diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_smpl.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_smpl.c | 1410 |
1 files changed, 0 insertions, 1410 deletions
diff --git a/src/lib/libcrypto/ec/ecp_smpl.c b/src/lib/libcrypto/ec/ecp_smpl.c deleted file mode 100644 index f6db4dc9b1..0000000000 --- a/src/lib/libcrypto/ec/ecp_smpl.c +++ /dev/null | |||
| @@ -1,1410 +0,0 @@ | |||
| 1 | /* $OpenBSD: ecp_smpl.c,v 1.15 2015/02/09 15:49:22 jsing Exp $ */ | ||
| 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
| 3 | * for the OpenSSL project. | ||
| 4 | * Includes code written by Bodo Moeller for the OpenSSL project. | ||
| 5 | */ | ||
| 6 | /* ==================================================================== | ||
| 7 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
| 8 | * | ||
| 9 | * Redistribution and use in source and binary forms, with or without | ||
| 10 | * modification, are permitted provided that the following conditions | ||
| 11 | * are met: | ||
| 12 | * | ||
| 13 | * 1. Redistributions of source code must retain the above copyright | ||
| 14 | * notice, this list of conditions and the following disclaimer. | ||
| 15 | * | ||
| 16 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 17 | * notice, this list of conditions and the following disclaimer in | ||
| 18 | * the documentation and/or other materials provided with the | ||
| 19 | * distribution. | ||
| 20 | * | ||
| 21 | * 3. All advertising materials mentioning features or use of this | ||
| 22 | * software must display the following acknowledgment: | ||
| 23 | * "This product includes software developed by the OpenSSL Project | ||
| 24 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 25 | * | ||
| 26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 27 | * endorse or promote products derived from this software without | ||
| 28 | * prior written permission. For written permission, please contact | ||
| 29 | * openssl-core@openssl.org. | ||
| 30 | * | ||
| 31 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 32 | * nor may "OpenSSL" appear in their names without prior written | ||
| 33 | * permission of the OpenSSL Project. | ||
| 34 | * | ||
| 35 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 36 | * acknowledgment: | ||
| 37 | * "This product includes software developed by the OpenSSL Project | ||
| 38 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 39 | * | ||
| 40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 52 | * ==================================================================== | ||
| 53 | * | ||
| 54 | * This product includes cryptographic software written by Eric Young | ||
| 55 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 56 | * Hudson (tjh@cryptsoft.com). | ||
| 57 | * | ||
| 58 | */ | ||
| 59 | /* ==================================================================== | ||
| 60 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 61 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
| 62 | * and contributed to the OpenSSL project. | ||
| 63 | */ | ||
| 64 | |||
| 65 | #include <openssl/err.h> | ||
| 66 | |||
| 67 | #include "ec_lcl.h" | ||
| 68 | |||
| 69 | const EC_METHOD * | ||
| 70 | EC_GFp_simple_method(void) | ||
| 71 | { | ||
| 72 | static const EC_METHOD ret = { | ||
| 73 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
| 74 | .field_type = NID_X9_62_prime_field, | ||
| 75 | .group_init = ec_GFp_simple_group_init, | ||
| 76 | .group_finish = ec_GFp_simple_group_finish, | ||
| 77 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
| 78 | .group_copy = ec_GFp_simple_group_copy, | ||
| 79 | .group_set_curve = ec_GFp_simple_group_set_curve, | ||
