftmp[i] < 2^105 + 2^106 < 2^107 */ | ||
1139 | felem_sum(ftmp2, delta); | ||
1140 | /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ | ||
1141 | felem_scalar(ftmp2, 3); | ||
1142 | /* ftmp2[i] < 3 * 2^107 < 2^109 */ | ||
1143 | felem_mul(tmp, ftmp, ftmp2); | ||
1144 | felem_reduce(alpha, tmp); | ||
1145 | /* alpha[i] < 2^101 */ | ||
1146 | felem_shrink(small2, alpha); | ||
1147 | |||
1148 | /* x' = alpha^2 - 8*beta */ | ||
1149 | smallfelem_square(tmp, small2); | ||
1150 | felem_reduce(x_out, tmp); | ||
1151 | felem_assign(ftmp, beta); | ||
1152 | felem_scalar(ftmp, 8); | ||
1153 | /* ftmp[i] < 8 * 2^101 = 2^104 */ | ||
1154 | felem_diff(x_out, ftmp); | ||
1155 | /* x_out[i] < 2^105 + 2^101 < 2^106 */ | ||
1156 | |||
1157 | /* z' = (y + z)^2 - gamma - delta */ | ||
1158 | felem_sum(delta, gamma); | ||
1159 | /* delta[i] < 2^101 + 2^101 = 2^102 */ | ||
1160 | felem_assign(ftmp, y_in); | ||
1161 | felem_sum(ftmp, z_in); | ||
1162 | /* ftmp[i] < 2^106 + 2^106 = 2^107 */ | ||
1163 | felem_square(tmp, ftmp); | ||
1164 | felem_reduce(z_out, tmp); | ||
1165 | felem_diff(z_out, delta); | ||
1166 | /* z_out[i] < 2^105 + 2^101 < 2^106 */ | ||
1167 | |||
1168 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
1169 | felem_scalar(beta, 4); | ||
1170 | /* beta[i] < 4 * 2^101 = 2^103 */ | ||
1171 | felem_diff_zero107(beta, x_out); | ||
1172 | /* beta[i] < 2^107 + 2^103 < 2^108 */ | ||
1173 | felem_small_mul(tmp, small2, beta); | ||
1174 | /* tmp[i] < 7 * 2^64 < 2^67 */ | ||
1175 | smallfelem_square(tmp2, small1); | ||
1176 | /* tmp2[i] < 7 * 2^64 */ | ||
1177 | longfelem_scalar(tmp2, 8); | ||
1178 | /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ | ||
1179 | longfelem_diff(tmp, tmp2); | ||
1180 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | ||
1181 | felem_reduce_zero105(y_out, tmp); | ||
1182 | /* y_out[i] < 2^106 */ | ||
1183 | } | ||
1184 | |||
1185 | /* point_double_small is the same as point_double, except that it operates on | ||
1186 | * smallfelems */ | ||
1187 | static void | ||
1188 | point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, | ||
1189 | const smallfelem x_in, const smallfelem y_in, const smallfelem z_in) | ||
1190 | { | ||
1191 | felem felem_x_out, felem_y_out, felem_z_out; | ||
1192 | felem felem_x_in, felem_y_in, felem_z_in; | ||
1193 | |||
1194 | smallfelem_expand(felem_x_in, x_in); | ||
1195 | smallfelem_expand(felem_y_in, y_in); | ||
1196 | smallfelem_expand(felem_z_in, z_in); | ||
1197 | point_double(felem_x_out, felem_y_out, felem_z_out, | ||
1198 | felem_x_in, felem_y_in, felem_z_in); | ||
1199 | felem_shrink(x_out, felem_x_out); | ||
1200 | felem_shrink(y_out, felem_y_out); | ||
1201 | felem_shrink(z_out, felem_z_out); | ||
1202 | } | ||
1203 | |||
1204 | /* copy_conditional copies in to out iff mask is all ones. */ | ||
1205 | static void | ||
1206 | copy_conditional(felem out, const felem in, limb mask) | ||
1207 | { | ||
1208 | unsigned i; | ||
1209 | for (i = 0; i < NLIMBS; ++i) { | ||
1210 | const limb tmp = mask & (in[i] ^ out[i]); | ||
1211 | out[i] ^= tmp; | ||
1212 | } | ||
1213 | } | ||
1214 | |||
1215 | /* copy_small_conditional copies in to out iff mask is all ones. */ | ||
1216 | static void | ||
1217 | copy_small_conditional(felem out, const smallfelem in, limb mask) | ||
1218 | { | ||
1219 | unsigned i; | ||
1220 | const u64 mask64 = mask; | ||
1221 | for (i = 0; i < NLIMBS; ++i) { | ||
1222 | out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask); | ||
1223 | } | ||
1224 | } | ||
1225 | |||
1226 | /* point_add calcuates (x1, y1, z1) + (x2, y2, z2) | ||
1227 | * | ||
1228 | * The method is taken from: | ||
1229 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | ||
1230 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | ||
1231 | * | ||
1232 | * This function includes a branch for checking whether the two input points | ||
1233 | * are equal, (while not equal to the point at infinity). This case never | ||
1234 | * happens during single point multiplication, so there is no timing leak for | ||
1235 | * ECDH or ECDSA signing. */ | ||
1236 | static void | ||
1237 | point_add(felem x3, felem y3, felem z3, | ||
1238 | const felem x1, const felem y1, const felem z1, | ||
1239 | const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2) | ||
1240 | { | ||
1241 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | ||
1242 | longfelem tmp, tmp2; | ||
1243 | smallfelem small1, small2, small3, small4, small5; | ||
1244 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; | ||
1245 | |||
1246 | felem_shrink(small3, z1); | ||
1247 | |||
1248 | z1_is_zero = smallfelem_is_zero(small3); | ||
1249 | z2_is_zero = smallfelem_is_zero(z2); | ||
1250 | |||
1251 | /* ftmp = z1z1 = z1**2 */ | ||
1252 | smallfelem_square(tmp, small3); | ||
1253 | felem_reduce(ftmp, tmp); | ||
1254 | /* ftmp[i] < 2^101 */ | ||
1255 | felem_shrink(small1, ftmp); | ||
1256 | |||
1257 | if (!mixed) { | ||
1258 | /* ftmp2 = z2z2 = z2**2 */ | ||
1259 | smallfelem_square(tmp, z2); | ||
1260 | felem_reduce(ftmp2, tmp); | ||
1261 | /* ftmp2[i] < 2^101 */ | ||
1262 | felem_shrink(small2, ftmp2); | ||
1263 | |||
1264 | felem_shrink(small5, x1); | ||
1265 | |||
1266 | /* u1 = ftmp3 = x1*z2z2 */ | ||
1267 | smallfelem_mul(tmp, small5, small2); | ||
1268 | felem_reduce(ftmp3, tmp); | ||
1269 | /* ftmp3[i] < 2^101 */ | ||
1270 | |||
1271 | /* ftmp5 = z1 + z2 */ | ||
1272 | felem_assign(ftmp5, z1); | ||
1273 | felem_small_sum(ftmp5, z2); | ||
1274 | /* ftmp5[i] < 2^107 */ | ||
1275 | |||
1276 | /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ | ||
1277 | felem_square(tmp, ftmp5); | ||
1278 | felem_reduce(ftmp5, tmp); | ||
