diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_nistp521.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp521.c | 2113 |
1 files changed, 0 insertions, 2113 deletions
diff --git a/src/lib/libcrypto/ec/ecp_nistp521.c b/src/lib/libcrypto/ec/ecp_nistp521.c deleted file mode 100644 index 6382091cf9..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp521.c +++ /dev/null | |||
| @@ -1,2113 +0,0 @@ | |||
| 1 | /* $OpenBSD: ecp_nistp521.c,v 1.16 2015/02/08 22:25:03 miod Exp $ */ | ||
| 2 | /* | ||
| 3 | * Written by Adam Langley (Google) for the OpenSSL project | ||
| 4 | */ | ||
| 5 | /* | ||
| 6 | * Copyright (c) 2011 Google Inc. | ||
| 7 | * | ||
| 8 | * Permission to use, copy, modify, and distribute this software for any | ||
| 9 | * purpose with or without fee is hereby granted, provided that the above | ||
| 10 | * copyright notice and this permission notice appear in all copies. | ||
| 11 | * | ||
| 12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 19 | */ | ||
| 20 | |||
| 21 | /* | ||
| 22 | * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication | ||
| 23 | * | ||
| 24 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | ||
| 25 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | ||
| 26 | * work which got its smarts from Daniel J. Bernstein's work on the same. | ||
| 27 | */ | ||
| 28 | |||
| 29 | #include <stdint.h> | ||
| 30 | #include <string.h> | ||
| 31 | |||
| 32 | #include <openssl/opensslconf.h> | ||
| 33 | |||
| 34 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
| 35 | |||
| 36 | #include <openssl/err.h> | ||
| 37 | #include "ec_lcl.h" | ||
| 38 | |||
| 39 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
| 40 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
| 41 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
| 42 | #else | ||
| 43 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
| 44 | #endif | ||
| 45 | |||
| 46 | typedef uint8_t u8; | ||
| 47 | typedef uint64_t u64; | ||
| 48 | typedef int64_t s64; | ||
| 49 | |||
| 50 | /* The underlying field. | ||
| 51 | * | ||
| 52 | * P521 operates over GF(2^521-1). We can serialise an element of this field | ||
| 53 | * into 66 bytes where the most significant byte contains only a single bit. We | ||
| 54 | * call this an felem_bytearray. */ | ||
| 55 | |||
| 56 | typedef u8 felem_bytearray[66]; | ||
| 57 | |||
| 58 | /* These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. | ||
| 59 | * These values are big-endian. */ | ||
| 60 | static const felem_bytearray nistp521_curve_params[5] = | ||
| 61 | { | ||
| 62 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ | ||
| 63 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 64 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 65 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 66 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 67 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 68 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 70 | 0xff, 0xff}, | ||
| 71 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ | ||
| 72 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 73 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 74 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 75 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 76 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 77 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 78 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 79 | 0xff, 0xfc}, | ||
| 80 | {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ | ||
| 81 | 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, | ||
| 82 | 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, | ||
| 83 | 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, | ||
| 84 | 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, | ||
| 85 | 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, | ||
| 86 | 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, | ||
| 87 | 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, | ||
| 88 | 0x3f, 0x00}, | ||
| 89 | {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ | ||
| 90 | 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, | ||
| 91 | 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, | ||
| 92 | 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, | ||
| 93 | 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, | ||
| 94 | 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, | ||
| 95 | 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, | ||
| 96 | 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, | ||
| 97 | 0xbd, 0x66}, | ||
| 98 | {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ | ||
| 99 | 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, | ||
| 100 | 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, | ||
| 101 | 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, | ||
| 102 | 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, | ||
| 103 | 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, | ||
| 104 | 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, | ||
| 105 | 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, | ||
| 106 | 0x66, 0x50} | ||
| 107 | }; | ||
| 108 | |||
| 109 | /* The representation of field elements. | ||
| 110 | * ------------------------------------ | ||
| 111 | * | ||
| 112 | * We represent field elements with nine values. These values are either 64 or | ||
| 113 | * 128 bits and the field element represented is: | ||
| 114 | * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p) | ||
| 115 | * Each of the nine values is called a 'limb'. Since the limbs are spaced only | ||
| 116 | * 58 bits apart, but are greater than 58 bits in length, the most significant | ||
| 117 | * bits of each limb overlap with the least significant bits of the next. | ||
| 118 | * | ||
| 119 | * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a | ||
| 120 | * 'largefelem' */ | ||
| 121 | |||
| 122 | #define NLIMBS 9 | ||
| 123 | |||
| 124 | typedef uint64_t limb; | ||
| 125 | typedef limb felem[NLIMBS]; | ||
| 126 | typedef uint128_t largefelem[NLIMBS]; | ||
| 127 | |||
| 128 | static const limb bottom57bits = 0x1ffffffffffffff; | ||
| 129 | static const limb bottom58bits = 0x3ffffffffffffff; | ||
| 130 | |||
| 131 | /* bin66_to_felem takes a little-endian byte array and converts it into felem | ||
| 132 | * form. This assumes that the CPU is little-endian. */ | ||
| 133 | static void | ||
| 134 | bin66_to_felem(felem out, const u8 in[66]) | ||
| 135 | { | ||
| 136 | out[0] = (*((limb *) & in[0])) & bottom58bits; | ||
| 137 | out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits; | ||
| 138 | out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits; | ||
| 139 | out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits; | ||
| 140 | out[4] = (*((limb *) & in[29])) & bottom58bits; | ||
| 141 | out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits; | ||
| 142 | out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits; | ||
| 143 | out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits; | ||
| 144 | out[8] = (*((limb *) & in[58])) & bottom57bits; | ||
| 145 | } | ||
| 146 | |||
| 147 | /* felem_to_bin66 takes an felem and serialises into a little endian, 66 byte | ||
| 148 | * array. This assumes that the CPU is little-endian. */ | ||
| 149 | static void | ||
| 150 | felem_to_bin66(u8 out[66], const felem in) | ||
| 151 | { | ||
| 152 | memset(out, 0, 66); | ||
| 153 | (*((limb *) & out[0])) = in[0]; | ||
| 154 | (*((limb *) & out[7])) |= in[1] << 2; | ||
| 155 | (*((limb *) & out[14])) |= in[2] << 4; | ||
| 156 | (*((limb *) & out[21])) |= in[3] << 6; | ||
| 157 | (*((limb *) & out[29])) = in[4]; | ||
| 158 | (*((limb *) & out[36])) |= in[5] << 2; | ||
| 159 | (*((limb *) & out[43])) |= in[6] << 4; | ||
| 160 | (*((limb *) & out[50])) |= in[7] << 6; | ||
| 161 | (*((limb *) & out[58])) = in[8]; | ||
| 162 | } | ||
| 163 | |||
| 164 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
| 165 | static void | ||
| 166 | flip_endian(u8 * out, const u8 * in, unsigned len) | ||
| 167 | { | ||
| 168 | unsigned i; | ||
| 169 | for (i = 0; i < len; ++i) | ||
| 170 | out[i] = in[len - 1 - i]; | ||
| 171 | } | ||
| 172 | |||
| 173 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | ||
| 174 | static int | ||
| 175 | BN_to_felem(felem out, const BIGNUM * bn) | ||
| 176 | { | ||
| 177 | felem_bytearray b_in; | ||
| 178 | felem_bytearray b_out; | ||
| 179 | unsigned num_bytes; | ||
| 180 | |||
| 181 | /* BN_bn2bin eats leading zeroes */ | ||
| 182 | memset(b_out, 0, sizeof b_out); | ||
| 183 | num_bytes = BN_num_bytes(bn); | ||
| 184 | if (num_bytes > sizeof b_out) { | ||
| 185 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 186 | return 0; | ||
| 187 | } | ||
| 188 | if (BN_is_negative(bn)) { | ||
| 189 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 190 | return 0; | ||
| 191 | } | ||
| 192 | num_bytes = BN_bn2bin(bn, b_in); | ||
| 193 | flip_endian(b_out, b_in, num_bytes); | ||
| 194 | bin66_to_felem(out, b_out); | ||
| 195 | return 1; | ||
| 196 | } | ||
| 197 | |||
| 198 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | ||
| 199 | static BIGNUM * | ||
| 200 | felem_to_BN(BIGNUM * out, const felem in) | ||
| 201 | { | ||
| 202 | felem_bytearray b_in, b_out; | ||
| 203 | felem_to_bin66(b_in, in); | ||
| 204 | flip_endian(b_out, b_in, sizeof b_out); | ||
| 205 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
| 206 | } | ||
| 207 | |||
| 208 | |||
| 209 | /* Field operations | ||
| 210 | * ---------------- */ | ||
| 211 | |||
| 212 | static void | ||
| 213 | felem_one(felem out) | ||
| 214 | { | ||
| 215 | out[0] = 1; | ||
| 216 | out[1] = 0; | ||
| 217 | out[2] = 0; | ||
| 218 | out[3] = 0; | ||
| 219 | out[4] = 0; | ||
| 220 | out[5] = 0; | ||
| 221 | out[6] = 0; | ||
| 222 | out[7] = 0; | ||
| 223 | out[8] = 0; | ||
| 224 | } | ||
| 225 | |||
| 226 | static void | ||
| 227 | felem_assign(felem out, const felem in) | ||
| 228 | { | ||
| 229 | out[0] = in[0]; | ||
| 230 | out[1] = in[1]; | ||
| 231 | out[2] = in[2]; | ||
| 232 | out[3] = in[3]; | ||
| 233 | out[4] = in[4]; | ||
| 234 | out[5] = in[5]; | ||
| 235 | out[6] = in[6]; | ||
| 236 | out[7] = in[7]; | ||
| 237 | out[8] = in[8]; | ||
| 238 | } | ||
| 239 | |||
| 240 | /* felem_sum64 sets out = out + in. */ | ||
| 241 | static void | ||
| 242 | felem_sum64(felem out, const felem in) | ||
| 243 | { | ||
| 244 | out[0] += in[0]; | ||
| 245 | out[1] += in[1]; | ||
| 246 | out[2] += in[2]; | ||
| 247 | out[3] += in[3]; | ||
| 248 | out[4] += in[4]; | ||
| 249 | out[5] += in[5]; | ||
| 250 | out[6] += in[6]; | ||
| 251 | out[7] += in[7]; | ||
| 252 | out[8] += in[8]; | ||
| 253 | } | ||
| 254 | |||
| 255 | /* felem_scalar sets out = in * scalar */ | ||
| 256 | static void | ||
| 257 | felem_scalar(felem out, const felem in, limb scalar) | ||
| 258 | { | ||
| 259 | out[0] = in[0] * scalar; | ||