| 80 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
| 81 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
| 82 | .group_check_discriminant = | ||
| 83 | ec_GFp_simple_group_check_discriminant, | ||
| 84 | .point_init = ec_GFp_simple_point_init, | ||
| 85 | .point_finish = ec_GFp_simple_point_finish, | ||
| 86 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
| 87 | .point_copy = ec_GFp_simple_point_copy, | ||
| 88 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
| 89 | .point_set_Jprojective_coordinates_GFp = | ||
| 90 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
| 91 | .point_get_Jprojective_coordinates_GFp = | ||
| 92 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
| 93 | .point_set_affine_coordinates = | ||
| 94 | ec_GFp_simple_point_set_affine_coordinates, | ||
| 95 | .point_get_affine_coordinates = | ||
| 96 | ec_GFp_simple_point_get_affine_coordinates, | ||
| 97 | .add = ec_GFp_simple_add, | ||
| 98 | .dbl = ec_GFp_simple_dbl, | ||
| 99 | .invert = ec_GFp_simple_invert, | ||
| 100 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
| 101 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
| 102 | .point_cmp = ec_GFp_simple_cmp, | ||
| 103 | .make_affine = ec_GFp_simple_make_affine, | ||
| 104 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
| 105 | .field_mul = ec_GFp_simple_field_mul, | ||
| 106 | .field_sqr = ec_GFp_simple_field_sqr | ||
| 107 | }; | ||
| 108 | |||
| 109 | return &ret; | ||
| 110 | } | ||
| 111 | |||
| 112 | |||
| 113 | /* Most method functions in this file are designed to work with | ||
| 114 | * non-trivial representations of field elements if necessary | ||
| 115 | * (see ecp_mont.c): while standard modular addition and subtraction | ||
| 116 | * are used, the field_mul and field_sqr methods will be used for | ||
| 117 | * multiplication, and field_encode and field_decode (if defined) | ||
| 118 | * will be used for converting between representations. | ||
| 119 | |||
| 120 | * Functions ec_GFp_simple_points_make_affine() and | ||
| 121 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume | ||
| 122 | * that if a non-trivial representation is used, it is a Montgomery | ||
| 123 | * representation (i.e. 'encoding' means multiplying by some factor R). | ||
| 124 | */ | ||
| 125 | |||
| 126 | |||
| 127 | int | ||
| 128 | ec_GFp_simple_group_init(EC_GROUP * group) | ||
| 129 | { | ||
| 130 | BN_init(&group->field); | ||
| 131 | BN_init(&group->a); | ||
| 132 | BN_init(&group->b); | ||
| 133 | group->a_is_minus3 = 0; | ||
| 134 | return 1; | ||
| 135 | } | ||
| 136 | |||
| 137 | |||
| 138 | void | ||
| 139 | ec_GFp_simple_group_finish(EC_GROUP * group) | ||
| 140 | { | ||
| 141 | BN_free(&group->field); | ||
| 142 | BN_free(&group->a); | ||
| 143 | BN_free(&group->b); | ||
| 144 | } | ||
| 145 | |||
| 146 | |||
| 147 | void | ||
| 148 | ec_GFp_simple_group_clear_finish(EC_GROUP * group) | ||
| 149 | { | ||
| 150 | BN_clear_free(&group->field); | ||
| 151 | BN_clear_free(&group->a); | ||
| 152 | BN_clear_free(&group->b); | ||
| 153 | } | ||
| 154 | |||
| 155 | |||
| 156 | int | ||
| 157 | ec_GFp_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
| 158 | { | ||
| 159 | if (!BN_copy(&dest->field, &src->field)) | ||
| 160 | return 0; | ||
| 161 | if (!BN_copy(&dest->a, &src->a)) | ||
| 162 | return 0; | ||
| 163 | if (!BN_copy(&dest->b, &src->b)) | ||
| 164 | return 0; | ||
| 165 | |||
| 166 | dest->a_is_minus3 = src->a_is_minus3; | ||
| 167 | |||
| 168 | return 1; | ||
| 169 | } | ||
| 170 | |||
| 171 | |||
| 172 | int | ||
| 173 | ec_GFp_simple_group_set_curve(EC_GROUP * group, | ||