1279 | /* ftmp2 = z2z2 + z1z1 */ | ||
1280 | felem_sum(ftmp2, ftmp); | ||
1281 | /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ | ||
1282 | felem_diff(ftmp5, ftmp2); | ||
1283 | /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ | ||
1284 | |||
1285 | /* ftmp2 = z2 * z2z2 */ | ||
1286 | smallfelem_mul(tmp, small2, z2); | ||
1287 | felem_reduce(ftmp2, tmp); | ||
1288 | |||
1289 | /* s1 = ftmp2 = y1 * z2**3 */ | ||
1290 | felem_mul(tmp, y1, ftmp2); | ||
1291 | felem_reduce(ftmp6, tmp); | ||
1292 | /* ftmp6[i] < 2^101 */ | ||
1293 | } else { | ||
1294 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
1295 | |||
1296 | /* u1 = ftmp3 = x1*z2z2 */ | ||
1297 | felem_assign(ftmp3, x1); | ||
1298 | /* ftmp3[i] < 2^106 */ | ||
1299 | |||
1300 | /* ftmp5 = 2z1z2 */ | ||
1301 | felem_assign(ftmp5, z1); | ||
1302 | felem_scalar(ftmp5, 2); | ||
1303 | /* ftmp5[i] < 2*2^106 = 2^107 */ | ||
1304 | |||
1305 | /* s1 = ftmp2 = y1 * z2**3 */ | ||
1306 | felem_assign(ftmp6, y1); | ||
1307 | /* ftmp6[i] < 2^106 */ | ||
1308 | } | ||
1309 | |||
1310 | /* u2 = x2*z1z1 */ | ||
1311 | smallfelem_mul(tmp, x2, small1); | ||
1312 | felem_reduce(ftmp4, tmp); | ||
1313 | |||
1314 | /* h = ftmp4 = u2 - u1 */ | ||
1315 | felem_diff_zero107(ftmp4, ftmp3); | ||
1316 | /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ | ||
1317 | felem_shrink(small4, ftmp4); | ||
1318 | |||
1319 | x_equal = smallfelem_is_zero(small4); | ||
1320 | |||
1321 | /* z_out = ftmp5 * h */ | ||
1322 | felem_small_mul(tmp, small4, ftmp5); | ||
1323 | felem_reduce(z_out, tmp); | ||
1324 | /* z_out[i] < 2^101 */ | ||
1325 | |||
1326 | /* ftmp = z1 * z1z1 */ | ||
1327 | smallfelem_mul(tmp, small1, small3); | ||
1328 | felem_reduce(ftmp, tmp); | ||
1329 | |||
1330 | /* s2 = tmp = y2 * z1**3 */ | ||
1331 | felem_small_mul(tmp, y2, ftmp); | ||
1332 | felem_reduce(ftmp5, tmp); | ||
1333 | |||
1334 | /* r = ftmp5 = (s2 - s1)*2 */ | ||
1335 | felem_diff_zero107(ftmp5, ftmp6); | ||
1336 | /* ftmp5[i] < 2^107 + 2^107 = 2^108 */ | ||
1337 | felem_scalar(ftmp5, 2); | ||
1338 | /* ftmp5[i] < 2^109 */ | ||
1339 | felem_shrink(small1, ftmp5); | ||
1340 | y_equal = smallfelem_is_zero(small1); | ||
1341 | |||
1342 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
1343 | point_double(x3, y3, z3, x1, y1, z1); | ||
1344 | return; | ||
1345 | } | ||
1346 | /* I = ftmp = (2h)**2 */ | ||
1347 | felem_assign(ftmp, ftmp4); | ||
1348 | felem_scalar(ftmp, 2); | ||
1349 | /* ftmp[i] < 2*2^108 = 2^109 */ | ||
1350 | felem_square(tmp, ftmp); | ||
1351 | felem_reduce(ftmp, tmp); | ||
1352 | |||
1353 | /* J = ftmp2 = h * I */ | ||
1354 | felem_mul(tmp, ftmp4, ftmp); | ||
1355 | felem_reduce(ftmp2, tmp); | ||
1356 | |||
1357 | /* V = ftmp4 = U1 * I */ | ||
1358 | felem_mul(tmp, ftmp3, ftmp); | ||
1359 | felem_reduce(ftmp4, tmp); | ||
1360 | |||
1361 | /* x_out = r**2 - J - 2V */ | ||
1362 | smallfelem_square(tmp, small1); | ||
1363 | felem_reduce(x_out, tmp); | ||
1364 | felem_assign(ftmp3, ftmp4); | ||
1365 | felem_scalar(ftmp4, 2); | ||
1366 | felem_sum(ftmp4, ftmp2); | ||
1367 | /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ | ||
1368 | felem_diff(x_out, ftmp4); | ||
1369 | /* x_out[i] < 2^105 + 2^101 */ | ||
1370 | |||
1371 | /* y_out = r(V-x_out) - 2 * s1 * J */ | ||
1372 | felem_diff_zero107(ftmp3, x_out); | ||
1373 | /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ | ||
1374 | felem_small_mul(tmp, small1, ftmp3); | ||
1375 | felem_mul(tmp2, ftmp6, ftmp2); | ||
1376 | longfelem_scalar(tmp2, 2); | ||
1377 | /* tmp2[i] < 2*2^67 = 2^68 */ | ||
1378 | longfelem_diff(tmp, tmp2); | ||
1379 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | ||
1380 | felem_reduce_zero105(y_out, tmp); | ||
1381 | /* y_out[i] < 2^106 */ | ||
1382 | |||
1383 | copy_small_conditional(x_out, x2, z1_is_zero); | ||
1384 | copy_conditional(x_out, x1, z2_is_zero); | ||
1385 | copy_small_conditional(y_out, y2, z1_is_zero); | ||
1386 | copy_conditional(y_out, y1, z2_is_zero); | ||
1387 | copy_small_conditional(z_out, z2, z1_is_zero); | ||
1388 | copy_conditional(z_out, z1, z2_is_zero); | ||
1389 | felem_assign(x3, x_out); | ||
1390 | felem_assign(y3, y_out); | ||
1391 | felem_assign(z3, z_out); | ||
1392 | } | ||
1393 | |||
1394 | /* point_add_small is the same as point_add, except that it operates on | ||
1395 | * smallfelems */ | ||
1396 | static void | ||
1397 | point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, | ||
1398 | smallfelem x1, smallfelem y1, smallfelem z1, | ||
1399 | smallfelem x2, smallfelem y2, smallfelem z2) | ||
1400 | { | ||
1401 | felem felem_x3, felem_y3, felem_z3; | ||
1402 | felem felem_x1, felem_y1, felem_z1; | ||
1403 | smallfelem_expand(felem_x1, x1); | ||
1404 | smallfelem_expand(felem_y1, y1); | ||
1405 | smallfelem_expand(felem_z1, z1); | ||
1406 | point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2); | ||
1407 | felem_shrink(x3, felem_x3); | ||
1408 | felem_shrink(y3, felem_y3); | ||
1409 | felem_shrink(z3, felem_z3); | ||
1410 | } | ||
1411 | |||
1412 | /* Base point pre computation | ||
1413 | * -------------------------- | ||
1414 | * | ||
1415 | * Two different sorts of precomputed tables are used in the following code. | ||
1416 | * Each contain various points on the curve, where each point is three field | ||
1417 | * elements (x, y, z). | ||
1418 | * | ||
1419 | * For the base point table, z is usually 1 (0 for the point at infinity). | ||
1420 | * This table has 2 * 16 elements, starting with the following: | ||
1421 | * index | bits | point | ||
1422 | * ------+---------+------------------------------ | ||
1423 | * 0 | 0 0 0 0 | 0G | ||