| 260 | out[1] = in[1] * scalar; | ||
| 261 | out[2] = in[2] * scalar; | ||
| 262 | out[3] = in[3] * scalar; | ||
| 263 | out[4] = in[4] * scalar; | ||
| 264 | out[5] = in[5] * scalar; | ||
| 265 | out[6] = in[6] * scalar; | ||
| 266 | out[7] = in[7] * scalar; | ||
| 267 | out[8] = in[8] * scalar; | ||
| 268 | } | ||
| 269 | |||
| 270 | /* felem_scalar64 sets out = out * scalar */ | ||
| 271 | static void | ||
| 272 | felem_scalar64(felem out, limb scalar) | ||
| 273 | { | ||
| 274 | out[0] *= scalar; | ||
| 275 | out[1] *= scalar; | ||
| 276 | out[2] *= scalar; | ||
| 277 | out[3] *= scalar; | ||
| 278 | out[4] *= scalar; | ||
| 279 | out[5] *= scalar; | ||
| 280 | out[6] *= scalar; | ||
| 281 | out[7] *= scalar; | ||
| 282 | out[8] *= scalar; | ||
| 283 | } | ||
| 284 | |||
| 285 | /* felem_scalar128 sets out = out * scalar */ | ||
| 286 | static void | ||
| 287 | felem_scalar128(largefelem out, limb scalar) | ||
| 288 | { | ||
| 289 | out[0] *= scalar; | ||
| 290 | out[1] *= scalar; | ||
| 291 | out[2] *= scalar; | ||
| 292 | out[3] *= scalar; | ||
| 293 | out[4] *= scalar; | ||
| 294 | out[5] *= scalar; | ||
| 295 | out[6] *= scalar; | ||
| 296 | out[7] *= scalar; | ||
| 297 | out[8] *= scalar; | ||
| 298 | } | ||
| 299 | |||
| 300 | /* felem_neg sets |out| to |-in| | ||
| 301 | * On entry: | ||
| 302 | * in[i] < 2^59 + 2^14 | ||
| 303 | * On exit: | ||
| 304 | * out[i] < 2^62 | ||
| 305 | */ | ||
| 306 | static void | ||
| 307 | felem_neg(felem out, const felem in) | ||
| 308 | { | ||
| 309 | /* In order to prevent underflow, we subtract from 0 mod p. */ | ||
| 310 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
| 311 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
| 312 | |||
| 313 | out[0] = two62m3 - in[0]; | ||
| 314 | out[1] = two62m2 - in[1]; | ||
| 315 | out[2] = two62m2 - in[2]; | ||
| 316 | out[3] = two62m2 - in[3]; | ||
| 317 | out[4] = two62m2 - in[4]; | ||
| 318 | out[5] = two62m2 - in[5]; | ||
| 319 | out[6] = two62m2 - in[6]; | ||
| 320 | out[7] = two62m2 - in[7]; | ||
| 321 | out[8] = two62m2 - in[8]; | ||
| 322 | } | ||
| 323 | |||
| 324 | /* felem_diff64 subtracts |in| from |out| | ||
| 325 | * On entry: | ||
| 326 | * in[i] < 2^59 + 2^14 | ||
| 327 | * On exit: | ||
| 328 | * out[i] < out[i] + 2^62 | ||
| 329 | */ | ||
| 330 | static void | ||
| 331 | felem_diff64(felem out, const felem in) | ||
| 332 | { | ||
| 333 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 334 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
| 335 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
| 336 | |||
| 337 | out[0] += two62m3 - in[0]; | ||
| 338 | out[1] += two62m2 - in[1]; | ||
| 339 | out[2] += two62m2 - in[2]; | ||
| 340 | out[3] += two62m2 - in[3]; | ||
| 341 | out[4] += two62m2 - in[4]; | ||
| 342 | out[5] += two62m2 - in[5]; | ||
| 343 | out[6] += two62m2 - in[6]; | ||
| 344 | out[7] += two62m2 - in[7]; | ||
| 345 | out[8] += two62m2 - in[8]; | ||
| 346 | } | ||
| 347 | |||
| 348 | /* felem_diff_128_64 subtracts |in| from |out| | ||
| 349 | * On entry: | ||
| 350 | * in[i] < 2^62 + 2^17 | ||
| 351 | * On exit: | ||
| 352 | * out[i] < out[i] + 2^63 | ||
| 353 | */ | ||
| 354 | static void | ||
| 355 | felem_diff_128_64(largefelem out, const felem in) | ||
| 356 | { | ||
| 357 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 358 | static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
| 359 | static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
| 360 | |||
| 361 | out[0] += two63m6 - in[0]; | ||
| 362 | out[1] += two63m5 - in[1]; | ||
| 363 | out[2] += two63m5 - in[2]; | ||
| 364 | out[3] += two63m5 - in[3]; | ||
| 365 | out[4] += two63m5 - in[4]; | ||
| 366 | out[5] += two63m5 - in[5]; | ||
| 367 | out[6] += two63m5 - in[6]; | ||
| 368 | out[7] += two63m5 - in[7]; | ||
| 369 | out[8] += two63m5 - in[8]; | ||
| 370 | } | ||
| 371 | |||
| 372 | /* felem_diff_128_64 subtracts |in| from |out| | ||
| 373 | * On entry: | ||
| 374 | * in[i] < 2^126 | ||
| 375 | * On exit: | ||
| 376 | * out[i] < out[i] + 2^127 - 2^69 | ||
| 377 | */ | ||
| 378 | static void | ||
| 379 | felem_diff128(largefelem out, const largefelem in) | ||
| 380 | { | ||
| 381 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 382 | static const uint128_t two127m70 = (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70); | ||
| 383 | static const uint128_t two127m69 = (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69); | ||
| 384 | |||
| 385 | out[0] += (two127m70 - in[0]); | ||
| 386 | out[1] += (two127m69 - in[1]); | ||
| 387 | out[2] += (two127m69 - in[2]); | ||
| 388 | out[3] += (two127m69 - in[3]); | ||
| 389 | out[4] += (two127m69 - in[4]); | ||
| 390 | out[5] += (two127m69 - in[5]); | ||
| 391 | out[6] += (two127m69 - in[6]); | ||
| 392 | out[7] += (two127m69 - in[7]); | ||
| 393 | out[8] += (two127m69 - in[8]); | ||
| 394 | } | ||
| 395 | |||
| 396 | /* felem_square sets |out| = |in|^2 | ||
| 397 | * On entry: | ||
| 398 | * in[i] < 2^62 | ||
| 399 | * On exit: | ||
| 400 | * out[i] < 17 * max(in[i]) * max(in[i]) | ||
| 401 | */ | ||
| 402 | static void | ||
| 403 | felem_square(largefelem out, const felem in) | ||
| 404 | { | ||
| 405 | felem inx2, inx4; | ||
| 406 | felem_scalar(inx2, in, 2); | ||
| 407 | felem_scalar(inx4, in, 4); | ||
| 408 | |||
| 409 | /* | ||
| 410 | * We have many cases were we want to do in[x] * in[y] + in[y] * | ||
| 411 | * in[x] This is obviously just 2 * in[x] * in[y] However, rather | ||
| 412 | * than do the doubling on the 128 bit result, we double one of the | ||
| 413 | * inputs to the multiplication by reading from |inx2| | ||
| 414 | */ | ||
| 415 | |||
| 416 | out[0] = ((uint128_t) in[0]) * in[0]; | ||
| 417 | out[1] = ((uint128_t) in[0]) * inx2[1]; | ||
| 418 | out[2] = ((uint128_t) in[0]) * inx2[2] + | ||
| 419 | ((uint128_t) in[1]) * in[1]; | ||
| 420 | out[3] = ((uint128_t) in[0]) * inx2[3] + | ||
| 421 | ((uint128_t) in[1]) * inx2[2]; | ||
| 422 | out[4] = ((uint128_t) in[0]) * inx2[4] + | ||
| 423 | ((uint128_t) in[1]) * inx2[3] + | ||
| 424 | ((uint128_t) in[2]) * in[2]; | ||
| 425 | out[5] = ((uint128_t) in[0]) * inx2[5] + | ||
| 426 | ((uint128_t) in[1]) * inx2[4] + | ||
| 427 | ((uint128_t) in[2]) * inx2[3]; | ||
| 428 | out[6] = ((uint128_t) in[0]) * inx2[6] + | ||
| 429 | ((uint128_t) in[1]) * inx2[5] + | ||
| 430 | ((uint128_t) in[2]) * inx2[4] + | ||
| 431 | ((uint128_t) in[3]) * in[3]; | ||
| 432 | out[7] = ((uint128_t) in[0]) * inx2[7] + | ||
| 433 | ((uint128_t) in[1]) * inx2[6] + | ||
| 434 | ((uint128_t) in[2]) * inx2[5] + | ||
| 435 | ((uint128_t) in[3]) * inx2[4]; | ||
| 436 | out[8] = ((uint128_t) in[0]) * inx2[8] + | ||
| 437 | ((uint128_t) in[1]) * inx2[7] + | ||
| 438 | ((uint128_t) in[2]) * inx2[6] + | ||
| 439 | ((uint128_t) in[3]) * inx2[5] + | ||
| 440 | ((uint128_t) in[4]) * in[4]; | ||
| 441 | |||
| 442 | /* | ||
| 443 | * The remaining limbs fall above 2^521, with the first falling at | ||
| 444 | * 2^522. They correspond to locations one bit up from the limbs | ||
| 445 | * produced above so we would have to multiply by two to align them. | ||
| 446 | * Again, rather than operate on the 128-bit result, we double one of | ||
| 447 | * the inputs to the multiplication. If we want to double for both | ||
| 448 | * this reason, and the reason above, then we end up multiplying by | ||
| 449 | * four. | ||
| 450 | */ | ||
| 451 | |||
| 452 | /* 9 */ | ||
| 453 | out[0] += ((uint128_t) in[1]) * inx4[8] + | ||
| 454 | ((uint128_t) in[2]) * inx4[7] + | ||
| 455 | ((uint128_t) in[3]) * inx4[6] + | ||
| 456 | ((uint128_t) in[4]) * inx4[5]; | ||
| 457 | |||
| 458 | /* 10 */ | ||
| 459 | out[1] += ((uint128_t) in[2]) * inx4[8] + | ||
| 460 | ((uint128_t) in[3]) * inx4[7] + | ||
| 461 | ((uint128_t) in[4]) * inx4[6] + | ||
| 462 | ((uint128_t) in[5]) * inx2[5]; | ||
| 463 | |||
| 464 | /* 11 */ | ||
| 465 | out[2] += ((uint128_t) in[3]) * inx4[8] + | ||
| 466 | ((uint128_t) in[4]) * inx4[7] + | ||
| 467 | ((uint128_t) in[5]) * inx4[6]; | ||
| 468 | |||
| 469 | /* 12 */ | ||
| 470 | out[3] += ((uint128_t) in[4]) * inx4[8] + | ||
| 471 | ((uint128_t) in[5]) * inx4[7] + | ||
| 472 | ((uint128_t) in[6]) * inx2[6]; | ||
| 473 | |||
| 474 | /* 13 */ | ||
| 475 | out[4] += ((uint128_t) in[5]) * inx4[8] + | ||
| 476 | ((uint128_t) in[6]) * inx4[7]; | ||
| 477 | |||
| 478 | /* 14 */ | ||
| 479 | out[5] += ((uint128_t) in[6]) * inx4[8] + | ||
| 480 | ((uint128_t) in[7]) * inx2[7]; | ||
| 481 | |||
| 482 | /* 15 */ | ||
| 483 | out[6] += ((uint128_t) in[7]) * inx4[8]; | ||
| 484 | |||
| 485 | /* 16 */ | ||
| 486 | out[7] += ((uint128_t) in[8]) * inx2[8]; | ||
| 487 | } | ||
| 488 | |||
| 489 | /* felem_mul sets |out| = |in1| * |in2| | ||
| 490 | * On entry: | ||
| 491 | * in1[i] < 2^64 | ||
| 492 | * in2[i] < 2^63 | ||
| 493 | * On exit: | ||
| 494 | * out[i] < 17 * max(in1[i]) * max(in2[i]) | ||
| 495 | */ | ||
| 496 | static void | ||
| 497 | felem_mul(largefelem out, const felem in1, const felem in2) | ||
| 498 | { | ||
| 499 | felem in2x2; | ||
| 500 | felem_scalar(in2x2, in2, 2); | ||
| 501 | |||
| 502 | out[0] = ((uint128_t) in1[0]) * in2[0]; | ||
| 503 | |||
| 504 | out[1] = ((uint128_t) in1[0]) * in2[1] + | ||
| 505 | ((uint128_t) in1[1]) * in2[0]; | ||
| 506 | |||
| 507 | out[2] = ((uint128_t) in1[0]) * in2[2] + | ||
| 508 | ((uint128_t) in1[1]) * in2[1] + | ||
| 509 | ((uint128_t) in1[2]) * in2[0]; | ||
| 510 | |||
| 511 | out[3] = ((uint128_t) in1[0]) * in2[3] + | ||
| 512 | ((uint128_t) in1[1]) * in2[2] + | ||
| 513 | ((uint128_t) in1[2]) * in2[1] + | ||
| 514 | ((uint128_t) in1[3]) * in2[0]; | ||
| 515 | |||
| 516 | out[4] = ((uint128_t) in1[0]) * in2[4] + | ||
| 517 | ((uint128_t) in1[1]) * in2[3] + | ||
| 518 | ((uint128_t) in1[2]) * in2[2] + | ||
| 519 | ((uint128_t) in1[3]) * in2[1] + | ||
| 520 | ((uint128_t) in1[4]) * in2[0]; | ||
| 521 | |||
| 522 | out[5] = ((uint128_t) in1[0]) * in2[5] + | ||
| 523 | ((uint128_t) in1[1]) * in2[4] + | ||
| 524 | ((uint128_t) in1[2]) * in2[3] + | ||
| 525 | ((uint128_t) in1[3]) * in2[2] + | ||
| 526 | ((uint128_t) in1[4]) * in2[1] + | ||
| 527 | ((uint128_t) in1[5]) * in2[0]; | ||
| 528 | |||
| 529 | out[6] = ((uint128_t) in1[0]) * in2[6] + | ||
| 530 | ((uint128_t) in1[1]) * in2[5] + | ||
| 531 | ((uint128_t) in1[2]) * in2[4] + | ||
| 532 | ((uint128_t) in1[3]) * in2[3] + | ||
| 533 | ((uint128_t) in1[4]) * in2[2] + | ||
| 534 | ((uint128_t) in1[5]) * in2[1] + | ||
| 535 | ((uint128_t) in1[6]) * in2[0]; | ||
| 536 | |||
| 537 | out[7] = ((uint128_t) in1[0]) * in2[7] + | ||
| 538 | ((uint128_t) in1[1]) * in2[6] + | ||
| 539 | ((uint128_t) in1[2]) * in2[5] + | ||
| 540 | ((uint128_t) in1[3]) * in2[4] + | ||
| 541 | ((uint128_t) in1[4]) * in2[3] + | ||
| 542 | ((uint128_t) in1[5]) * in2[2] + | ||
| 543 | ((uint128_t) in1[6]) * in2[1] + | ||
| 544 | ((uint128_t) in1[7]) * in2[0]; | ||
| 545 | |||
| 546 | out[8] = ((uint128_t) in1[0]) * in2[8] + | ||