| 174 | const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
| 175 | { | ||
| 176 | int ret = 0; | ||
| 177 | BN_CTX *new_ctx = NULL; | ||
| 178 | BIGNUM *tmp_a; | ||
| 179 | |||
| 180 | /* p must be a prime > 3 */ | ||
| 181 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | ||
| 182 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); | ||
| 183 | return 0; | ||
| 184 | } | ||
| 185 | if (ctx == NULL) { | ||
| 186 | ctx = new_ctx = BN_CTX_new(); | ||
| 187 | if (ctx == NULL) | ||
| 188 | return 0; | ||
| 189 | } | ||
| 190 | BN_CTX_start(ctx); | ||
| 191 | if ((tmp_a = BN_CTX_get(ctx)) == NULL) | ||
| 192 | goto err; | ||
| 193 | |||
| 194 | /* group->field */ | ||
| 195 | if (!BN_copy(&group->field, p)) | ||
| 196 | goto err; | ||
| 197 | BN_set_negative(&group->field, 0); | ||
| 198 | |||
| 199 | /* group->a */ | ||
| 200 | if (!BN_nnmod(tmp_a, a, p, ctx)) | ||
| 201 | goto err; | ||
| 202 | if (group->meth->field_encode) { | ||
| 203 | if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) | ||
| 204 | goto err; | ||
| 205 | } else if (!BN_copy(&group->a, tmp_a)) | ||
| 206 | goto err; | ||
| 207 | |||
| 208 | /* group->b */ | ||
| 209 | if (!BN_nnmod(&group->b, b, p, ctx)) | ||
| 210 | goto err; | ||
| 211 | if (group->meth->field_encode) | ||
| 212 | if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) | ||
| 213 | goto err; | ||
| 214 | |||
| 215 | /* group->a_is_minus3 */ | ||
| 216 | if (!BN_add_word(tmp_a, 3)) | ||
| 217 | goto err; | ||
| 218 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); | ||
| 219 | |||
| 220 | ret = 1; | ||
| 221 | |||
| 222 | err: | ||
| 223 | BN_CTX_end(ctx); | ||
| 224 | BN_CTX_free(new_ctx); | ||
| 225 | return ret; | ||
| 226 | } | ||
| 227 | |||
| 228 | |||
| 229 | int | ||
| 230 | ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BIGNUM * b, BN_CTX * ctx) | ||
| 231 | { | ||
| 232 | int ret = 0; | ||
| 233 | BN_CTX *new_ctx = NULL; | ||
| 234 | |||
| 235 | if (p != NULL) { | ||
| 236 | if (!BN_copy(p, &group->field)) | ||
| 237 | return 0; | ||
| 238 | } | ||
| 239 | if (a != NULL || b != NULL) { | ||
| 240 | if (group->meth->field_decode) { | ||
| 241 | if (ctx == NULL) { | ||
| 242 | ctx = new_ctx = BN_CTX_new(); | ||
| 243 | if (ctx == NULL) | ||
| 244 | return 0; | ||
| 245 | } | ||
| 246 | if (a != NULL) { | ||
| 247 | if (!group->meth->field_decode(group, a, &group->a, ctx)) | ||
| 248 | goto err; | ||
| 249 | } | ||
| 250 | if (b != NULL) { | ||
| 251 | if (!group->meth->field_decode(group, b, &group->b, ctx)) | ||
| 252 | goto err; | ||
| 253 | } | ||
| 254 | } else { | ||
| 255 | if (a != NULL) { | ||
| 256 | if (!BN_copy(a, &group->a)) | ||
| 257 | goto err; | ||
| 258 | } | ||
| 259 | if (b != NULL) { | ||
| 260 | if (!BN_copy(b, &group->b)) | ||
| 261 | goto err; | ||
| 262 | } | ||
| 263 | } | ||
| 264 | } | ||
| 265 | ret = 1; | ||
| 266 | |||
| 267 | err: | ||
| 268 | BN_CTX_free(new_ctx); | ||
| 269 | return ret; | ||
| 270 | } | ||
| 271 | |||
| 272 | |||
| 273 | int | ||
| 274 | ec_GFp_simple_group_get_degree(const EC_GROUP * group) | ||
| 275 | { | ||
| 276 | return BN_num_bits(&group->field); | ||
| 277 | } | ||
| 278 | |||
| 279 | |||
| 280 | int | ||
| 281 | ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) | ||
| 282 | { | ||
| 283 | int ret = 0; | ||
| 284 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2; | ||
| 285 | const BIGNUM *p = &group->field; | ||
| 286 | BN_CTX *new_ctx = NULL; | ||
| 287 | |||
| 288 | if (ctx == NULL) { | ||
| 289 | ctx = new_ctx = BN_CTX_new(); | ||
| 290 | if (ctx == NULL) { | ||
| 291 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