1424 | * 1 | 0 0 0 1 | 1G | ||
1425 | * 2 | 0 0 1 0 | 2^64G | ||
1426 | * 3 | 0 0 1 1 | (2^64 + 1)G | ||
1427 | * 4 | 0 1 0 0 | 2^128G | ||
1428 | * 5 | 0 1 0 1 | (2^128 + 1)G | ||
1429 | * 6 | 0 1 1 0 | (2^128 + 2^64)G | ||
1430 | * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G | ||
1431 | * 8 | 1 0 0 0 | 2^192G | ||
1432 | * 9 | 1 0 0 1 | (2^192 + 1)G | ||
1433 | * 10 | 1 0 1 0 | (2^192 + 2^64)G | ||
1434 | * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G | ||
1435 | * 12 | 1 1 0 0 | (2^192 + 2^128)G | ||
1436 | * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G | ||
1437 | * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G | ||
1438 | * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G | ||
1439 | * followed by a copy of this with each element multiplied by 2^32. | ||
1440 | * | ||
1441 | * The reason for this is so that we can clock bits into four different | ||
1442 | * locations when doing simple scalar multiplies against the base point, | ||
1443 | * and then another four locations using the second 16 elements. | ||
1444 | * | ||
1445 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ | ||
1446 | |||
1447 | /* gmul is the table of precomputed base points */ | ||
1448 | static const smallfelem gmul[2][16][3] = | ||
1449 | {{{{0, 0, 0, 0}, | ||
1450 | {0, 0, 0, 0}, | ||
1451 | {0, 0, 0, 0}}, | ||
1452 | {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247}, | ||
1453 | {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b}, | ||
1454 | {1, 0, 0, 0}}, | ||
1455 | {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5}, | ||
1456 | {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d}, | ||
1457 | {1, 0, 0, 0}}, | ||
1458 | {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f}, | ||
1459 | {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644}, | ||
1460 | {1, 0, 0, 0}}, | ||
1461 | {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67}, | ||
1462 | {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee}, | ||
1463 | {1, 0, 0, 0}}, | ||
1464 | {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff}, | ||
1465 | {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b}, | ||
1466 | {1, 0, 0, 0}}, | ||
1467 | {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8}, | ||
1468 | {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851}, | ||
1469 | {1, 0, 0, 0}}, | ||
1470 | {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea}, | ||
1471 | {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b}, | ||
1472 | {1, 0, 0, 0}}, | ||
1473 | {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276}, | ||
1474 | {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816}, | ||
1475 | {1, 0, 0, 0}}, | ||
1476 | {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad}, | ||
1477 | {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663}, | ||
1478 | {1, 0, 0, 0}}, | ||
1479 | {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d}, | ||
1480 | {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321}, | ||
1481 | {1, 0, 0, 0}}, | ||
1482 | {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287}, | ||
1483 | {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6}, | ||
1484 | {1, 0, 0, 0}}, | ||
1485 | {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466}, | ||
1486 | {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20}, | ||
1487 | {1, 0, 0, 0}}, | ||
1488 | {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9}, | ||
1489 | {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61}, | ||
1490 | {1, 0, 0, 0}}, | ||
1491 | {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a}, | ||
1492 | {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc}, | ||
1493 | {1, 0, 0, 0}}, | ||
1494 | {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c}, | ||
1495 | {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab}, | ||
1496 | {1, 0, 0, 0}}}, | ||
1497 | {{{0, 0, 0, 0}, | ||
1498 | {0, 0, 0, 0}, | ||
1499 | {0, 0, 0, 0}}, | ||
1500 | {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89}, | ||
1501 | {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624}, | ||
1502 | {1, 0, 0, 0}}, | ||
1503 | {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6}, | ||
1504 | {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1}, | ||
1505 | {1, 0, 0, 0}}, | ||
1506 | {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a}, | ||
1507 | {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593}, | ||
1508 | {1, 0, 0, 0}}, | ||
1509 | {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617}, | ||
1510 | {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7}, | ||
1511 | {1, 0, 0, 0}}, | ||
1512 | {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276}, | ||
1513 | {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a}, | ||
1514 | {1, 0, 0, 0}}, | ||
1515 | {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908}, | ||
1516 | {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e}, | ||
1517 | {1, 0, 0, 0}}, | ||
1518 | {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7}, | ||
1519 | {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec}, | ||
1520 | {1, 0, 0, 0}}, | ||
1521 | {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee}, | ||
1522 | {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6}, | ||
1523 | {1, 0, 0, 0}}, | ||
1524 | {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109}, | ||
1525 | {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5}, | ||
1526 | {1, 0, 0, 0}}, | ||
1527 | {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba}, | ||
1528 | {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44}, | ||
1529 | {1, 0, 0, 0}}, | ||