| 547 | ((uint128_t) in1[1]) * in2[7] + | ||
| 548 | ((uint128_t) in1[2]) * in2[6] + | ||
| 549 | ((uint128_t) in1[3]) * in2[5] + | ||
| 550 | ((uint128_t) in1[4]) * in2[4] + | ||
| 551 | ((uint128_t) in1[5]) * in2[3] + | ||
| 552 | ((uint128_t) in1[6]) * in2[2] + | ||
| 553 | ((uint128_t) in1[7]) * in2[1] + | ||
| 554 | ((uint128_t) in1[8]) * in2[0]; | ||
| 555 | |||
| 556 | /* See comment in felem_square about the use of in2x2 here */ | ||
| 557 | |||
| 558 | out[0] += ((uint128_t) in1[1]) * in2x2[8] + | ||
| 559 | ((uint128_t) in1[2]) * in2x2[7] + | ||
| 560 | ((uint128_t) in1[3]) * in2x2[6] + | ||
| 561 | ((uint128_t) in1[4]) * in2x2[5] + | ||
| 562 | ((uint128_t) in1[5]) * in2x2[4] + | ||
| 563 | ((uint128_t) in1[6]) * in2x2[3] + | ||
| 564 | ((uint128_t) in1[7]) * in2x2[2] + | ||
| 565 | ((uint128_t) in1[8]) * in2x2[1]; | ||
| 566 | |||
| 567 | out[1] += ((uint128_t) in1[2]) * in2x2[8] + | ||
| 568 | ((uint128_t) in1[3]) * in2x2[7] + | ||
| 569 | ((uint128_t) in1[4]) * in2x2[6] + | ||
| 570 | ((uint128_t) in1[5]) * in2x2[5] + | ||
| 571 | ((uint128_t) in1[6]) * in2x2[4] + | ||
| 572 | ((uint128_t) in1[7]) * in2x2[3] + | ||
| 573 | ((uint128_t) in1[8]) * in2x2[2]; | ||
| 574 | |||
| 575 | out[2] += ((uint128_t) in1[3]) * in2x2[8] + | ||
| 576 | ((uint128_t) in1[4]) * in2x2[7] + | ||
| 577 | ((uint128_t) in1[5]) * in2x2[6] + | ||
| 578 | ((uint128_t) in1[6]) * in2x2[5] + | ||
| 579 | ((uint128_t) in1[7]) * in2x2[4] + | ||
| 580 | ((uint128_t) in1[8]) * in2x2[3]; | ||
| 581 | |||
| 582 | out[3] += ((uint128_t) in1[4]) * in2x2[8] + | ||
| 583 | ((uint128_t) in1[5]) * in2x2[7] + | ||
| 584 | ((uint128_t) in1[6]) * in2x2[6] + | ||
| 585 | ((uint128_t) in1[7]) * in2x2[5] + | ||
| 586 | ((uint128_t) in1[8]) * in2x2[4]; | ||
| 587 | |||
| 588 | out[4] += ((uint128_t) in1[5]) * in2x2[8] + | ||
| 589 | ((uint128_t) in1[6]) * in2x2[7] + | ||
| 590 | ((uint128_t) in1[7]) * in2x2[6] + | ||
| 591 | ((uint128_t) in1[8]) * in2x2[5]; | ||
| 592 | |||
| 593 | out[5] += ((uint128_t) in1[6]) * in2x2[8] + | ||
| 594 | ((uint128_t) in1[7]) * in2x2[7] + | ||
| 595 | ((uint128_t) in1[8]) * in2x2[6]; | ||
| 596 | |||
| 597 | out[6] += ((uint128_t) in1[7]) * in2x2[8] + | ||
| 598 | ((uint128_t) in1[8]) * in2x2[7]; | ||
| 599 | |||
| 600 | out[7] += ((uint128_t) in1[8]) * in2x2[8]; | ||
| 601 | } | ||
| 602 | |||
| 603 | static const limb bottom52bits = 0xfffffffffffff; | ||
| 604 | |||
| 605 | /* felem_reduce converts a largefelem to an felem. | ||
| 606 | * On entry: | ||
| 607 | * in[i] < 2^128 | ||
| 608 | * On exit: | ||
| 609 | * out[i] < 2^59 + 2^14 | ||
| 610 | */ | ||
| 611 | static void | ||
| 612 | felem_reduce(felem out, const largefelem in) | ||
| 613 | { | ||
| 614 | u64 overflow1, overflow2; | ||
| 615 | |||
| 616 | out[0] = ((limb) in[0]) & bottom58bits; | ||
| 617 | out[1] = ((limb) in[1]) & bottom58bits; | ||
| 618 | out[2] = ((limb) in[2]) & bottom58bits; | ||
| 619 | out[3] = ((limb) in[3]) & bottom58bits; | ||
| 620 | out[4] = ((limb) in[4]) & bottom58bits; | ||
| 621 | out[5] = ((limb) in[5]) & bottom58bits; | ||
| 622 | out[6] = ((limb) in[6]) & bottom58bits; | ||
| 623 | out[7] = ((limb) in[7]) & bottom58bits; | ||
| 624 | out[8] = ((limb) in[8]) & bottom58bits; | ||
| 625 | |||
| 626 | /* out[i] < 2^58 */ | ||
| 627 | |||
| 628 | out[1] += ((limb) in[0]) >> 58; | ||
| 629 | out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; | ||
| 630 | /* | ||
| 631 | * out[1] < 2^58 + 2^6 + 2^58 = 2^59 + 2^6 | ||
| 632 | */ | ||
| 633 | out[2] += ((limb) (in[0] >> 64)) >> 52; | ||
| 634 | |||
| 635 | out[2] += ((limb) in[1]) >> 58; | ||
| 636 | out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; | ||
| 637 | out[3] += ((limb) (in[1] >> 64)) >> 52; | ||
| 638 | |||
| 639 | out[3] += ((limb) in[2]) >> 58; | ||
| 640 | out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; | ||
| 641 | out[4] += ((limb) (in[2] >> 64)) >> 52; | ||
| 642 | |||
| 643 | out[4] += ((limb) in[3]) >> 58; | ||
| 644 | out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; | ||
| 645 | out[5] += ((limb) (in[3] >> 64)) >> 52; | ||
| 646 | |||
| 647 | out[5] += ((limb) in[4]) >> 58; | ||
| 648 | out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; | ||
| 649 | out[6] += ((limb) (in[4] >> 64)) >> 52; | ||
| 650 | |||
| 651 | out[6] += ((limb) in[5]) >> 58; | ||
| 652 | out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; | ||
| 653 | out[7] += ((limb) (in[5] >> 64)) >> 52; | ||
| 654 | |||
| 655 | out[7] += ((limb) in[6]) >> 58; | ||
| 656 | out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; | ||
| 657 | out[8] += ((limb) (in[6] >> 64)) >> 52; | ||
| 658 | |||
| 659 | out[8] += ((limb) in[7]) >> 58; | ||
| 660 | out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; | ||
| 661 | /* | ||
| 662 | * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 < 2^59 + 2^13 | ||
| 663 | */ | ||
| 664 | overflow1 = ((limb) (in[7] >> 64)) >> 52; | ||
| 665 | |||
| 666 | overflow1 += ((limb) in[8]) >> 58; | ||
| 667 | overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; | ||
| 668 | overflow2 = ((limb) (in[8] >> 64)) >> 52; | ||
| 669 | |||
| 670 | overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */ | ||
| 671 | overflow2 <<= 1; /* overflow2 < 2^13 */ | ||
| 672 | |||
| 673 | out[0] += overflow1; /* out[0] < 2^60 */ | ||
| 674 | out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */ | ||
| 675 | |||
| 676 | out[1] += out[0] >> 58; | ||
| 677 | out[0] &= bottom58bits; | ||
| 678 | /* | ||
| 679 | * out[0] < 2^58 out[1] < 2^59 + 2^6 + 2^13 + 2^2 < 2^59 + 2^14 | ||
| 680 | */ | ||
| 681 | } | ||
| 682 | |||
| 683 | static void | ||
| 684 | felem_square_reduce(felem out, const felem in) | ||
| 685 | { | ||
| 686 | largefelem tmp; | ||
| 687 | felem_square(tmp, in); | ||
| 688 | felem_reduce(out, tmp); | ||
| 689 | } | ||
| 690 | |||
| 691 | static void | ||
| 692 | felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
| 693 | { | ||
| 694 | largefelem tmp; | ||
| 695 | felem_mul(tmp, in1, in2); | ||
| 696 | felem_reduce(out, tmp); | ||
| 697 | } | ||
| 698 | |||
| 699 | /* felem_inv calculates |out| = |in|^{-1} | ||
| 700 | * | ||
| 701 | * Based on Fermat's Little Theorem: | ||
| 702 | * a^p = a (mod p) | ||
| 703 | * a^{p-1} = 1 (mod p) | ||
| 704 | * a^{p-2} = a^{-1} (mod p) | ||
| 705 | */ | ||
| 706 | static void | ||
| 707 | felem_inv(felem out, const felem in) | ||
| 708 | { | ||
| 709 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
| 710 | largefelem tmp; | ||
| 711 | unsigned i; | ||
| 712 | |||
| 713 | felem_square(tmp, in); | ||
| 714 | felem_reduce(ftmp, tmp);/* 2^1 */ | ||
| 715 | felem_mul(tmp, in, ftmp); | ||
| 716 | felem_reduce(ftmp, tmp);/* 2^2 - 2^0 */ | ||
| 717 | felem_assign(ftmp2, ftmp); | ||
| 718 | felem_square(tmp, ftmp); | ||
| 719 | felem_reduce(ftmp, tmp);/* 2^3 - 2^1 */ | ||
| 720 | felem_mul(tmp, in, ftmp); | ||
| 721 | felem_reduce(ftmp, tmp);/* 2^3 - 2^0 */ | ||
| 722 | felem_square(tmp, ftmp); | ||
| 723 | felem_reduce(ftmp, tmp);/* 2^4 - 2^1 */ | ||
| 724 | |||
| 725 | felem_square(tmp, ftmp2); | ||
| 726 | felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */ | ||
| 727 | felem_square(tmp, ftmp3); | ||
| 728 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */ | ||
| 729 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 730 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */ | ||
| 731 | |||
| 732 | felem_assign(ftmp2, ftmp3); | ||
| 733 | felem_square(tmp, ftmp3); | ||
| 734 | felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */ | ||
| 735 | felem_square(tmp, ftmp3); | ||
| 736 | felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */ | ||
| 737 | felem_square(tmp, ftmp3); | ||
| 738 | felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */ | ||
| 739 | felem_square(tmp, ftmp3); | ||
| 740 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */ | ||
| 741 | felem_assign(ftmp4, ftmp3); | ||
| 742 | felem_mul(tmp, ftmp3, ftmp); | ||
| 743 | felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */ | ||
| 744 | felem_square(tmp, ftmp4); | ||
| 745 | felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */ | ||
| 746 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 747 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */ | ||
| 748 | felem_assign(ftmp2, ftmp3); | ||
| 749 | |||
| 750 | for (i = 0; i < 8; i++) { | ||
| 751 | felem_square(tmp, ftmp3); | ||
| 752 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ | ||
| 753 | } | ||
| 754 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 755 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */ | ||
| 756 | felem_assign(ftmp2, ftmp3); | ||
| 757 | |||
| 758 | for (i = 0; i < 16; i++) { | ||
| 759 | felem_square(tmp, ftmp3); | ||
| 760 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ | ||
| 761 | } | ||
| 762 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 763 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */ | ||
| 764 | felem_assign(ftmp2, ftmp3); | ||
| 765 | |||
| 766 | for (i = 0; i < 32; i++) { | ||
| 767 | felem_square(tmp, ftmp3); | ||
| 768 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ | ||
| 769 | } | ||
| 770 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 771 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */ | ||
| 772 | felem_assign(ftmp2, ftmp3); | ||
| 773 | |||
| 774 | for (i = 0; i < 64; i++) { | ||
| 775 | felem_square(tmp, ftmp3); | ||
| 776 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ | ||
| 777 | } | ||
| 778 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 779 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */ | ||
| 780 | felem_assign(ftmp2, ftmp3); | ||
| 781 | |||
| 782 | for (i = 0; i < 128; i++) { | ||
| 783 | felem_square(tmp, ftmp3); | ||
| 784 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ | ||
| 785 | } | ||
| 786 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 787 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */ | ||
| 788 | felem_assign(ftmp2, ftmp3); | ||
| 789 | |||
| 790 | for (i = 0; i < 256; i++) { | ||
| 791 | felem_square(tmp, ftmp3); | ||
| 792 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ | ||
| 793 | } | ||
| 794 | felem_mul(tmp, ftmp3, ftmp2); | ||
| 795 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */ | ||
| 796 | |||
| 797 | for (i = 0; i < 9; i++) { | ||
| 798 | felem_square(tmp, ftmp3); | ||
| 799 | felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ | ||
| 800 | } | ||
| 801 | felem_mul(tmp, ftmp3, ftmp4); | ||
| 802 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */ | ||
| 803 | felem_mul(tmp, ftmp3, in); | ||
| 804 | felem_reduce(out, tmp); /* 2^512 - 3 */ | ||
| 805 | } | ||
| 806 | |||
| 807 | /* This is 2^521-1, expressed as an felem */ | ||
| 808 | static const felem kPrime = | ||
| 809 | { | ||
| 810 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | ||
| 811 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | ||