| 292 | goto err; | ||
| 293 | } | ||
| 294 | } | ||
| 295 | BN_CTX_start(ctx); | ||
| 296 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
| 297 | goto err; | ||
| 298 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
| 299 | goto err; | ||
| 300 | if ((tmp_1 = BN_CTX_get(ctx)) == NULL) | ||
| 301 | goto err; | ||
| 302 | if ((tmp_2 = BN_CTX_get(ctx)) == NULL) | ||
| 303 | goto err; | ||
| 304 | if ((order = BN_CTX_get(ctx)) == NULL) | ||
| 305 | goto err; | ||
| 306 | |||
| 307 | if (group->meth->field_decode) { | ||
| 308 | if (!group->meth->field_decode(group, a, &group->a, ctx)) | ||
| 309 | goto err; | ||
| 310 | if (!group->meth->field_decode(group, b, &group->b, ctx)) | ||
| 311 | goto err; | ||
| 312 | } else { | ||
| 313 | if (!BN_copy(a, &group->a)) | ||
| 314 | goto err; | ||
| 315 | if (!BN_copy(b, &group->b)) | ||
| 316 | goto err; | ||
| 317 | } | ||
| 318 | |||
| 319 | /* | ||
| 320 | * check the discriminant: y^2 = x^3 + a*x + b is an elliptic curve | ||
| 321 | * <=> 4*a^3 + 27*b^2 != 0 (mod p) 0 =< a, b < p | ||
| 322 | */ | ||
| 323 | if (BN_is_zero(a)) { | ||
| 324 | if (BN_is_zero(b)) | ||
| 325 | goto err; | ||
| 326 | } else if (!BN_is_zero(b)) { | ||
| 327 | if (!BN_mod_sqr(tmp_1, a, p, ctx)) | ||
| 328 | goto err; | ||
| 329 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) | ||
| 330 | goto err; | ||
| 331 | if (!BN_lshift(tmp_1, tmp_2, 2)) | ||
| 332 | goto err; | ||
| 333 | /* tmp_1 = 4*a^3 */ | ||
| 334 | |||
| 335 | if (!BN_mod_sqr(tmp_2, b, p, ctx)) | ||
| 336 | goto err; | ||
| 337 | if (!BN_mul_word(tmp_2, 27)) | ||
| 338 | goto err; | ||
| 339 | /* tmp_2 = 27*b^2 */ | ||
| 340 | |||
| 341 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) | ||
| 342 | goto err; | ||
| 343 | if (BN_is_zero(a)) | ||
| 344 | goto err; | ||
| 345 | } | ||
| 346 | ret = 1; | ||
| 347 | |||
| 348 | err: | ||
| 349 | if (ctx != NULL) | ||
| 350 | BN_CTX_end(ctx); | ||
| 351 | BN_CTX_free(new_ctx); | ||
| 352 | return ret; | ||
| 353 | } | ||
| 354 | |||
| 355 | |||
| 356 | int | ||
| 357 | ec_GFp_simple_point_init(EC_POINT * point) | ||
| 358 | { | ||
| 359 | BN_init(&point->X); | ||
| 360 | BN_init(&point->Y); | ||
| 361 | BN_init(&point->Z); | ||
| 362 | point->Z_is_one = 0; | ||
| 363 | |||
| 364 | return 1; | ||
| 365 | } | ||
| 366 | |||
| 367 | |||
| 368 | void | ||
| 369 | ec_GFp_simple_point_finish(EC_POINT * point) | ||
| 370 | { | ||
| 371 | BN_free(&point->X); | ||
| 372 | BN_free(&point->Y); | ||
| 373 | BN_free(&point->Z); | ||
| 374 | } | ||
| 375 | |||
| 376 | |||
| 377 | void | ||
| 378 | ec_GFp_simple_point_clear_finish(EC_POINT * point) | ||
| 379 | { | ||
| 380 | BN_clear_free(&point->X); | ||
| 381 | BN_clear_free(&point->Y); | ||
| 382 | BN_clear_free(&point->Z); | ||
| 383 | point->Z_is_one = 0; | ||
| 384 | } | ||
| 385 | |||
| 386 | |||
| 387 | int | ||
| 388 | ec_GFp_simple_point_copy(EC_POINT * dest, const EC_POINT * src) | ||
| 389 | { | ||
| 390 | if (!BN_copy(&dest->X, &src->X)) | ||
| 391 | return 0; | ||
| 392 | if (!BN_copy(&dest->Y, &src->Y)) | ||
| 393 | return 0; | ||
| 394 | if (!BN_copy(&dest->Z, &src->Z)) | ||
| 395 | return 0; | ||
| 396 | dest->Z_is_one = src->Z_is_one; | ||
| 397 | |||
| 398 | return 1; | ||
| 399 | } | ||
| 400 | |||
| 401 | |||
| 402 | int | ||
| 403 | ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) | ||
| 404 | { | ||
| 405 | point->Z_is_one = 0; | ||
| 406 | BN_zero(&point->Z); | ||
| 407 | return 1; | ||
| 408 | } | ||
| 409 | |||
| 410 | |||
| 411 | int | ||
| 412 | ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP * group, EC_POINT * point, | ||