1530 | {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b}, | ||
1531 | {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc}, | ||
1532 | {1, 0, 0, 0}}, | ||
1533 | {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107}, | ||
1534 | {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387}, | ||
1535 | {1, 0, 0, 0}}, | ||
1536 | {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503}, | ||
1537 | {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be}, | ||
1538 | {1, 0, 0, 0}}, | ||
1539 | {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9}, | ||
1540 | {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a}, | ||
1541 | {1, 0, 0, 0}}, | ||
1542 | {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6}, | ||
1543 | {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81}, | ||
1544 | {1, 0, 0, 0}}}}; | ||
1545 | |||
1546 | /* select_point selects the |idx|th point from a precomputation table and | ||
1547 | * copies it to out. */ | ||
1548 | static void | ||
1549 | select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3]) | ||
1550 | { | ||
1551 | unsigned i, j; | ||
1552 | u64 *outlimbs = &out[0][0]; | ||
1553 | memset(outlimbs, 0, 3 * sizeof(smallfelem)); | ||
1554 | |||
1555 | for (i = 0; i < size; i++) { | ||
1556 | const u64 *inlimbs = (u64 *) & pre_comp[i][0][0]; | ||
1557 | u64 mask = i ^ idx; | ||
1558 | mask |= mask >> 4; | ||
1559 | mask |= mask >> 2; | ||
1560 | mask |= mask >> 1; | ||
1561 | mask &= 1; | ||
1562 | mask--; | ||
1563 | for (j = 0; j < NLIMBS * 3; j++) | ||
1564 | outlimbs[j] |= inlimbs[j] & mask; | ||
1565 | } | ||
1566 | } | ||
1567 | |||
1568 | /* get_bit returns the |i|th bit in |in| */ | ||
1569 | static char | ||
1570 | get_bit(const felem_bytearray in, int i) | ||
1571 | { | ||
1572 | if ((i < 0) || (i >= 256)) | ||
1573 | return 0; | ||
1574 | return (in[i >> 3] >> (i & 7)) & 1; | ||
1575 | } | ||
1576 | |||
1577 | /* Interleaved point multiplication using precomputed point multiples: | ||
1578 | * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], | ||
1579 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
1580 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
1581 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
1582 | static void | ||
1583 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
1584 | const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, | ||
1585 | const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3]) | ||
1586 | { | ||
1587 | int i, skip; | ||
1588 | unsigned num, gen_mul = (g_scalar != NULL); | ||
1589 | felem nq[3], ftmp; | ||
1590 | smallfelem tmp[3]; | ||
1591 | u64 bits; | ||
1592 | u8 sign, digit; | ||
1593 | |||
1594 | /* set nq to the point at infinity */ | ||
1595 | memset(nq, 0, 3 * sizeof(felem)); | ||
1596 | |||
1597 | /* | ||
1598 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
1599 | * multiples of the generator (two in each of the last 32 rounds) and | ||
1600 | * additions of other points multiples (every 5th round). | ||
1601 | */ | ||
1602 | skip = 1; /* save two point operations in the first | ||
1603 | * round */ | ||
1604 | for (i = (num_points ? 255 : 31); i >= 0; --i) { | ||
1605 | /* double */ | ||
1606 | if (!skip) | ||
1607 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
1608 | |||
1609 | /* add multiples of the generator */ | ||
1610 | if (gen_mul && (i <= 31)) { | ||
1611 | /* first, look 32 bits upwards */ | ||
1612 | bits = get_bit(g_scalar, i + 224) << 3; | ||
1613 | bits |= get_bit(g_scalar, i + 160) << 2; | ||
1614 | bits |= get_bit(g_scalar, i + 96) << 1; | ||
1615 | bits |= get_bit(g_scalar, i + 32); | ||
1616 | /* select the point to add, in constant time */ | ||
1617 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
1618 | |||
1619 | if (!skip) { | ||
1620 | point_add(nq[0], nq[1], nq[2], | ||
1621 | nq[0], nq[1], nq[2], | ||
1622 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1623 | } else { | ||
1624 | smallfelem_expand(nq[0], tmp[0]); | ||
1625 | smallfelem_expand(nq[1], tmp[1]); | ||
1626 | smallfelem_expand(nq[2], tmp[2]); | ||
1627 | skip = 0; | ||
1628 | } | ||
1629 | |||
1630 | /* second, look at the current position */ | ||
1631 | bits = get_bit(g_scalar, i + 192) << 3; | ||
1632 | bits |= get_bit(g_scalar, i + 128) << 2; | ||
1633 | bits |= get_bit(g_scalar, i + 64) << 1; | ||
1634 | bits |= get_bit(g_scalar, i); | ||
1635 | /* select the point to add, in constant time */ | ||
1636 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
1637 | point_add(nq[0], nq[1], nq[2], | ||
1638 | nq[0], nq[1], nq[2], | ||
1639 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1640 | } | ||
1641 | /* do other additions every 5 doublings */ | ||
1642 | if (num_points && (i % 5 == 0)) { | ||
1643 | /* loop over all scalars */ | ||
1644 | for (num = 0; num < num_points; ++num) { | ||
1645 | bits = get_bit(scalars[num], i + 4) << 5; | ||
1646 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
1647 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
1648 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
1649 | bits |= get_bit(scalars[num], i) << 1; | ||
1650 | bits |= get_bit(scalars[num], i - 1); | ||
1651 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
1652 | |||
1653 | /* | ||
1654 | * select the point to add or subtract, in | ||
1655 | * constant time | ||
1656 | */ | ||
1657 | select_point(digit, 17, pre_comp[num], tmp); | ||
1658 | smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the | ||
1659 | * negative point */ | ||
1660 | copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1)); | ||
1661 | felem_contract(tmp[1], ftmp); | ||
1662 | |||