| 812 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff | ||
| 813 | }; | ||
| 814 | |||
| 815 | /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | ||
| 816 | * otherwise. | ||
| 817 | * On entry: | ||
| 818 | * in[i] < 2^59 + 2^14 | ||
| 819 | */ | ||
| 820 | static limb | ||
| 821 | felem_is_zero(const felem in) | ||
| 822 | { | ||
| 823 | felem ftmp; | ||
| 824 | limb is_zero, is_p; | ||
| 825 | felem_assign(ftmp, in); | ||
| 826 | |||
| 827 | ftmp[0] += ftmp[8] >> 57; | ||
| 828 | ftmp[8] &= bottom57bits; | ||
| 829 | /* ftmp[8] < 2^57 */ | ||
| 830 | ftmp[1] += ftmp[0] >> 58; | ||
| 831 | ftmp[0] &= bottom58bits; | ||
| 832 | ftmp[2] += ftmp[1] >> 58; | ||
| 833 | ftmp[1] &= bottom58bits; | ||
| 834 | ftmp[3] += ftmp[2] >> 58; | ||
| 835 | ftmp[2] &= bottom58bits; | ||
| 836 | ftmp[4] += ftmp[3] >> 58; | ||
| 837 | ftmp[3] &= bottom58bits; | ||
| 838 | ftmp[5] += ftmp[4] >> 58; | ||
| 839 | ftmp[4] &= bottom58bits; | ||
| 840 | ftmp[6] += ftmp[5] >> 58; | ||
| 841 | ftmp[5] &= bottom58bits; | ||
| 842 | ftmp[7] += ftmp[6] >> 58; | ||
| 843 | ftmp[6] &= bottom58bits; | ||
| 844 | ftmp[8] += ftmp[7] >> 58; | ||
| 845 | ftmp[7] &= bottom58bits; | ||
| 846 | /* ftmp[8] < 2^57 + 4 */ | ||
| 847 | |||
| 848 | /* | ||
| 849 | * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is | ||
| 850 | * greater than our bound for ftmp[8]. Therefore we only have to | ||
| 851 | * check if the zero is zero or 2^521-1. | ||
| 852 | */ | ||
| 853 | |||
| 854 | is_zero = 0; | ||
| 855 | is_zero |= ftmp[0]; | ||
| 856 | is_zero |= ftmp[1]; | ||
| 857 | is_zero |= ftmp[2]; | ||
| 858 | is_zero |= ftmp[3]; | ||
| 859 | is_zero |= ftmp[4]; | ||
| 860 | is_zero |= ftmp[5]; | ||
| 861 | is_zero |= ftmp[6]; | ||
| 862 | is_zero |= ftmp[7]; | ||
| 863 | is_zero |= ftmp[8]; | ||
| 864 | |||
| 865 | is_zero--; | ||
| 866 | /* | ||
| 867 | * We know that ftmp[i] < 2^63, therefore the only way that the top | ||
| 868 | * bit can be set is if is_zero was 0 before the decrement. | ||
| 869 | */ | ||
| 870 | is_zero = ((s64) is_zero) >> 63; | ||
| 871 | |||
| 872 | is_p = ftmp[0] ^ kPrime[0]; | ||
| 873 | is_p |= ftmp[1] ^ kPrime[1]; | ||
| 874 | is_p |= ftmp[2] ^ kPrime[2]; | ||
| 875 | is_p |= ftmp[3] ^ kPrime[3]; | ||
| 876 | is_p |= ftmp[4] ^ kPrime[4]; | ||
| 877 | is_p |= ftmp[5] ^ kPrime[5]; | ||
| 878 | is_p |= ftmp[6] ^ kPrime[6]; | ||
| 879 | is_p |= ftmp[7] ^ kPrime[7]; | ||
| 880 | is_p |= ftmp[8] ^ kPrime[8]; | ||
| 881 | |||
| 882 | is_p--; | ||
| 883 | is_p = ((s64) is_p) >> 63; | ||
| 884 | |||
| 885 | is_zero |= is_p; | ||
| 886 | return is_zero; | ||
| 887 | } | ||
| 888 | |||
| 889 | static int | ||
| 890 | felem_is_zero_int(const felem in) | ||
| 891 | { | ||
| 892 | return (int) (felem_is_zero(in) & ((limb) 1)); | ||
| 893 | } | ||
| 894 | |||
| 895 | /* felem_contract converts |in| to its unique, minimal representation. | ||
| 896 | * On entry: | ||
| 897 | * in[i] < 2^59 + 2^14 | ||
| 898 | */ | ||
| 899 | static void | ||
| 900 | felem_contract(felem out, const felem in) | ||
| 901 | { | ||
| 902 | limb is_p, is_greater, sign; | ||
| 903 | static const limb two58 = ((limb) 1) << 58; | ||
| 904 | |||
| 905 | felem_assign(out, in); | ||
| 906 | |||
| 907 | out[0] += out[8] >> 57; | ||
| 908 | out[8] &= bottom57bits; | ||
| 909 | /* out[8] < 2^57 */ | ||
| 910 | out[1] += out[0] >> 58; | ||
| 911 | out[0] &= bottom58bits; | ||
| 912 | out[2] += out[1] >> 58; | ||
| 913 | out[1] &= bottom58bits; | ||
| 914 | out[3] += out[2] >> 58; | ||
| 915 | out[2] &= bottom58bits; | ||
| 916 | out[4] += out[3] >> 58; | ||
| 917 | out[3] &= bottom58bits; | ||
| 918 | out[5] += out[4] >> 58; | ||
| 919 | out[4] &= bottom58bits; | ||
| 920 | out[6] += out[5] >> 58; | ||
| 921 | out[5] &= bottom58bits; | ||
| 922 | out[7] += out[6] >> 58; | ||
| 923 | out[6] &= bottom58bits; | ||
| 924 | out[8] += out[7] >> 58; | ||
| 925 | out[7] &= bottom58bits; | ||
| 926 | /* out[8] < 2^57 + 4 */ | ||
| 927 | |||
| 928 | /* | ||
| 929 | * If the value is greater than 2^521-1 then we have to subtract | ||
| 930 | * 2^521-1 out. See the comments in felem_is_zero regarding why we | ||
| 931 | * don't test for other multiples of the prime. | ||
| 932 | */ | ||
| 933 | |||
| 934 | /* | ||
| 935 | * First, if |out| is equal to 2^521-1, we subtract it out to get | ||
| 936 | * zero. | ||
| 937 | */ | ||
| 938 | |||
| 939 | is_p = out[0] ^ kPrime[0]; | ||
| 940 | is_p |= out[1] ^ kPrime[1]; | ||
| 941 | is_p |= out[2] ^ kPrime[2]; | ||
| 942 | is_p |= out[3] ^ kPrime[3]; | ||
| 943 | is_p |= out[4] ^ kPrime[4]; | ||
| 944 | is_p |= out[5] ^ kPrime[5]; | ||
| 945 | is_p |= out[6] ^ kPrime[6]; | ||
| 946 | is_p |= out[7] ^ kPrime[7]; | ||
| 947 | is_p |= out[8] ^ kPrime[8]; | ||
| 948 | |||
| 949 | is_p--; | ||
| 950 | is_p &= is_p << 32; | ||
| 951 | is_p &= is_p << 16; | ||
| 952 | is_p &= is_p << 8; | ||
| 953 | is_p &= is_p << 4; | ||
| 954 | is_p &= is_p << 2; | ||
| 955 | is_p &= is_p << 1; | ||
| 956 | is_p = ((s64) is_p) >> 63; | ||
| 957 | is_p = ~is_p; | ||
| 958 | |||
| 959 | /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ | ||
| 960 | |||
| 961 | out[0] &= is_p; | ||
| 962 | out[1] &= is_p; | ||
| 963 | out[2] &= is_p; | ||
| 964 | out[3] &= is_p; | ||
| 965 | out[4] &= is_p; | ||
| 966 | out[5] &= is_p; | ||
| 967 | out[6] &= is_p; | ||
| 968 | out[7] &= is_p; | ||
| 969 | out[8] &= is_p; | ||
| 970 | |||
| 971 | /* | ||
| 972 | * In order to test that |out| >= 2^521-1 we need only test if out[8] | ||
| 973 | * >> 57 is greater than zero as (2^521-1) + x >= 2^522 | ||
| 974 | */ | ||
| 975 | is_greater = out[8] >> 57; | ||
| 976 | is_greater |= is_greater << 32; | ||
| 977 | is_greater |= is_greater << 16; | ||
| 978 | is_greater |= is_greater << 8; | ||
| 979 | is_greater |= is_greater << 4; | ||
| 980 | is_greater |= is_greater << 2; | ||
| 981 | is_greater |= is_greater << 1; | ||
| 982 | is_greater = ((s64) is_greater) >> 63; | ||
| 983 | |||
| 984 | out[0] -= kPrime[0] & is_greater; | ||
| 985 | out[1] -= kPrime[1] & is_greater; | ||
| 986 | out[2] -= kPrime[2] & is_greater; | ||
| 987 | out[3] -= kPrime[3] & is_greater; | ||
| 988 | out[4] -= kPrime[4] & is_greater; | ||
| 989 | out[5] -= kPrime[5] & is_greater; | ||
| 990 | out[6] -= kPrime[6] & is_greater; | ||
| 991 | out[7] -= kPrime[7] & is_greater; | ||
| 992 | out[8] -= kPrime[8] & is_greater; | ||
| 993 | |||
| 994 | /* Eliminate negative coefficients */ | ||
| 995 | sign = -(out[0] >> 63); | ||
| 996 | out[0] += (two58 & sign); | ||
| 997 | out[1] -= (1 & sign); | ||
| 998 | sign = -(out[1] >> 63); | ||
| 999 | out[1] += (two58 & sign); | ||
| 1000 | out[2] -= (1 & sign); | ||
| 1001 | sign = -(out[2] >> 63); | ||
| 1002 | out[2] += (two58 & sign); | ||
| 1003 | out[3] -= (1 & sign); | ||
| 1004 | sign = -(out[3] >> 63); | ||
| 1005 | out[3] += (two58 & sign); | ||
| 1006 | out[4] -= (1 & sign); | ||
| 1007 | sign = -(out[4] >> 63); | ||
| 1008 | out[4] += (two58 & sign); | ||
| 1009 | out[5] -= (1 & sign); | ||
| 1010 | sign = -(out[0] >> 63); | ||
| 1011 | out[5] += (two58 & sign); | ||
| 1012 | out[6] -= (1 & sign); | ||
| 1013 | sign = -(out[6] >> 63); | ||
| 1014 | out[6] += (two58 & sign); | ||
| 1015 | out[7] -= (1 & sign); | ||
| 1016 | sign = -(out[7] >> 63); | ||
| 1017 | out[7] += (two58 & sign); | ||
| 1018 | out[8] -= (1 & sign); | ||
| 1019 | sign = -(out[5] >> 63); | ||
| 1020 | out[5] += (two58 & sign); | ||
| 1021 | out[6] -= (1 & sign); | ||
| 1022 | sign = -(out[6] >> 63); | ||
| 1023 | out[6] += (two58 & sign); | ||
| 1024 | out[7] -= (1 & sign); | ||
| 1025 | sign = -(out[7] >> 63); | ||
| 1026 | out[7] += (two58 & sign); | ||
| 1027 | out[8] -= (1 & sign); | ||
| 1028 | } | ||
| 1029 | |||
| 1030 | /* Group operations | ||
| 1031 | * ---------------- | ||
| 1032 | * | ||
| 1033 | * Building on top of the field operations we have the operations on the | ||
| 1034 | * elliptic curve group itself. Points on the curve are represented in Jacobian | ||
| 1035 | * coordinates */ | ||
| 1036 | |||
| 1037 | /* point_double calcuates 2*(x_in, y_in, z_in) | ||
| 1038 | * | ||
| 1039 | * The method is taken from: | ||
| 1040 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | ||
| 1041 | * | ||
| 1042 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | ||
| 1043 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
| 1044 | static void | ||
| 1045 | point_double(felem x_out, felem y_out, felem z_out, | ||
| 1046 | const felem x_in, const felem y_in, const felem z_in) | ||
| 1047 | { | ||
| 1048 | largefelem tmp, tmp2; | ||
| 1049 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
| 1050 | |||
| 1051 | felem_assign(ftmp, x_in); | ||
| 1052 | felem_assign(ftmp2, x_in); | ||
| 1053 | |||
| 1054 | /* delta = z^2 */ | ||
| 1055 | felem_square(tmp, z_in); | ||
| 1056 | felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */ | ||
| 1057 | |||
| 1058 | /* gamma = y^2 */ | ||
| 1059 | felem_square(tmp, y_in); | ||
| 1060 | felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */ | ||
| 1061 | |||
| 1062 | /* beta = x*gamma */ | ||
| 1063 | felem_mul(tmp, x_in, gamma); | ||
| 1064 | felem_reduce(beta, tmp);/* beta[i] < 2^59 + 2^14 */ | ||
| 1065 | |||
| 1066 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
| 1067 | felem_diff64(ftmp, delta); | ||
| 1068 | /* ftmp[i] < 2^61 */ | ||
| 1069 | felem_sum64(ftmp2, delta); | ||
| 1070 | /* ftmp2[i] < 2^60 + 2^15 */ | ||
| 1071 | felem_scalar64(ftmp2, 3); | ||
| 1072 | /* ftmp2[i] < 3*2^60 + 3*2^15 */ | ||
| 1073 | felem_mul(tmp, ftmp, ftmp2); | ||
| 1074 | /* | ||
| 1075 | * tmp[i] < 17(3*2^121 + 3*2^76) = 61*2^121 + 61*2^76 < 64*2^121 + | ||
| 1076 | * 64*2^76 = 2^127 + 2^82 < 2^128 | ||
| 1077 | */ | ||
| 1078 | felem_reduce(alpha, tmp); | ||
| 1079 | |||
| 1080 | /* x' = alpha^2 - 8*beta */ | ||
| 1081 | felem_square(tmp, alpha); | ||
| 1082 | /* | ||
| 1083 | * tmp[i] < 17*2^120 < 2^125 | ||
| 1084 | */ | ||
| 1085 | felem_assign(ftmp, beta); | ||
| 1086 | felem_scalar64(ftmp, 8); | ||
| 1087 | /* ftmp[i] < 2^62 + 2^17 */ | ||
| 1088 | felem_diff_128_64(tmp, ftmp); | ||
| 1089 | /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ | ||
| 1090 | felem_reduce(x_out, tmp); | ||
| 1091 | |||
| 1092 | /* z' = (y + z)^2 - gamma - delta */ | ||
| 1093 | felem_sum64(delta, gamma); | ||
| 1094 | /* delta[i] < 2^60 + 2^15 */ | ||
| 1095 | felem_assign(ftmp, y_in); | ||
| 1096 | felem_sum64(ftmp, z_in); | ||
| 1097 | /* ftmp[i] < 2^60 + 2^15 */ | ||
| 1098 | felem_square(tmp, ftmp); | ||
| 1099 | /* | ||
| 1100 | * tmp[i] < 17(2^122) < 2^127 | ||
| 1101 | */ | ||
| 1102 | felem_diff_128_64(tmp, delta); | ||
| 1103 | /* tmp[i] < 2^127 + 2^63 */ | ||
| 1104 | felem_reduce(z_out, tmp); | ||
| 1105 | |||
| 1106 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
| 1107 | felem_scalar64(beta, 4); | ||
| 1108 | /* beta[i] < 2^61 + 2^16 */ | ||
| 1109 | felem_diff64(beta, x_out); | ||
| 1110 | /* beta[i] < 2^61 + 2^60 + 2^16 */ | ||