| 413 | const BIGNUM * x, const BIGNUM * y, const BIGNUM * z, BN_CTX * ctx) | ||
| 414 | { | ||
| 415 | BN_CTX *new_ctx = NULL; | ||
| 416 | int ret = 0; | ||
| 417 | |||
| 418 | if (ctx == NULL) { | ||
| 419 | ctx = new_ctx = BN_CTX_new(); | ||
| 420 | if (ctx == NULL) | ||
| 421 | return 0; | ||
| 422 | } | ||
| 423 | if (x != NULL) { | ||
| 424 | if (!BN_nnmod(&point->X, x, &group->field, ctx)) | ||
| 425 | goto err; | ||
| 426 | if (group->meth->field_encode) { | ||
| 427 | if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) | ||
| 428 | goto err; | ||
| 429 | } | ||
| 430 | } | ||
| 431 | if (y != NULL) { | ||
| 432 | if (!BN_nnmod(&point->Y, y, &group->field, ctx)) | ||
| 433 | goto err; | ||
| 434 | if (group->meth->field_encode) { | ||
| 435 | if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) | ||
| 436 | goto err; | ||
| 437 | } | ||
| 438 | } | ||
| 439 | if (z != NULL) { | ||
| 440 | int Z_is_one; | ||
| 441 | |||
| 442 | if (!BN_nnmod(&point->Z, z, &group->field, ctx)) | ||
| 443 | goto err; | ||
| 444 | Z_is_one = BN_is_one(&point->Z); | ||
| 445 | if (group->meth->field_encode) { | ||
| 446 | if (Z_is_one && (group->meth->field_set_to_one != 0)) { | ||
| 447 | if (!group->meth->field_set_to_one(group, &point->Z, ctx)) | ||
| 448 | goto err; | ||
| 449 | } else { | ||
| 450 | if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) | ||
| 451 | goto err; | ||
| 452 | } | ||
| 453 | } | ||
| 454 | point->Z_is_one = Z_is_one; | ||
| 455 | } | ||
| 456 | ret = 1; | ||
| 457 | |||
| 458 | err: | ||
| 459 | BN_CTX_free(new_ctx); | ||
| 460 | return ret; | ||
| 461 | } | ||
| 462 | |||
| 463 | |||
| 464 | int | ||
| 465 | ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP * group, const EC_POINT * point, | ||
| 466 | BIGNUM * x, BIGNUM * y, BIGNUM * z, BN_CTX * ctx) | ||
| 467 | { | ||
| 468 | BN_CTX *new_ctx = NULL; | ||
| 469 | int ret = 0; | ||
| 470 | |||
| 471 | if (group->meth->field_decode != 0) { | ||
| 472 | if (ctx == NULL) { | ||
| 473 | ctx = new_ctx = BN_CTX_new(); | ||
| 474 | if (ctx == NULL) | ||
| 475 | return 0; | ||
| 476 | } | ||
| 477 | if (x != NULL) { | ||
| 478 | if (!group->meth->field_decode(group, x, &point->X, ctx)) | ||
| 479 | goto err; | ||
| 480 | } | ||
| 481 | if (y != NULL) { | ||
| 482 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) | ||
| 483 | goto err; | ||
| 484 | } | ||
| 485 | if (z != NULL) { | ||
| 486 | if (!group->meth->field_decode(group, z, &point->Z, ctx)) | ||
| 487 | goto err; | ||
| 488 | } | ||
| 489 | } else { | ||
| 490 | if (x != NULL) { | ||
| 491 | if (!BN_copy(x, &point->X)) | ||
| 492 | goto err; | ||
| 493 | } | ||
| 494 | if (y != NULL) { | ||
| 495 | if (!BN_copy(y, &point->Y)) | ||
| 496 | goto err; | ||
| 497 | } | ||
| 498 | if (z != NULL) { | ||
| 499 | if (!BN_copy(z, &point->Z)) | ||
| 500 | goto err; | ||
| 501 | } | ||
| 502 | } | ||
| 503 | |||
| 504 | ret = 1; | ||
| 505 | |||
| 506 | err: | ||
| 507 | BN_CTX_free(new_ctx); | ||
| 508 | return ret; | ||
| 509 | } | ||
| 510 | |||
| 511 | |||
| 512 | int | ||
| 513 | ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point, | ||
| 514 | const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx) | ||
| 515 | { | ||
| 516 | if (x == NULL || y == NULL) { | ||
| 517 | /* unlike for projective coordinates, we do not tolerate this */ | ||
| 518 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
| 519 | return 0; | ||
| 520 | } | ||
| 521 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); | ||
| 522 | } | ||
| 523 | |||
| 524 | |||
| 525 | int | ||
| 526 | ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, | ||