1663 | if (!skip) { | ||
1664 | point_add(nq[0], nq[1], nq[2], | ||
1665 | nq[0], nq[1], nq[2], | ||
1666 | mixed, tmp[0], tmp[1], tmp[2]); | ||
1667 | } else { | ||
1668 | smallfelem_expand(nq[0], tmp[0]); | ||
1669 | smallfelem_expand(nq[1], tmp[1]); | ||
1670 | smallfelem_expand(nq[2], tmp[2]); | ||
1671 | skip = 0; | ||
1672 | } | ||
1673 | } | ||
1674 | } | ||
1675 | } | ||
1676 | felem_assign(x_out, nq[0]); | ||
1677 | felem_assign(y_out, nq[1]); | ||
1678 | felem_assign(z_out, nq[2]); | ||
1679 | } | ||
1680 | |||
1681 | /* Precomputation for the group generator. */ | ||
1682 | typedef struct { | ||
1683 | smallfelem g_pre_comp[2][16][3]; | ||
1684 | int references; | ||
1685 | } NISTP256_PRE_COMP; | ||
1686 | |||
1687 | const EC_METHOD * | ||
1688 | EC_GFp_nistp256_method(void) | ||
1689 | { | ||
1690 | static const EC_METHOD ret = { | ||
1691 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
1692 | .field_type = NID_X9_62_prime_field, | ||
1693 | .group_init = ec_GFp_nistp256_group_init, | ||
1694 | .group_finish = ec_GFp_simple_group_finish, | ||
1695 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
1696 | .group_copy = ec_GFp_nist_group_copy, | ||
1697 | .group_set_curve = ec_GFp_nistp256_group_set_curve, | ||
1698 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
1699 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
1700 | .group_check_discriminant = | ||
1701 | ec_GFp_simple_group_check_discriminant, | ||
1702 | .point_init = ec_GFp_simple_point_init, | ||
1703 | .point_finish = ec_GFp_simple_point_finish, | ||
1704 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
1705 | .point_copy = ec_GFp_simple_point_copy, | ||
1706 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
1707 | .point_set_Jprojective_coordinates_GFp = | ||
1708 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
1709 | .point_get_Jprojective_coordinates_GFp = | ||
1710 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
1711 | .point_set_affine_coordinates = | ||
1712 | ec_GFp_simple_point_set_affine_coordinates, | ||
1713 | .point_get_affine_coordinates = | ||
1714 | ec_GFp_nistp256_point_get_affine_coordinates, | ||
1715 | .add = ec_GFp_simple_add, | ||
1716 | .dbl = ec_GFp_simple_dbl, | ||
1717 | .invert = ec_GFp_simple_invert, | ||
1718 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
1719 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
1720 | .point_cmp = ec_GFp_simple_cmp, | ||
1721 | .make_affine = ec_GFp_simple_make_affine, | ||
1722 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
1723 | .mul = ec_GFp_nistp256_points_mul, | ||
1724 | .precompute_mult = ec_GFp_nistp256_precompute_mult, | ||
1725 | .have_precompute_mult = ec_GFp_nistp256_have_precompute_mult, | ||
1726 | .field_mul = ec_GFp_nist_field_mul, | ||
1727 | .field_sqr = ec_GFp_nist_field_sqr | ||
1728 | }; | ||
1729 | |||
1730 | return &ret; | ||
1731 | } | ||
1732 | |||
1733 | /******************************************************************************/ | ||
1734 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
1735 | */ | ||
1736 | |||
1737 | static NISTP256_PRE_COMP * | ||
1738 | nistp256_pre_comp_new() | ||
1739 | { | ||
1740 | NISTP256_PRE_COMP *ret = NULL; | ||
1741 | ret = malloc(sizeof *ret); | ||
1742 | if (!ret) { | ||
1743 | ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
1744 | return ret; | ||
1745 | } | ||
1746 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
1747 | ret->references = 1; | ||
1748 | return ret; | ||
1749 | } | ||
1750 | |||
1751 | static void * | ||
1752 | nistp256_pre_comp_dup(void *src_) | ||
1753 | { | ||
1754 | NISTP256_PRE_COMP *src = src_; | ||
1755 | |||
1756 | /* no need to actually copy, these objects never change! */ | ||
1757 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1758 | |||
1759 | return src_; | ||
1760 | } | ||
1761 | |||
1762 | static void | ||
1763 | nistp256_pre_comp_free(void *pre_) | ||
1764 | { | ||
1765 | int i; | ||
1766 | NISTP256_PRE_COMP *pre = pre_; | ||
1767 | |||
1768 | if (!pre) | ||
1769 | return; | ||
1770 | |||
1771 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1772 | if (i > 0) | ||
1773 | return; | ||
1774 | |||
1775 | free(pre); | ||
1776 | } | ||
1777 | |||
1778 | static void | ||
1779 | nistp256_pre_comp_clear_free(void *pre_) | ||
1780 | { | ||
1781 | int i; | ||
1782 | NISTP256_PRE_COMP *pre = pre_; | ||
1783 | |||
1784 | if (!pre) | ||
1785 | return; | ||
1786 | |||
1787 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1788 | if (i > 0) | ||
1789 | return; | ||
1790 | |||
1791 | OPENSSL_cleanse(pre, sizeof *pre); | ||
1792 | free(pre); | ||
1793 | } | ||
1794 | |||
1795 | /******************************************************************************/ | ||
1796 | /* OPENSSL EC_METHOD FUNCTIONS | ||
1797 | */ | ||
1798 | |||
1799 | int | ||
1800 | ec_GFp_nistp256_group_init(EC_GROUP * group) | ||
1801 | { | ||
1802 | int ret; | ||
1803 | ret = ec_GFp_simple_group_init(group); | ||
1804 | group->a_is_minus3 = 1; | ||
1805 | return ret; | ||
1806 | } | ||
1807 | |||
1808 | int | ||
1809 | ec_GFp_nistp256_group_set_curve(EC_GROUP * group, const BIGNUM * p, | ||
1810 | const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
1811 | { | ||
1812 | int ret = 0; | ||
1813 | BN_CTX *new_ctx = NULL; | ||
1814 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
1815 | |||
1816 | if (ctx == NULL) | ||
1817 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1818 | return 0; | ||
1819 | BN_CTX_start(ctx); | ||
1820 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
1821 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