| 1111 | felem_mul(tmp, alpha, beta); | ||
| 1112 | /* | ||
| 1113 | * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) = 17*(2^120 + 2^75 | ||
| 1114 | * + 2^119 + 2^74 + 2^75 + 2^30) = 17*(2^120 + 2^119 + 2^76 + 2^74 + | ||
| 1115 | * 2^30) < 2^128 | ||
| 1116 | */ | ||
| 1117 | felem_square(tmp2, gamma); | ||
| 1118 | /* | ||
| 1119 | * tmp2[i] < 17*(2^59 + 2^14)^2 = 17*(2^118 + 2^74 + 2^28) | ||
| 1120 | */ | ||
| 1121 | felem_scalar128(tmp2, 8); | ||
| 1122 | /* | ||
| 1123 | * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) = 2^125 + 2^121 + 2^81 + 2^77 | ||
| 1124 | * + 2^35 + 2^31 < 2^126 | ||
| 1125 | */ | ||
| 1126 | felem_diff128(tmp, tmp2); | ||
| 1127 | /* | ||
| 1128 | * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) = | ||
| 1129 | * 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + 2^74 | ||
| 1130 | * + 2^69 + 2^34 + 2^30 < 2^128 | ||
| 1131 | */ | ||
| 1132 | felem_reduce(y_out, tmp); | ||
| 1133 | } | ||
| 1134 | |||
| 1135 | /* copy_conditional copies in to out iff mask is all ones. */ | ||
| 1136 | static void | ||
| 1137 | copy_conditional(felem out, const felem in, limb mask) | ||
| 1138 | { | ||
| 1139 | unsigned i; | ||
| 1140 | for (i = 0; i < NLIMBS; ++i) { | ||
| 1141 | const limb tmp = mask & (in[i] ^ out[i]); | ||
| 1142 | out[i] ^= tmp; | ||
| 1143 | } | ||
| 1144 | } | ||
| 1145 | |||
| 1146 | /* point_add calcuates (x1, y1, z1) + (x2, y2, z2) | ||
| 1147 | * | ||
| 1148 | * The method is taken from | ||
| 1149 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | ||
| 1150 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | ||
| 1151 | * | ||
| 1152 | * This function includes a branch for checking whether the two input points | ||
| 1153 | * are equal (while not equal to the point at infinity). This case never | ||
| 1154 | * happens during single point multiplication, so there is no timing leak for | ||
| 1155 | * ECDH or ECDSA signing. */ | ||
| 1156 | static void | ||
| 1157 | point_add(felem x3, felem y3, felem z3, | ||
| 1158 | const felem x1, const felem y1, const felem z1, | ||
| 1159 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
| 1160 | { | ||
| 1161 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | ||
| 1162 | largefelem tmp, tmp2; | ||
| 1163 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; | ||
| 1164 | |||
| 1165 | z1_is_zero = felem_is_zero(z1); | ||
| 1166 | z2_is_zero = felem_is_zero(z2); | ||
| 1167 | |||
| 1168 | /* ftmp = z1z1 = z1**2 */ | ||
| 1169 | felem_square(tmp, z1); | ||
| 1170 | felem_reduce(ftmp, tmp); | ||
| 1171 | |||
| 1172 | if (!mixed) { | ||
| 1173 | /* ftmp2 = z2z2 = z2**2 */ | ||
| 1174 | felem_square(tmp, z2); | ||
| 1175 | felem_reduce(ftmp2, tmp); | ||
| 1176 | |||
| 1177 | /* u1 = ftmp3 = x1*z2z2 */ | ||
| 1178 | felem_mul(tmp, x1, ftmp2); | ||
| 1179 | felem_reduce(ftmp3, tmp); | ||
| 1180 | |||
| 1181 | /* ftmp5 = z1 + z2 */ | ||
| 1182 | felem_assign(ftmp5, z1); | ||
| 1183 | felem_sum64(ftmp5, z2); | ||
| 1184 | /* ftmp5[i] < 2^61 */ | ||
| 1185 | |||
| 1186 | /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ | ||
| 1187 | felem_square(tmp, ftmp5); | ||
| 1188 | /* tmp[i] < 17*2^122 */ | ||
| 1189 | felem_diff_128_64(tmp, ftmp); | ||
| 1190 | /* tmp[i] < 17*2^122 + 2^63 */ | ||
| 1191 | felem_diff_128_64(tmp, ftmp2); | ||
| 1192 | /* tmp[i] < 17*2^122 + 2^64 */ | ||
| 1193 | felem_reduce(ftmp5, tmp); | ||
| 1194 | |||
| 1195 | /* ftmp2 = z2 * z2z2 */ | ||
| 1196 | felem_mul(tmp, ftmp2, z2); | ||
| 1197 | felem_reduce(ftmp2, tmp); | ||
| 1198 | |||
| 1199 | /* s1 = ftmp6 = y1 * z2**3 */ | ||
| 1200 | felem_mul(tmp, y1, ftmp2); | ||
| 1201 | felem_reduce(ftmp6, tmp); | ||
| 1202 | } else { | ||
| 1203 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
| 1204 | |||
| 1205 | /* u1 = ftmp3 = x1*z2z2 */ | ||
| 1206 | felem_assign(ftmp3, x1); | ||
| 1207 | |||
| 1208 | /* ftmp5 = 2*z1z2 */ | ||
| 1209 | felem_scalar(ftmp5, z1, 2); | ||
| 1210 | |||
| 1211 | /* s1 = ftmp6 = y1 * z2**3 */ | ||
| 1212 | felem_assign(ftmp6, y1); | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | /* u2 = x2*z1z1 */ | ||
| 1216 | felem_mul(tmp, x2, ftmp); | ||
| 1217 | /* tmp[i] < 17*2^120 */ | ||
| 1218 | |||
| 1219 | /* h = ftmp4 = u2 - u1 */ | ||
| 1220 | felem_diff_128_64(tmp, ftmp3); | ||
| 1221 | /* tmp[i] < 17*2^120 + 2^63 */ | ||
| 1222 | felem_reduce(ftmp4, tmp); | ||
| 1223 | |||
| 1224 | x_equal = felem_is_zero(ftmp4); | ||
| 1225 | |||
| 1226 | /* z_out = ftmp5 * h */ | ||
| 1227 | felem_mul(tmp, ftmp5, ftmp4); | ||
| 1228 | felem_reduce(z_out, tmp); | ||
| 1229 | |||
| 1230 | /* ftmp = z1 * z1z1 */ | ||
| 1231 | felem_mul(tmp, ftmp, z1); | ||
| 1232 | felem_reduce(ftmp, tmp); | ||
| 1233 | |||
| 1234 | /* s2 = tmp = y2 * z1**3 */ | ||
| 1235 | felem_mul(tmp, y2, ftmp); | ||
| 1236 | /* tmp[i] < 17*2^120 */ | ||
| 1237 | |||
| 1238 | /* r = ftmp5 = (s2 - s1)*2 */ | ||
| 1239 | felem_diff_128_64(tmp, ftmp6); | ||
| 1240 | /* tmp[i] < 17*2^120 + 2^63 */ | ||
| 1241 | felem_reduce(ftmp5, tmp); | ||
| 1242 | y_equal = felem_is_zero(ftmp5); | ||
| 1243 | felem_scalar64(ftmp5, 2); | ||
| 1244 | /* ftmp5[i] < 2^61 */ | ||
| 1245 | |||
| 1246 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
| 1247 | point_double(x3, y3, z3, x1, y1, z1); | ||
| 1248 | return; | ||
| 1249 | } | ||
| 1250 | /* I = ftmp = (2h)**2 */ | ||
| 1251 | felem_assign(ftmp, ftmp4); | ||
| 1252 | felem_scalar64(ftmp, 2); | ||
| 1253 | /* ftmp[i] < 2^61 */ | ||
| 1254 | felem_square(tmp, ftmp); | ||
| 1255 | /* tmp[i] < 17*2^122 */ | ||
| 1256 | felem_reduce(ftmp, tmp); | ||
| 1257 | |||
| 1258 | /* J = ftmp2 = h * I */ | ||
| 1259 | felem_mul(tmp, ftmp4, ftmp); | ||
| 1260 | felem_reduce(ftmp2, tmp); | ||
| 1261 | |||
| 1262 | /* V = ftmp4 = U1 * I */ | ||
| 1263 | felem_mul(tmp, ftmp3, ftmp); | ||
| 1264 | felem_reduce(ftmp4, tmp); | ||
| 1265 | |||
| 1266 | /* x_out = r**2 - J - 2V */ | ||
| 1267 | felem_square(tmp, ftmp5); | ||
| 1268 | /* tmp[i] < 17*2^122 */ | ||
| 1269 | felem_diff_128_64(tmp, ftmp2); | ||
| 1270 | /* tmp[i] < 17*2^122 + 2^63 */ | ||
| 1271 | felem_assign(ftmp3, ftmp4); | ||
| 1272 | felem_scalar64(ftmp4, 2); | ||
| 1273 | /* ftmp4[i] < 2^61 */ | ||
| 1274 | felem_diff_128_64(tmp, ftmp4); | ||
| 1275 | /* tmp[i] < 17*2^122 + 2^64 */ | ||
| 1276 | felem_reduce(x_out, tmp); | ||
| 1277 | |||
| 1278 | /* y_out = r(V-x_out) - 2 * s1 * J */ | ||
| 1279 | felem_diff64(ftmp3, x_out); | ||
| 1280 | /* | ||
| 1281 | * ftmp3[i] < 2^60 + 2^60 = 2^61 | ||
| 1282 | */ | ||
| 1283 | felem_mul(tmp, ftmp5, ftmp3); | ||
| 1284 | /* tmp[i] < 17*2^122 */ | ||
| 1285 | felem_mul(tmp2, ftmp6, ftmp2); | ||
| 1286 | /* tmp2[i] < 17*2^120 */ | ||
| 1287 | felem_scalar128(tmp2, 2); | ||
| 1288 | /* tmp2[i] < 17*2^121 */ | ||
| 1289 | felem_diff128(tmp, tmp2); | ||
| 1290 | /* | ||
| 1291 | * tmp[i] < 2^127 - 2^69 + 17*2^122 = 2^126 - 2^122 - 2^6 - 2^2 - 1 < | ||
| 1292 | * 2^127 | ||
| 1293 | */ | ||
| 1294 | felem_reduce(y_out, tmp); | ||
| 1295 | |||
| 1296 | copy_conditional(x_out, x2, z1_is_zero); | ||
| 1297 | copy_conditional(x_out, x1, z2_is_zero); | ||
| 1298 | copy_conditional(y_out, y2, z1_is_zero); | ||
| 1299 | copy_conditional(y_out, y1, z2_is_zero); | ||
| 1300 | copy_conditional(z_out, z2, z1_is_zero); | ||
| 1301 | copy_conditional(z_out, z1, z2_is_zero); | ||
| 1302 | felem_assign(x3, x_out); | ||
| 1303 | felem_assign(y3, y_out); | ||
| 1304 | felem_assign(z3, z_out); | ||
| 1305 | } | ||
| 1306 | |||
| 1307 | /* Base point pre computation | ||
| 1308 | * -------------------------- | ||
| 1309 | * | ||
| 1310 | * Two different sorts of precomputed tables are used in the following code. | ||
| 1311 | * Each contain various points on the curve, where each point is three field | ||
| 1312 | * elements (x, y, z). | ||
| 1313 | * | ||
| 1314 | * For the base point table, z is usually 1 (0 for the point at infinity). | ||
| 1315 | * This table has 16 elements: | ||
| 1316 | * index | bits | point | ||
| 1317 | * ------+---------+------------------------------ | ||
| 1318 | * 0 | 0 0 0 0 | 0G | ||
| 1319 | * 1 | 0 0 0 1 | 1G | ||
| 1320 | * 2 | 0 0 1 0 | 2^130G | ||
| 1321 | * 3 | 0 0 1 1 | (2^130 + 1)G | ||
| 1322 | * 4 | 0 1 0 0 | 2^260G | ||
| 1323 | * 5 | 0 1 0 1 | (2^260 + 1)G | ||
| 1324 | * 6 | 0 1 1 0 | (2^260 + 2^130)G | ||
| 1325 | * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G | ||
| 1326 | * 8 | 1 0 0 0 | 2^390G | ||
| 1327 | * 9 | 1 0 0 1 | (2^390 + 1)G | ||
| 1328 | * 10 | 1 0 1 0 | (2^390 + 2^130)G | ||
| 1329 | * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G | ||
| 1330 | * 12 | 1 1 0 0 | (2^390 + 2^260)G | ||
| 1331 | * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G | ||
| 1332 | * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G | ||
| 1333 | * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G | ||
| 1334 | * | ||
| 1335 | * The reason for this is so that we can clock bits into four different | ||
| 1336 | * locations when doing simple scalar multiplies against the base point. | ||
| 1337 | * | ||
| 1338 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ | ||
| 1339 | |||
| 1340 | /* gmul is the table of precomputed base points */ | ||
| 1341 | static const felem gmul[16][3] = | ||
| 1342 | {{{0, 0, 0, 0, 0, 0, 0, 0, 0}, | ||
| 1343 | {0, 0, 0, 0, 0, 0, 0, 0, 0}, | ||
| 1344 | {0, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1345 | {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, | ||
| 1346 | 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, | ||
| 1347 | 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, | ||
| 1348 | {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, | ||
| 1349 | 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, | ||
| 1350 | 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, | ||
| 1351 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1352 | {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, | ||
| 1353 | 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, | ||
| 1354 | 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, | ||
| 1355 | {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, | ||
| 1356 | 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, | ||
| 1357 | 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, | ||
| 1358 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1359 | {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, | ||
| 1360 | 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, | ||
| 1361 | 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, | ||
| 1362 | {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, | ||
| 1363 | 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, | ||
| 1364 | 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, | ||
| 1365 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1366 | {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, | ||
| 1367 | 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, | ||