| 527 | BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
| 528 | { | ||
| 529 | BN_CTX *new_ctx = NULL; | ||
| 530 | BIGNUM *Z, *Z_1, *Z_2, *Z_3; | ||
| 531 | const BIGNUM *Z_; | ||
| 532 | int ret = 0; | ||
| 533 | |||
| 534 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
| 535 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
| 536 | return 0; | ||
| 537 | } | ||
| 538 | if (ctx == NULL) { | ||
| 539 | ctx = new_ctx = BN_CTX_new(); | ||
| 540 | if (ctx == NULL) | ||
| 541 | return 0; | ||
| 542 | } | ||
| 543 | BN_CTX_start(ctx); | ||
| 544 | if ((Z = BN_CTX_get(ctx)) == NULL) | ||
| 545 | goto err; | ||
| 546 | if ((Z_1 = BN_CTX_get(ctx)) == NULL) | ||
| 547 | goto err; | ||
| 548 | if ((Z_2 = BN_CTX_get(ctx)) == NULL) | ||
| 549 | goto err; | ||
| 550 | if ((Z_3 = BN_CTX_get(ctx)) == NULL) | ||
| 551 | goto err; | ||
| 552 | |||
| 553 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ | ||
| 554 | |||
| 555 | if (group->meth->field_decode) { | ||
| 556 | if (!group->meth->field_decode(group, Z, &point->Z, ctx)) | ||
| 557 | goto err; | ||
| 558 | Z_ = Z; | ||
| 559 | } else { | ||
| 560 | Z_ = &point->Z; | ||
| 561 | } | ||
| 562 | |||
| 563 | if (BN_is_one(Z_)) { | ||
| 564 | if (group->meth->field_decode) { | ||
| 565 | if (x != NULL) { | ||
| 566 | if (!group->meth->field_decode(group, x, &point->X, ctx)) | ||
| 567 | goto err; | ||
| 568 | } | ||
| 569 | if (y != NULL) { | ||
| 570 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) | ||
| 571 | goto err; | ||
| 572 | } | ||
| 573 | } else { | ||
| 574 | if (x != NULL) { | ||
| 575 | if (!BN_copy(x, &point->X)) | ||
| 576 | goto err; | ||
| 577 | } | ||
| 578 | if (y != NULL) { | ||
| 579 | if (!BN_copy(y, &point->Y)) | ||
| 580 | goto err; | ||
| 581 | } | ||
| 582 | } | ||
| 583 | } else { | ||
| 584 | if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) { | ||
| 585 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
| 586 | goto err; | ||
| 587 | } | ||
| 588 | if (group->meth->field_encode == 0) { | ||
| 589 | /* field_sqr works on standard representation */ | ||
| 590 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) | ||
| 591 | goto err; | ||
| 592 | } else { | ||
| 593 | if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) | ||
| 594 | goto err; | ||
| 595 | } | ||
| 596 | |||
| 597 | if (x != NULL) { | ||
| 598 | /* | ||
| 599 | * in the Montgomery case, field_mul will cancel out | ||
| 600 | * Montgomery factor in X: | ||
| 601 | */ | ||
| 602 | if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) | ||
| 603 | goto err; | ||
| 604 | } | ||
| 605 | if (y != NULL) { | ||
| 606 | if (group->meth->field_encode == 0) { | ||
| 607 | /* field_mul works on standard representation */ | ||
| 608 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) | ||
| 609 | goto err; | ||
| 610 | } else { | ||
| 611 | if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) | ||
| 612 | goto err; | ||
| 613 | } | ||
| 614 | |||
| 615 | /* | ||
| 616 | * in the Montgomery case, field_mul will cancel out | ||
| 617 | * Montgomery factor in Y: | ||
| 618 | */ | ||
| 619 | if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) | ||
| 620 | goto err; | ||
| 621 | } | ||
| 622 | } | ||
| 623 | |||
| 624 | ret = 1; | ||
| 625 | |||
| 626 | err: | ||
| 627 | BN_CTX_end(ctx); | ||
| 628 | BN_CTX_free(new_ctx); | ||
| 629 | return ret; | ||
| 630 | } | ||
| 631 | |||
| 632 | int | ||
| 633 | ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) | ||
| 634 | { | ||
| 635 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 636 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 637 | const BIGNUM *p; | ||