1822 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
1823 | goto err; | ||
1824 | BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
1825 | BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
1826 | BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
1827 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
1828 | (BN_cmp(curve_b, b))) { | ||
1829 | ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE, | ||
1830 | EC_R_WRONG_CURVE_PARAMETERS); | ||
1831 | goto err; | ||
1832 | } | ||
1833 | group->field_mod_func = BN_nist_mod_256; | ||
1834 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
1835 | err: | ||
1836 | BN_CTX_end(ctx); | ||
1837 | BN_CTX_free(new_ctx); | ||
1838 | return ret; | ||
1839 | } | ||
1840 | |||
1841 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
1842 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
1843 | int | ||
1844 | ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group, | ||
1845 | const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
1846 | { | ||
1847 | felem z1, z2, x_in, y_in; | ||
1848 | smallfelem x_out, y_out; | ||
1849 | longfelem tmp; | ||
1850 | |||
1851 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
1852 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
1853 | EC_R_POINT_AT_INFINITY); | ||
1854 | return 0; | ||
1855 | } | ||
1856 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
1857 | (!BN_to_felem(z1, &point->Z))) | ||
1858 | return 0; | ||
1859 | felem_inv(z2, z1); | ||
1860 | felem_square(tmp, z2); | ||
1861 | felem_reduce(z1, tmp); | ||
1862 | felem_mul(tmp, x_in, z1); | ||
1863 | felem_reduce(x_in, tmp); | ||
1864 | felem_contract(x_out, x_in); | ||
1865 | if (x != NULL) { | ||
1866 | if (!smallfelem_to_BN(x, x_out)) { | ||
1867 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
1868 | ERR_R_BN_LIB); | ||
1869 | return 0; | ||
1870 | } | ||
1871 | } | ||
1872 | felem_mul(tmp, z1, z2); | ||
1873 | felem_reduce(z1, tmp); | ||
1874 | felem_mul(tmp, y_in, z1); | ||
1875 | felem_reduce(y_in, tmp); | ||
1876 | felem_contract(y_out, y_in); | ||
1877 | if (y != NULL) { | ||
1878 | if (!smallfelem_to_BN(y, y_out)) { | ||
1879 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
1880 | ERR_R_BN_LIB); | ||
1881 | return 0; | ||
1882 | } | ||
1883 | } | ||
1884 | return 1; | ||
1885 | } | ||
1886 | |||
1887 | static void | ||
1888 | make_points_affine(size_t num, smallfelem points[ /* num */ ][3], smallfelem tmp_smallfelems[ /* num+1 */ ]) | ||
1889 | { | ||
1890 | /* | ||
1891 | * Runs in constant time, unless an input is the point at infinity | ||
1892 | * (which normally shouldn't happen). | ||
1893 | */ | ||
1894 | ec_GFp_nistp_points_make_affine_internal( | ||
1895 | num, | ||
1896 | points, | ||
1897 | sizeof(smallfelem), | ||
1898 | tmp_smallfelems, | ||
1899 | (void (*) (void *)) smallfelem_one, | ||
1900 | (int (*) (const void *)) smallfelem_is_zero_int, | ||
1901 | (void (*) (void *, const void *)) smallfelem_assign, | ||
1902 | (void (*) (void *, const void *)) smallfelem_square_contract, | ||
1903 | (void (*) (void *, const void *, const void *)) smallfelem_mul_contract, | ||
1904 | (void (*) (void *, const void *)) smallfelem_inv_contract, | ||
1905 | (void (*) (void *, const void *)) smallfelem_assign /* nothing to contract */ ); | ||
1906 | } | ||
1907 | |||
1908 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
1909 | * Result is stored in r (r can equal one of the inputs). */ | ||
1910 | int | ||
1911 | ec_GFp_nistp256_points_mul(const EC_GROUP * group, EC_POINT * r, | ||
1912 | const BIGNUM * scalar, size_t num, const EC_POINT * points[], | ||
1913 | const BIGNUM * scalars[], BN_CTX * ctx) | ||
1914 | { | ||
1915 | int ret = 0; | ||
1916 | int j; | ||
1917 | int mixed = 0; | ||
1918 | BN_CTX *new_ctx = NULL; | ||
1919 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
1920 | felem_bytearray g_secret; | ||
1921 | felem_bytearray *secrets = NULL; | ||
1922 | smallfelem(*pre_comp)[17][3] = NULL; | ||
1923 | smallfelem *tmp_smallfelems = NULL; | ||
1924 | felem_bytearray tmp; | ||
1925 | unsigned i, num_bytes; | ||
1926 | int have_pre_comp = 0; | ||
1927 | size_t num_points = num; | ||
1928 | smallfelem x_in, y_in, z_in; | ||
1929 | felem x_out, y_out, z_out; | ||
1930 | NISTP256_PRE_COMP *pre = NULL; | ||
1931 | const smallfelem(*g_pre_comp)[16][3] = NULL; | ||
1932 | EC_POINT *generator = NULL; | ||
1933 | const EC_POINT *p = NULL; | ||
1934 | const BIGNUM *p_scalar = NULL; | ||
1935 | |||
1936 | if (ctx == NULL) | ||
1937 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1938 | return 0; | ||
1939 | BN_CTX_start(ctx); | ||
1940 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1941 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
1942 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
1943 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
1944 | goto err; | ||
1945 | |||
1946 | if (scalar != NULL) { | ||
1947 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
1948 | nistp256_pre_comp_dup, nistp256_pre_comp_free, | ||
1949 | nistp256_pre_comp_clear_free); | ||
1950 | if (pre) | ||
1951 | /* we have precomputation, try to use it */ | ||
1952 | g_pre_comp = (const smallfelem(*)[16][3]) pre->g_pre_comp; | ||
1953 | else | ||
1954 | /* try to use the standard precomputation */ | ||
1955 | g_pre_comp = &gmul[0]; | ||
1956 | generator = EC_POINT_new(group); | ||
1957 | if (generator == NULL) | ||
1958 | goto err; | ||
1959 | /* get the generator from precomputation */ | ||
1960 | if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || | ||
1961 | !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || | ||