| 1368 | 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, | ||
| 1369 | {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, | ||
| 1370 | 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, | ||
| 1371 | 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, | ||
| 1372 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1373 | {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, | ||
| 1374 | 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, | ||
| 1375 | 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, | ||
| 1376 | {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, | ||
| 1377 | 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, | ||
| 1378 | 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, | ||
| 1379 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1380 | {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, | ||
| 1381 | 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, | ||
| 1382 | 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, | ||
| 1383 | {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, | ||
| 1384 | 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, | ||
| 1385 | 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, | ||
| 1386 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1387 | {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, | ||
| 1388 | 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, | ||
| 1389 | 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, | ||
| 1390 | {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, | ||
| 1391 | 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, | ||
| 1392 | 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, | ||
| 1393 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1394 | {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, | ||
| 1395 | 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, | ||
| 1396 | 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, | ||
| 1397 | {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, | ||
| 1398 | 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, | ||
| 1399 | 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, | ||
| 1400 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1401 | {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, | ||
| 1402 | 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, | ||
| 1403 | 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, | ||
| 1404 | {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, | ||
| 1405 | 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, | ||
| 1406 | 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, | ||
| 1407 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1408 | {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, | ||
| 1409 | 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, | ||
| 1410 | 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, | ||
| 1411 | {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, | ||
| 1412 | 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, | ||
| 1413 | 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, | ||
| 1414 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1415 | {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, | ||
| 1416 | 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, | ||
| 1417 | 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, | ||
| 1418 | {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, | ||
| 1419 | 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, | ||
| 1420 | 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, | ||
| 1421 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1422 | {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, | ||
| 1423 | 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, | ||
| 1424 | 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, | ||
| 1425 | {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, | ||
| 1426 | 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, | ||
| 1427 | 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, | ||
| 1428 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1429 | {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, | ||
| 1430 | 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, | ||
| 1431 | 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, | ||
| 1432 | {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, | ||
| 1433 | 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, | ||
| 1434 | 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, | ||
| 1435 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1436 | {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, | ||
| 1437 | 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, | ||
| 1438 | 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, | ||
| 1439 | {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, | ||
| 1440 | 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, | ||
| 1441 | 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, | ||
| 1442 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1443 | {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, | ||
| 1444 | 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, | ||
| 1445 | 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, | ||
| 1446 | {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, | ||
| 1447 | 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, | ||
| 1448 | 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, | ||
| 1449 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}}; | ||
| 1450 | |||
| 1451 | /* select_point selects the |idx|th point from a precomputation table and | ||
| 1452 | * copies it to out. */ | ||
| 1453 | static void | ||
| 1454 | select_point(const limb idx, unsigned int size, const felem pre_comp[ /* size */ ][3], | ||
| 1455 | felem out[3]) | ||
| 1456 | { | ||
| 1457 | unsigned i, j; | ||
| 1458 | limb *outlimbs = &out[0][0]; | ||
| 1459 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
| 1460 | |||
| 1461 | for (i = 0; i < size; i++) { | ||
| 1462 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
| 1463 | limb mask = i ^ idx; | ||
| 1464 | mask |= mask >> 4; | ||
| 1465 | mask |= mask >> 2; | ||
| 1466 | mask |= mask >> 1; | ||
| 1467 | mask &= 1; | ||
| 1468 | mask--; | ||
| 1469 | for (j = 0; j < NLIMBS * 3; j++) | ||
| 1470 | outlimbs[j] |= inlimbs[j] & mask; | ||
| 1471 | } | ||
| 1472 | } | ||
| 1473 | |||
| 1474 | /* get_bit returns the |i|th bit in |in| */ | ||
| 1475 | static char | ||
| 1476 | get_bit(const felem_bytearray in, int i) | ||
| 1477 | { | ||
| 1478 | if (i < 0) | ||
| 1479 | return 0; | ||
| 1480 | return (in[i >> 3] >> (i & 7)) & 1; | ||
| 1481 | } | ||
| 1482 | |||
| 1483 | /* Interleaved point multiplication using precomputed point multiples: | ||
| 1484 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
| 1485 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
| 1486 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
| 1487 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
| 1488 | static void | ||
| 1489 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
| 1490 | const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, | ||
| 1491 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3]) | ||
| 1492 | { | ||
| 1493 | int i, skip; | ||
| 1494 | unsigned num, gen_mul = (g_scalar != NULL); | ||
| 1495 | felem nq[3], tmp[4]; | ||
| 1496 | limb bits; | ||
| 1497 | u8 sign, digit; | ||
| 1498 | |||
| 1499 | /* set nq to the point at infinity */ | ||
| 1500 | memset(nq, 0, 3 * sizeof(felem)); | ||
| 1501 | |||
| 1502 | /* | ||
| 1503 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
| 1504 | * multiples of the generator (last quarter of rounds) and additions | ||
| 1505 | * of other points multiples (every 5th round). | ||
| 1506 | */ | ||
| 1507 | skip = 1; /* save two point operations in the first | ||
| 1508 | * round */ | ||
| 1509 | for (i = (num_points ? 520 : 130); i >= 0; --i) { | ||
| 1510 | /* double */ | ||
| 1511 | if (!skip) | ||
| 1512 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
| 1513 | |||
| 1514 | /* add multiples of the generator */ | ||
| 1515 | if (gen_mul && (i <= 130)) { | ||
| 1516 | bits = get_bit(g_scalar, i + 390) << 3; | ||
| 1517 | if (i < 130) { | ||
| 1518 | bits |= get_bit(g_scalar, i + 260) << 2; | ||
| 1519 | bits |= get_bit(g_scalar, i + 130) << 1; | ||
| 1520 | bits |= get_bit(g_scalar, i); | ||
| 1521 | } | ||
| 1522 | /* select the point to add, in constant time */ | ||
| 1523 | select_point(bits, 16, g_pre_comp, tmp); | ||
| 1524 | if (!skip) { | ||
| 1525 | point_add(nq[0], nq[1], nq[2], | ||
| 1526 | nq[0], nq[1], nq[2], | ||
| 1527 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
| 1528 | } else { | ||
| 1529 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
| 1530 | skip = 0; | ||
| 1531 | } | ||
| 1532 | } | ||
| 1533 | /* do other additions every 5 doublings */ | ||
| 1534 | if (num_points && (i % 5 == 0)) { | ||
| 1535 | /* loop over all scalars */ | ||
| 1536 | for (num = 0; num < num_points; ++num) { | ||
| 1537 | bits = get_bit(scalars[num], i + 4) << 5; | ||
| 1538 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
| 1539 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
| 1540 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
| 1541 | bits |= get_bit(scalars[num], i) << 1; | ||
| 1542 | bits |= get_bit(scalars[num], i - 1); | ||
| 1543 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
| 1544 | |||
| 1545 | /* | ||
| 1546 | * select the point to add or subtract, in | ||
| 1547 | * constant time | ||
| 1548 | */ | ||
| 1549 | select_point(digit, 17, pre_comp[num], tmp); | ||
| 1550 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the | ||
| 1551 | * negative point */ | ||
| 1552 | copy_conditional(tmp[1], tmp[3], (-(limb) sign)); | ||
| 1553 | |||
| 1554 | if (!skip) { | ||
| 1555 | point_add(nq[0], nq[1], nq[2], | ||
| 1556 | nq[0], nq[1], nq[2], | ||
| 1557 | mixed, tmp[0], tmp[1], tmp[2]); | ||
| 1558 | } else { | ||
| 1559 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
| 1560 | skip = 0; | ||
| 1561 | } | ||
| 1562 | } | ||
| 1563 | } | ||
| 1564 | } | ||
| 1565 | felem_assign(x_out, nq[0]); | ||
| 1566 | felem_assign(y_out, nq[1]); | ||
| 1567 | felem_assign(z_out, nq[2]); | ||
| 1568 | } | ||
| 1569 | |||
| 1570 | |||
| 1571 | /* Precomputation for the group generator. */ | ||
| 1572 | typedef struct { | ||
| 1573 | felem g_pre_comp[16][3]; | ||
| 1574 | int references; | ||
| 1575 | } NISTP521_PRE_COMP; | ||
| 1576 | |||
| 1577 | const EC_METHOD * | ||
| 1578 | EC_GFp_nistp521_method(void) | ||
| 1579 | { | ||
| 1580 | static const EC_METHOD ret = { | ||
| 1581 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
| 1582 | .field_type = NID_X9_62_prime_field, | ||
| 1583 | .group_init = ec_GFp_nistp521_group_init, | ||
| 1584 | .group_finish = ec_GFp_simple_group_finish, | ||