| 638 | BN_CTX *new_ctx = NULL; | ||
| 639 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | ||
| 640 | int ret = 0; | ||
| 641 | |||
| 642 | if (a == b) | ||
| 643 | return EC_POINT_dbl(group, r, a, ctx); | ||
| 644 | if (EC_POINT_is_at_infinity(group, a) > 0) | ||
| 645 | return EC_POINT_copy(r, b); | ||
| 646 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
| 647 | return EC_POINT_copy(r, a); | ||
| 648 | |||
| 649 | field_mul = group->meth->field_mul; | ||
| 650 | field_sqr = group->meth->field_sqr; | ||
| 651 | p = &group->field; | ||
| 652 | |||
| 653 | if (ctx == NULL) { | ||
| 654 | ctx = new_ctx = BN_CTX_new(); | ||
| 655 | if (ctx == NULL) | ||
| 656 | return 0; | ||
| 657 | } | ||
| 658 | BN_CTX_start(ctx); | ||
| 659 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
| 660 | goto end; | ||
| 661 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
| 662 | goto end; | ||
| 663 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
| 664 | goto end; | ||
| 665 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
| 666 | goto end; | ||
| 667 | if ((n4 = BN_CTX_get(ctx)) == NULL) | ||
| 668 | goto end; | ||
| 669 | if ((n5 = BN_CTX_get(ctx)) == NULL) | ||
| 670 | goto end; | ||
| 671 | if ((n6 = BN_CTX_get(ctx)) == NULL) | ||
| 672 | goto end; | ||
| 673 | |||
| 674 | /* | ||
| 675 | * Note that in this function we must not read components of 'a' or | ||
| 676 | * 'b' once we have written the corresponding components of 'r'. ('r' | ||
| 677 | * might be one of 'a' or 'b'.) | ||
| 678 | */ | ||
| 679 | |||
| 680 | /* n1, n2 */ | ||
| 681 | if (b->Z_is_one) { | ||
| 682 | if (!BN_copy(n1, &a->X)) | ||
| 683 | goto end; | ||
| 684 | if (!BN_copy(n2, &a->Y)) | ||
| 685 | goto end; | ||
| 686 | /* n1 = X_a */ | ||
| 687 | /* n2 = Y_a */ | ||
| 688 | } else { | ||
| 689 | if (!field_sqr(group, n0, &b->Z, ctx)) | ||
| 690 | goto end; | ||
| 691 | if (!field_mul(group, n1, &a->X, n0, ctx)) | ||
| 692 | goto end; | ||
| 693 | /* n1 = X_a * Z_b^2 */ | ||
| 694 | |||
| 695 | if (!field_mul(group, n0, n0, &b->Z, ctx)) | ||
| 696 | goto end; | ||
| 697 | if (!field_mul(group, n2, &a->Y, n0, ctx)) | ||
| 698 | goto end; | ||
| 699 | /* n2 = Y_a * Z_b^3 */ | ||
| 700 | } | ||
| 701 | |||
| 702 | /* n3, n4 */ | ||
| 703 | if (a->Z_is_one) { | ||
| 704 | if (!BN_copy(n3, &b->X)) | ||
| 705 | goto end; | ||
| 706 | if (!BN_copy(n4, &b->Y)) | ||
| 707 | goto end; | ||
| 708 | /* n3 = X_b */ | ||
| 709 | /* n4 = Y_b */ | ||
| 710 | } else { | ||
| 711 | if (!field_sqr(group, n0, &a->Z, ctx)) | ||
| 712 | goto end; | ||
| 713 | if (!field_mul(group, n3, &b->X, n0, ctx)) | ||
| 714 | goto end; | ||
| 715 | /* n3 = X_b * Z_a^2 */ | ||
| 716 | |||
| 717 | if (!field_mul(group, n0, n0, &a->Z, ctx)) | ||
| 718 | goto end; | ||
| 719 | if (!field_mul(group, n4, &b->Y, n0, ctx)) | ||
| 720 | goto end; | ||
| 721 | /* n4 = Y_b * Z_a^3 */ | ||
| 722 | } | ||
| 723 | |||
| 724 | /* n5, n6 */ | ||
| 725 | if (!BN_mod_sub_quick(n5, n1, n3, p)) | ||
| 726 | goto end; | ||
| 727 | if (!BN_mod_sub_quick(n6, n2, n4, p)) | ||
| 728 | goto end; | ||
| 729 | /* n5 = n1 - n3 */ | ||
| 730 | /* n6 = n2 - n4 */ | ||
| 731 | |||
| 732 | if (BN_is_zero(n5)) { | ||
| 733 | if (BN_is_zero(n6)) { | ||
| 734 | /* a is the same point as b */ | ||
| 735 | BN_CTX_end(ctx); | ||
| 736 | ret = EC_POINT_dbl(group, r, a, ctx); | ||
| 737 | ctx = NULL; | ||
| 738 | goto end; | ||
| 739 | } else { | ||
| 740 | /* a is the inverse of b */ | ||
| 741 | BN_zero(&r->Z); | ||
| 742 | r->Z_is_one = 0; | ||
| 743 | ret = 1; | ||
| 744 | goto end; | ||
| 745 | } | ||
| 746 | } | ||
| 747 | /* 'n7', 'n8' */ | ||