1962 | !smallfelem_to_BN(z, g_pre_comp[0][1][2])) { | ||
1963 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
1964 | goto err; | ||
1965 | } | ||
1966 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
1967 | generator, x, y, z, ctx)) | ||
1968 | goto err; | ||
1969 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
1970 | /* precomputation matches generator */ | ||
1971 | have_pre_comp = 1; | ||
1972 | else | ||
1973 | /* | ||
1974 | * we don't have valid precomputation: treat the | ||
1975 | * generator as a random point | ||
1976 | */ | ||
1977 | num_points++; | ||
1978 | } | ||
1979 | if (num_points > 0) { | ||
1980 | if (num_points >= 3) { | ||
1981 | /* | ||
1982 | * unless we precompute multiples for just one or two | ||
1983 | * points, converting those into affine form is time | ||
1984 | * well spent | ||
1985 | */ | ||
1986 | mixed = 1; | ||
1987 | } | ||
1988 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
1989 | pre_comp = calloc(num_points, 17 * 3 * sizeof(smallfelem)); | ||
1990 | if (mixed) { | ||
1991 | /* XXX should do more int overflow checking */ | ||
1992 | tmp_smallfelems = reallocarray(NULL, | ||
1993 | (num_points * 17 + 1), sizeof(smallfelem)); | ||
1994 | } | ||
1995 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL))) { | ||
1996 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
1997 | goto err; | ||
1998 | } | ||
1999 | /* | ||
2000 | * we treat NULL scalars as 0, and NULL points as points at | ||
2001 | * infinity, i.e., they contribute nothing to the linear | ||
2002 | * combination | ||
2003 | */ | ||
2004 | for (i = 0; i < num_points; ++i) { | ||
2005 | if (i == num) | ||
2006 | /* | ||
2007 | * we didn't have a valid precomputation, so | ||
2008 | * we pick the generator | ||
2009 | */ | ||
2010 | { | ||
2011 | p = EC_GROUP_get0_generator(group); | ||
2012 | p_scalar = scalar; | ||
2013 | } else | ||
2014 | /* the i^th point */ | ||
2015 | { | ||
2016 | p = points[i]; | ||
2017 | p_scalar = scalars[i]; | ||
2018 | } | ||
2019 | if ((p_scalar != NULL) && (p != NULL)) { | ||
2020 | /* reduce scalar to 0 <= scalar < 2^256 */ | ||
2021 | if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar))) { | ||
2022 | /* | ||
2023 | * this is an unusual input, and we | ||
2024 | * don't guarantee constant-timeness | ||
2025 | */ | ||
2026 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
2027 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
2028 | goto err; | ||
2029 | } | ||
2030 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
2031 | } else | ||
2032 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
2033 | flip_endian(secrets[i], tmp, num_bytes); | ||
2034 | /* precompute multiples */ | ||
2035 | if ((!BN_to_felem(x_out, &p->X)) || | ||
2036 | (!BN_to_felem(y_out, &p->Y)) || | ||
2037 | (!BN_to_felem(z_out, &p->Z))) | ||
2038 | goto err; | ||
2039 | felem_shrink(pre_comp[i][1][0], x_out); | ||
2040 | felem_shrink(pre_comp[i][1][1], y_out); | ||
2041 | felem_shrink(pre_comp[i][1][2], z_out); | ||
2042 | for (j = 2; j <= 16; ++j) { | ||
2043 | if (j & 1) { | ||
2044 | point_add_small( | ||
2045 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
2046 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
2047 | pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
2048 | } else { | ||
2049 | point_double_small( | ||
2050 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
2051 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
2052 | } | ||
2053 | } | ||
2054 | } | ||
2055 | } | ||
2056 | if (mixed) | ||
2057 | make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems); | ||
2058 | } | ||
2059 | /* the scalar for the generator */ | ||
2060 | if ((scalar != NULL) && (have_pre_comp)) { | ||
2061 | memset(g_secret, 0, sizeof(g_secret)); | ||
2062 | /* reduce scalar to 0 <= scalar < 2^256 */ | ||
2063 | if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) { | ||
2064 | /* | ||
2065 | * this is an unusual input, and we don't guarantee | ||
2066 | * constant-timeness | ||
2067 | */ | ||
2068 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
2069 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
2070 | goto err; | ||
2071 | } | ||
2072 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
2073 | } else | ||
2074 | num_bytes = BN_bn2bin(scalar, tmp); | ||
2075 | flip_endian(g_secret, tmp, num_bytes); | ||
2076 | /* do the multiplication with generator precomputation */ | ||
2077 | batch_mul(x_out, y_out, z_out, | ||
2078 | (const felem_bytearray(*)) secrets, num_points, | ||
2079 | g_secret, | ||
2080 | mixed, (const smallfelem(*)[17][3]) pre_comp, | ||
2081 | g_pre_comp); | ||
2082 | } else | ||
2083 | /* do the multiplication without generator precomputation */ | ||
2084 | batch_mul(x_out, y_out, z_out, | ||
2085 | (const felem_bytearray(*)) secrets, num_points, | ||
2086 | NULL, mixed, (const smallfelem(*)[17][3]) pre_comp, NULL); | ||
2087 | /* reduce the output to its unique minimal representation */ | ||
2088 | felem_contract(x_in, x_out); | ||
2089 | felem_contract(y_in, y_out); | ||
2090 | felem_contract(z_in, z_out); | ||
2091 | if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || | ||
2092 | (!smallfelem_to_BN(z, z_in))) { | ||
2093 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
2094 | goto err; | ||
2095 | } | ||
2096 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
2097 | |||
2098 | err: | ||
2099 | BN_CTX_end(ctx); | ||
2100 | EC_POINT_free(generator); | ||
2101 | BN_CTX_free(new_ctx); | ||
2102 | free(secrets); | ||
2103 | free(pre_comp); | ||
2104 | free(tmp_smallfelems); | ||
2105 | return ret; | ||
2106 | } | ||
2107 | |||
2108 | int | ||