| 1585 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
| 1586 | .group_copy = ec_GFp_nist_group_copy, | ||
| 1587 | .group_set_curve = ec_GFp_nistp521_group_set_curve, | ||
| 1588 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
| 1589 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
| 1590 | .group_check_discriminant = | ||
| 1591 | ec_GFp_simple_group_check_discriminant, | ||
| 1592 | .point_init = ec_GFp_simple_point_init, | ||
| 1593 | .point_finish = ec_GFp_simple_point_finish, | ||
| 1594 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
| 1595 | .point_copy = ec_GFp_simple_point_copy, | ||
| 1596 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
| 1597 | .point_set_Jprojective_coordinates_GFp = | ||
| 1598 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
| 1599 | .point_get_Jprojective_coordinates_GFp = | ||
| 1600 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
| 1601 | .point_set_affine_coordinates = | ||
| 1602 | ec_GFp_simple_point_set_affine_coordinates, | ||
| 1603 | .point_get_affine_coordinates = | ||
| 1604 | ec_GFp_nistp521_point_get_affine_coordinates, | ||
| 1605 | .add = ec_GFp_simple_add, | ||
| 1606 | .dbl = ec_GFp_simple_dbl, | ||
| 1607 | .invert = ec_GFp_simple_invert, | ||
| 1608 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
| 1609 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
| 1610 | .point_cmp = ec_GFp_simple_cmp, | ||
| 1611 | .make_affine = ec_GFp_simple_make_affine, | ||
| 1612 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
| 1613 | .mul = ec_GFp_nistp521_points_mul, | ||
| 1614 | .precompute_mult = ec_GFp_nistp521_precompute_mult, | ||
| 1615 | .have_precompute_mult = ec_GFp_nistp521_have_precompute_mult, | ||
| 1616 | .field_mul = ec_GFp_nist_field_mul, | ||
| 1617 | .field_sqr = ec_GFp_nist_field_sqr | ||
| 1618 | }; | ||
| 1619 | |||
| 1620 | return &ret; | ||
| 1621 | } | ||
| 1622 | |||
| 1623 | |||
| 1624 | /******************************************************************************/ | ||
| 1625 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
| 1626 | */ | ||
| 1627 | |||
| 1628 | static NISTP521_PRE_COMP * | ||
| 1629 | nistp521_pre_comp_new() | ||
| 1630 | { | ||
| 1631 | NISTP521_PRE_COMP *ret = NULL; | ||
| 1632 | ret = malloc(sizeof(NISTP521_PRE_COMP)); | ||
| 1633 | if (!ret) { | ||
| 1634 | ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
| 1635 | return ret; | ||
| 1636 | } | ||
| 1637 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
| 1638 | ret->references = 1; | ||
| 1639 | return ret; | ||
| 1640 | } | ||
| 1641 | |||
| 1642 | static void * | ||
| 1643 | nistp521_pre_comp_dup(void *src_) | ||
| 1644 | { | ||
| 1645 | NISTP521_PRE_COMP *src = src_; | ||
| 1646 | |||
| 1647 | /* no need to actually copy, these objects never change! */ | ||
| 1648 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1649 | |||
| 1650 | return src_; | ||
| 1651 | } | ||
| 1652 | |||
| 1653 | static void | ||
| 1654 | nistp521_pre_comp_free(void *pre_) | ||
| 1655 | { | ||
| 1656 | int i; | ||
| 1657 | NISTP521_PRE_COMP *pre = pre_; | ||
| 1658 | |||
| 1659 | if (!pre) | ||
| 1660 | return; | ||
| 1661 | |||
| 1662 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1663 | if (i > 0) | ||
| 1664 | return; | ||
| 1665 | |||
| 1666 | free(pre); | ||
| 1667 | } | ||
| 1668 | |||
| 1669 | static void | ||
| 1670 | nistp521_pre_comp_clear_free(void *pre_) | ||
| 1671 | { | ||
| 1672 | int i; | ||
| 1673 | NISTP521_PRE_COMP *pre = pre_; | ||
| 1674 | |||
| 1675 | if (!pre) | ||
| 1676 | return; | ||
| 1677 | |||
| 1678 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1679 | if (i > 0) | ||
| 1680 | return; | ||
| 1681 | |||
| 1682 | OPENSSL_cleanse(pre, sizeof(*pre)); | ||
| 1683 | free(pre); | ||
| 1684 | } | ||
| 1685 | |||
| 1686 | /******************************************************************************/ | ||
| 1687 | /* OPENSSL EC_METHOD FUNCTIONS | ||
| 1688 | */ | ||
| 1689 | |||
| 1690 | int | ||
| 1691 | ec_GFp_nistp521_group_init(EC_GROUP * group) | ||
| 1692 | { | ||
| 1693 | int ret; | ||
| 1694 | ret = ec_GFp_simple_group_init(group); | ||
| 1695 | group->a_is_minus3 = 1; | ||
| 1696 | return ret; | ||
| 1697 | } | ||
| 1698 | |||
| 1699 | int | ||
| 1700 | ec_GFp_nistp521_group_set_curve(EC_GROUP * group, const BIGNUM * p, | ||
| 1701 | const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
| 1702 | { | ||
| 1703 | int ret = 0; | ||
| 1704 | BN_CTX *new_ctx = NULL; | ||
| 1705 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
| 1706 | |||
| 1707 | if (ctx == NULL) | ||
| 1708 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 1709 | return 0; | ||
| 1710 | BN_CTX_start(ctx); | ||
| 1711 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
| 1712 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
| 1713 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
| 1714 | goto err; | ||
| 1715 | BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
| 1716 | BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
| 1717 | BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
| 1718 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
| 1719 | (BN_cmp(curve_b, b))) { | ||
| 1720 | ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE, | ||
| 1721 | EC_R_WRONG_CURVE_PARAMETERS); | ||
| 1722 | goto err; | ||
| 1723 | } | ||
| 1724 | group->field_mod_func = BN_nist_mod_521; | ||
| 1725 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
| 1726 | err: | ||
| 1727 | BN_CTX_end(ctx); | ||
| 1728 | BN_CTX_free(new_ctx); | ||
| 1729 | return ret; | ||
| 1730 | } | ||
| 1731 | |||
| 1732 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
| 1733 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
| 1734 | int | ||
| 1735 | ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP * group, | ||
| 1736 | const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
| 1737 | { | ||
| 1738 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
| 1739 | largefelem tmp; | ||
| 1740 | |||
| 1741 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
| 1742 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, | ||
| 1743 | EC_R_POINT_AT_INFINITY); | ||
| 1744 | return 0; | ||
| 1745 | } | ||
| 1746 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
| 1747 | (!BN_to_felem(z1, &point->Z))) | ||
| 1748 | return 0; | ||
| 1749 | felem_inv(z2, z1); | ||
| 1750 | felem_square(tmp, z2); | ||
| 1751 | felem_reduce(z1, tmp); | ||
| 1752 | felem_mul(tmp, x_in, z1); | ||
| 1753 | felem_reduce(x_in, tmp); | ||
| 1754 | felem_contract(x_out, x_in); | ||
| 1755 | if (x != NULL) { | ||
| 1756 | if (!felem_to_BN(x, x_out)) { | ||
| 1757 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
| 1758 | return 0; | ||
| 1759 | } | ||
| 1760 | } | ||
| 1761 | felem_mul(tmp, z1, z2); | ||
| 1762 | felem_reduce(z1, tmp); | ||
| 1763 | felem_mul(tmp, y_in, z1); | ||
| 1764 | felem_reduce(y_in, tmp); | ||
| 1765 | felem_contract(y_out, y_in); | ||
| 1766 | if (y != NULL) { | ||
| 1767 | if (!felem_to_BN(y, y_out)) { | ||
| 1768 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
| 1769 | return 0; | ||
| 1770 | } | ||
| 1771 | } | ||
| 1772 | return 1; | ||
| 1773 | } | ||
| 1774 | |||
| 1775 | static void | ||
| 1776 | make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) | ||
| 1777 | { | ||
| 1778 | /* | ||
| 1779 | * Runs in constant time, unless an input is the point at infinity | ||
| 1780 | * (which normally shouldn't happen). | ||
| 1781 | */ | ||
| 1782 | ec_GFp_nistp_points_make_affine_internal( | ||
| 1783 | num, | ||
| 1784 | points, | ||
| 1785 | sizeof(felem), | ||
| 1786 | tmp_felems, | ||
| 1787 | (void (*) (void *)) felem_one, | ||
| 1788 | (int (*) (const void *)) felem_is_zero_int, | ||
| 1789 | (void (*) (void *, const void *)) felem_assign, | ||
| 1790 | (void (*) (void *, const void *)) felem_square_reduce, | ||
| 1791 | (void (*) (void *, const void *, const void *)) felem_mul_reduce, | ||
| 1792 | (void (*) (void *, const void *)) felem_inv, | ||
| 1793 | (void (*) (void *, const void *)) felem_contract); | ||
| 1794 | } | ||
| 1795 | |||
| 1796 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
| 1797 | * Result is stored in r (r can equal one of the inputs). */ | ||
| 1798 | int | ||
| 1799 | ec_GFp_nistp521_points_mul(const EC_GROUP * group, EC_POINT * r, | ||
| 1800 | const BIGNUM * scalar, size_t num, const EC_POINT * points[], | ||
| 1801 | const BIGNUM * scalars[], BN_CTX * ctx) | ||
| 1802 | { | ||
| 1803 | int ret = 0; | ||
| 1804 | int j; | ||
| 1805 | int mixed = 0; | ||
| 1806 | BN_CTX *new_ctx = NULL; | ||
| 1807 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
| 1808 | felem_bytearray g_secret; | ||
| 1809 | felem_bytearray *secrets = NULL; | ||
| 1810 | felem(*pre_comp)[17][3] = NULL; | ||
| 1811 | felem *tmp_felems = NULL; | ||
| 1812 | felem_bytearray tmp; | ||
| 1813 | unsigned i, num_bytes; | ||
| 1814 | int have_pre_comp = 0; | ||
| 1815 | size_t num_points = num; | ||
| 1816 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
| 1817 | NISTP521_PRE_COMP *pre = NULL; | ||
| 1818 | felem(*g_pre_comp)[3] = NULL; | ||
| 1819 | EC_POINT *generator = NULL; | ||
| 1820 | const EC_POINT *p = NULL; | ||
| 1821 | const BIGNUM *p_scalar = NULL; | ||
| 1822 | |||
| 1823 | if (ctx == NULL) | ||
| 1824 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 1825 | return 0; | ||
| 1826 | BN_CTX_start(ctx); | ||
| 1827 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1828 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
| 1829 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
| 1830 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
| 1831 | goto err; | ||
| 1832 | |||
| 1833 | if (scalar != NULL) { | ||
| 1834 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
| 1835 | nistp521_pre_comp_dup, nistp521_pre_comp_free, | ||
| 1836 | nistp521_pre_comp_clear_free); | ||
| 1837 | if (pre) | ||
| 1838 | /* we have precomputation, try to use it */ | ||
| 1839 | g_pre_comp = &pre->g_pre_comp[0]; | ||
| 1840 | else | ||
| 1841 | /* try to use the standard precomputation */ | ||
| 1842 | g_pre_comp = (felem(*)[3]) gmul; | ||
| 1843 | generator = EC_POINT_new(group); | ||
| 1844 | if (generator == NULL) | ||
| 1845 | goto err; | ||
| 1846 | /* get the generator from precomputation */ | ||
| 1847 | if (!felem_to_BN(x, g_pre_comp[1][0]) || | ||
| 1848 | !felem_to_BN(y, g_pre_comp[1][1]) || | ||
| 1849 | !felem_to_BN(z, g_pre_comp[1][2])) { | ||
| 1850 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1851 | goto err; | ||
| 1852 | } | ||
| 1853 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
| 1854 | generator, x, y, z, ctx)) | ||
| 1855 | goto err; | ||
| 1856 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 1857 | /* precomputation matches generator */ | ||
| 1858 | have_pre_comp = 1; | ||
| 1859 | else | ||
| 1860 | /* | ||
| 1861 | * we don't have valid precomputation: treat the | ||
| 1862 | * generator as a random point | ||
| 1863 | */ | ||
| 1864 | num_points++; | ||
| 1865 | } | ||
| 1866 | if (num_points > 0) { | ||
| 1867 | if (num_points >= 2) { | ||
| 1868 | /* | ||
| 1869 | * unless we precompute multiples for just one point, | ||
| 1870 | * converting those into affine form is time well | ||
| 1871 | * spent | ||
| 1872 | */ | ||
| 1873 | mixed = 1; | ||
| 1874 | } | ||
| 1875 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
| 1876 | pre_comp = calloc(num_points, 17 * 3 * sizeof(felem)); | ||
| 1877 | if (mixed) { | ||
| 1878 | /* XXX should do more int overflow checking */ | ||
| 1879 | tmp_felems = reallocarray(NULL, | ||
| 1880 | (num_points * 17 + 1), sizeof(felem)); | ||
| 1881 | } | ||
| 1882 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) { | ||
| 1883 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
| 1884 | goto err; | ||
| 1885 | } | ||
| 1886 | /* | ||
| 1887 | * we treat NULL scalars as 0, and NULL points as points at | ||
| 1888 | * infinity, i.e., they contribute nothing to the linear | ||
| 1889 | * combination | ||
| 1890 | */ | ||
| 1891 | for (i = 0; i < num_points; ++i) { | ||
| 1892 | if (i == num) | ||
| 1893 | /* | ||
| 1894 | * we didn't have a valid precomputation, so | ||
| 1895 | * we pick the generator | ||
| 1896 | */ | ||
| 1897 | { | ||
| 1898 | p = EC_GROUP_get0_generator(group); | ||
| 1899 | p_scalar = scalar; | ||
| 1900 | } else | ||
| 1901 | /* the i^th point */ | ||
| 1902 | { | ||
| 1903 | p = points[i]; | ||
| 1904 | p_scalar = scalars[i]; | ||
| 1905 | } | ||
| 1906 | if ((p_scalar != NULL) && (p != NULL)) { | ||
| 1907 | /* reduce scalar to 0 <= scalar < 2^521 */ | ||
| 1908 | if ((BN_num_bits(p_scalar) > 521) || (BN_is_negative(p_scalar))) { | ||
| 1909 | /* | ||
| 1910 | * this is an unusual input, and we | ||
| 1911 | * don't guarantee constant-timeness | ||
| 1912 | */ | ||
| 1913 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
| 1914 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1915 | goto err; | ||
| 1916 | } | ||
| 1917 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1918 | } else | ||
| 1919 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
| 1920 | flip_endian(secrets[i], tmp, num_bytes); | ||
| 1921 | /* precompute multiples */ | ||
| 1922 | if ((!BN_to_felem(x_out, &p->X)) || | ||
| 1923 | (!BN_to_felem(y_out, &p->Y)) || | ||
| 1924 | (!BN_to_felem(z_out, &p->Z))) | ||
| 1925 | goto err; | ||
| 1926 | memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); | ||
| 1927 | memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); | ||
| 1928 | memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); | ||
| 1929 | for (j = 2; j <= 16; ++j) { | ||
| 1930 | if (j & 1) { | ||
| 1931 | point_add( | ||
| 1932 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1933 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
| 1934 | 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
| 1935 | } else { | ||
| 1936 | point_double( | ||
| 1937 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1938 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
| 1939 | } | ||
| 1940 | } | ||
| 1941 | } | ||
| 1942 | } | ||
| 1943 | if (mixed) | ||
| 1944 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
| 1945 | } | ||
| 1946 | /* the scalar for the generator */ | ||
| 1947 | if ((scalar != NULL) && (have_pre_comp)) { | ||
| 1948 | memset(g_secret, 0, sizeof(g_secret)); | ||
| 1949 | /* reduce scalar to 0 <= scalar < 2^521 */ | ||
| 1950 | if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) { | ||
| 1951 | /* | ||
| 1952 | * this is an unusual input, and we don't guarantee | ||
| 1953 | * constant-timeness | ||
| 1954 | */ | ||
| 1955 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
| 1956 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1957 | goto err; | ||
| 1958 | } | ||
| 1959 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1960 | } else | ||
| 1961 | num_bytes = BN_bn2bin(scalar, tmp); | ||
| 1962 | flip_endian(g_secret, tmp, num_bytes); | ||
| 1963 | /* do the multiplication with generator precomputation */ | ||
| 1964 | batch_mul(x_out, y_out, z_out, | ||
| 1965 | (const felem_bytearray(*)) secrets, num_points, | ||
| 1966 | g_secret, | ||
| 1967 | mixed, (const felem(*)[17][3]) pre_comp, | ||
| 1968 | (const felem(*)[3]) g_pre_comp); | ||
| 1969 | } else | ||
| 1970 | /* do the multiplication without generator precomputation */ | ||
| 1971 | batch_mul(x_out, y_out, z_out, | ||
| 1972 | (const felem_bytearray(*)) secrets, num_points, | ||
| 1973 | NULL, mixed, (const felem(*)[17][3]) pre_comp, NULL); | ||
| 1974 | /* reduce the output to its unique minimal representation */ | ||
| 1975 | felem_contract(x_in, x_out); | ||
| 1976 | felem_contract(y_in, y_out); | ||
| 1977 | felem_contract(z_in, z_out); | ||
| 1978 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
| 1979 | (!felem_to_BN(z, z_in))) { | ||
| 1980 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1981 | goto err; | ||
| 1982 | } | ||
| 1983 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
| 1984 | |||
| 1985 | err: | ||
| 1986 | BN_CTX_end(ctx); | ||
| 1987 | EC_POINT_free(generator); | ||
| 1988 | BN_CTX_free(new_ctx); | ||
| 1989 | free(secrets); | ||
| 1990 | free(pre_comp); | ||
| 1991 | free(tmp_felems); | ||
| 1992 | return ret; | ||
| 1993 | } | ||
| 1994 | |||
| 1995 | int | ||
| 1996 | ec_GFp_nistp521_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
| 1997 | { | ||
| 1998 | int ret = 0; | ||
| 1999 | NISTP521_PRE_COMP *pre = NULL; | ||
| 2000 | int i, j; | ||
| 2001 | BN_CTX *new_ctx = NULL; | ||
| 2002 | BIGNUM *x, *y; | ||
| 2003 | EC_POINT *generator = NULL; | ||
| 2004 | felem tmp_felems[16]; | ||
| 2005 | |||
| 2006 | /* throw away old precomputation */ | ||
| 2007 | EC_EX_DATA_free_data(&group->extra_data, nistp521_pre_comp_dup, | ||
| 2008 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free); | ||
| 2009 | if (ctx == NULL) | ||
| 2010 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 2011 | return 0; | ||
| 2012 | BN_CTX_start(ctx); | ||
| 2013 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 2014 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
| 2015 | goto err; | ||
| 2016 | /* get the generator */ | ||
| 2017 | if (group->generator == NULL) | ||
| 2018 | goto err; | ||
| 2019 | generator = EC_POINT_new(group); | ||
| 2020 | if (generator == NULL) | ||
| 2021 | goto err; | ||
| 2022 | BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x); | ||
| 2023 | BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y); | ||
| 2024 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
| 2025 | goto err; | ||
| 2026 | if ((pre = nistp521_pre_comp_new()) == NULL) | ||
| 2027 | goto err; | ||
| 2028 | /* if the generator is the standard one, use built-in precomputation */ | ||
| 2029 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
| 2030 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
| 2031 | ret = 1; | ||
| 2032 | goto err; | ||
| 2033 | } | ||
| 2034 | if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) || | ||
| 2035 | (!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) || | ||
| 2036 | (!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z))) | ||
| 2037 | goto err; | ||
| 2038 | /* compute 2^130*G, 2^260*G, 2^390*G */ | ||
| 2039 | for (i = 1; i <= 4; i <<= 1) { | ||
| 2040 | point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], | ||
| 2041 | pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0], | ||
| 2042 | pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); | ||
| 2043 | for (j = 0; j < 129; ++j) { | ||
| 2044 | point_double(pre->g_pre_comp[2 * i][0], | ||
| 2045 | pre->g_pre_comp[2 * i][1], | ||
| 2046 | pre->g_pre_comp[2 * i][2], | ||
| 2047 | pre->g_pre_comp[2 * i][0], | ||
| 2048 | pre->g_pre_comp[2 * i][1], | ||
| 2049 | pre->g_pre_comp[2 * i][2]); | ||
| 2050 | } | ||
| 2051 | } | ||
| 2052 | /* g_pre_comp[0] is the point at infinity */ | ||
| 2053 | memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); | ||
| 2054 | /* the remaining multiples */ | ||
| 2055 | /* 2^130*G + 2^260*G */ | ||
| 2056 | point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], | ||
| 2057 | pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], | ||
| 2058 | pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], | ||
| 2059 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
| 2060 | pre->g_pre_comp[2][2]); | ||
| 2061 | /* 2^130*G + 2^390*G */ | ||
| 2062 | point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], | ||
| 2063 | pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], | ||
| 2064 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | ||
| 2065 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
| 2066 | pre->g_pre_comp[2][2]); | ||
| 2067 | /* 2^260*G + 2^390*G */ | ||
| 2068 | point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], | ||
| 2069 | pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], | ||
| 2070 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | ||
| 2071 | 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], | ||
| 2072 | pre->g_pre_comp[4][2]); | ||
| 2073 | /* 2^130*G + 2^260*G + 2^390*G */ | ||
| 2074 | point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], | ||
| 2075 | pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], | ||
| 2076 | pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], | ||
| 2077 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
| 2078 | pre->g_pre_comp[2][2]); | ||
| 2079 | for (i = 1; i < 8; ++i) { | ||
| 2080 | /* odd multiples: add G */ | ||
| 2081 | point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], | ||
| 2082 | pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0], | ||
| 2083 | pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], | ||
| 2084 | 0, pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], | ||
| 2085 | pre->g_pre_comp[1][2]); | ||
| 2086 | } | ||
| 2087 | make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); | ||
| 2088 | |||
| 2089 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp521_pre_comp_dup, | ||
| 2090 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free)) | ||
| 2091 | goto err; | ||
| 2092 | ret = 1; | ||
| 2093 | pre = NULL; | ||
| 2094 | err: | ||
| 2095 | BN_CTX_end(ctx); | ||
| 2096 | EC_POINT_free(generator); | ||
| 2097 | BN_CTX_free(new_ctx); | ||
| 2098 | nistp521_pre_comp_free(pre); | ||
| 2099 | return ret; | ||
| 2100 | } | ||
| 2101 | |||
| 2102 | int | ||
| 2103 | ec_GFp_nistp521_have_precompute_mult(const EC_GROUP * group) | ||
| 2104 | { | ||
| 2105 | if (EC_EX_DATA_get_data(group->extra_data, nistp521_pre_comp_dup, | ||
| 2106 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free) | ||
| 2107 | != NULL) | ||
| 2108 | return 1; | ||
| 2109 | else | ||
| 2110 | return 0; | ||
| 2111 | } | ||
| 2112 | |||
| 2113 | #endif | ||