2109 | ec_GFp_nistp256_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
2110 | { | ||
2111 | int ret = 0; | ||
2112 | NISTP256_PRE_COMP *pre = NULL; | ||
2113 | int i, j; | ||
2114 | BN_CTX *new_ctx = NULL; | ||
2115 | BIGNUM *x, *y; | ||
2116 | EC_POINT *generator = NULL; | ||
2117 | smallfelem tmp_smallfelems[32]; | ||
2118 | felem x_tmp, y_tmp, z_tmp; | ||
2119 | |||
2120 | /* throw away old precomputation */ | ||
2121 | EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup, | ||
2122 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free); | ||
2123 | if (ctx == NULL) | ||
2124 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
2125 | return 0; | ||
2126 | BN_CTX_start(ctx); | ||
2127 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
2128 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
2129 | goto err; | ||
2130 | /* get the generator */ | ||
2131 | if (group->generator == NULL) | ||
2132 | goto err; | ||
2133 | generator = EC_POINT_new(group); | ||
2134 | if (generator == NULL) | ||
2135 | goto err; | ||
2136 | BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x); | ||
2137 | BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y); | ||
2138 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
2139 | goto err; | ||
2140 | if ((pre = nistp256_pre_comp_new()) == NULL) | ||
2141 | goto err; | ||
2142 | /* if the generator is the standard one, use built-in precomputation */ | ||
2143 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
2144 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
2145 | ret = 1; | ||
2146 | goto err; | ||
2147 | } | ||
2148 | if ((!BN_to_felem(x_tmp, &group->generator->X)) || | ||
2149 | (!BN_to_felem(y_tmp, &group->generator->Y)) || | ||
2150 | (!BN_to_felem(z_tmp, &group->generator->Z))) | ||
2151 | goto err; | ||
2152 | felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); | ||
2153 | felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); | ||
2154 | felem_shrink(pre->g_pre_comp[0][1][2], z_tmp); | ||
2155 | /* | ||
2156 | * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, | ||
2157 | * 2^96*G, 2^160*G, 2^224*G for the second one | ||
2158 | */ | ||
2159 | for (i = 1; i <= 8; i <<= 1) { | ||
2160 | point_double_small( | ||
2161 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
2162 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
2163 | for (j = 0; j < 31; ++j) { | ||
2164 | point_double_small( | ||
2165 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
2166 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
2167 | } | ||
2168 | if (i == 8) | ||
2169 | break; | ||
2170 | point_double_small( | ||
2171 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
2172 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
2173 | for (j = 0; j < 31; ++j) { | ||
2174 | point_double_small( | ||
2175 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
2176 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2]); | ||
2177 | } | ||
2178 | } | ||
2179 | for (i = 0; i < 2; i++) { | ||
2180 | /* g_pre_comp[i][0] is the point at infinity */ | ||
2181 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
2182 | /* the remaining multiples */ | ||
2183 | /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */ | ||
2184 | point_add_small( | ||
2185 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2], | ||
2186 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
2187 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
2188 | /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */ | ||
2189 | point_add_small( | ||
2190 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2], | ||
2191 | pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
2192 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
2193 | /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */ | ||
2194 | point_add_small( | ||
2195 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
2196 | pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
2197 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]); | ||
2198 | /* | ||
2199 | * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + | ||
2200 | * 2^224*G | ||
2201 | */ | ||
2202 | point_add_small( | ||
2203 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2], | ||
2204 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
2205 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
2206 | for (j = 1; j < 8; ++j) { | ||
2207 | /* odd multiples: add G resp. 2^32*G */ | ||
2208 | point_add_small( | ||
2209 | pre->g_pre_comp[i][2 * j + 1][0], pre->g_pre_comp[i][2 * j + 1][1], pre->g_pre_comp[i][2 * j + 1][2], | ||
2210 | pre->g_pre_comp[i][2 * j][0], pre->g_pre_comp[i][2 * j][1], pre->g_pre_comp[i][2 * j][2], | ||
2211 | pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]); | ||
2212 | } | ||
2213 | } | ||
2214 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); | ||
2215 | |||
2216 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup, | ||
2217 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free)) | ||
2218 | goto err; | ||
2219 | ret = 1; | ||
2220 | pre = NULL; | ||
2221 | err: | ||
2222 | BN_CTX_end(ctx); | ||
2223 | EC_POINT_free(generator); | ||
2224 | BN_CTX_free(new_ctx); | ||
2225 | nistp256_pre_comp_free(pre); | ||
2226 | return ret; | ||
2227 | } | ||
2228 | |||
2229 | int | ||
2230 | ec_GFp_nistp256_have_precompute_mult(const EC_GROUP * group) | ||
2231 | { | ||
2232 | if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup, | ||
2233 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free) | ||
2234 | != NULL) | ||
2235 | return 1; | ||
2236 | else | ||
2237 | return 0; | ||
2238 | } | ||
2239 | #endif | ||