| 748 | if (!BN_mod_add_quick(n1, n1, n3, p)) | ||
| 749 | goto end; | ||
| 750 | if (!BN_mod_add_quick(n2, n2, n4, p)) | ||
| 751 | goto end; | ||
| 752 | /* 'n7' = n1 + n3 */ | ||
| 753 | /* 'n8' = n2 + n4 */ | ||
| 754 | |||
| 755 | /* Z_r */ | ||
| 756 | if (a->Z_is_one && b->Z_is_one) { | ||
| 757 | if (!BN_copy(&r->Z, n5)) | ||
| 758 | goto end; | ||
| 759 | } else { | ||
| 760 | if (a->Z_is_one) { | ||
| 761 | if (!BN_copy(n0, &b->Z)) | ||
| 762 | goto end; | ||
| 763 | } else if (b->Z_is_one) { | ||
| 764 | if (!BN_copy(n0, &a->Z)) | ||
| 765 | goto end; | ||
| 766 | } else { | ||
| 767 | if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) | ||
| 768 | goto end; | ||
| 769 | } | ||
| 770 | if (!field_mul(group, &r->Z, n0, n5, ctx)) | ||
| 771 | goto end; | ||
| 772 | } | ||
| 773 | r->Z_is_one = 0; | ||
| 774 | /* Z_r = Z_a * Z_b * n5 */ | ||
| 775 | |||
| 776 | /* X_r */ | ||
| 777 | if (!field_sqr(group, n0, n6, ctx)) | ||
| 778 | goto end; | ||
| 779 | if (!field_sqr(group, n4, n5, ctx)) | ||
| 780 | goto end; | ||
| 781 | if (!field_mul(group, n3, n1, n4, ctx)) | ||
| 782 | goto end; | ||
| 783 | if (!BN_mod_sub_quick(&r->X, n0, n3, p)) | ||
| 784 | goto end; | ||
| 785 | /* X_r = n6^2 - n5^2 * 'n7' */ | ||
| 786 | |||
| 787 | /* 'n9' */ | ||
| 788 | if (!BN_mod_lshift1_quick(n0, &r->X, p)) | ||
| 789 | goto end; | ||
| 790 | if (!BN_mod_sub_quick(n0, n3, n0, p)) | ||
| 791 | goto end; | ||
| 792 | /* n9 = n5^2 * 'n7' - 2 * X_r */ | ||
| 793 | |||
| 794 | /* Y_r */ | ||
| 795 | if (!field_mul(group, n0, n0, n6, ctx)) | ||
| 796 | goto end; | ||
| 797 | if (!field_mul(group, n5, n4, n5, ctx)) | ||
| 798 | goto end; /* now n5 is n5^3 */ | ||
| 799 | if (!field_mul(group, n1, n2, n5, ctx)) | ||
| 800 | goto end; | ||
| 801 | if (!BN_mod_sub_quick(n0, n0, n1, p)) | ||
| 802 | goto end; | ||
| 803 | if (BN_is_odd(n0)) | ||
| 804 | if (!BN_add(n0, n0, p)) | ||
| 805 | goto end; | ||
| 806 | /* now 0 <= n0 < 2*p, and n0 is even */ | ||
| 807 | if (!BN_rshift1(&r->Y, n0)) | ||
| 808 | goto end; | ||
| 809 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | ||
| 810 | |||
| 811 | ret = 1; | ||
| 812 | |||
| 813 | end: | ||
| 814 | if (ctx) /* otherwise we already called BN_CTX_end */ | ||
| 815 | BN_CTX_end(ctx); | ||
| 816 | BN_CTX_free(new_ctx); | ||
| 817 | return ret; | ||
| 818 | } | ||
| 819 | |||
| 820 | |||
| 821 | int | ||
| 822 | ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_CTX * ctx) | ||
| 823 | { | ||
| 824 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 825 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 826 | const BIGNUM *p; | ||
| 827 | BN_CTX *new_ctx = NULL; | ||
| 828 | BIGNUM *n0, *n1, *n2, *n3; | ||
| 829 | int ret = 0; | ||
| 830 | |||
| 831 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
| 832 | BN_zero(&r->Z); | ||
| 833 | r->Z_is_one = 0; | ||
| 834 | return 1; | ||
| 835 | } | ||
| 836 | field_mul = group->meth->field_mul; | ||
| 837 | field_sqr = group->meth->field_sqr; | ||
| 838 | p = &group->field; | ||
| 839 | |||
| 840 | if (ctx == NULL) { | ||
| 841 | ctx = new_ctx = BN_CTX_new(); | ||
| 842 | if (ctx == NULL) | ||
| 843 | return 0; | ||
| 844 | } | ||
| 845 | BN_CTX_start(ctx); | ||
| 846 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
| 847 | goto err; | ||
| 848 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
| 849 | goto err; | ||
| 850 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
| 851 | goto err; | ||
| 852 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
| 853 | goto err; | ||
| 854 | |||
| 855 | /* | ||
| 856 | * Note that in this function we must not read components of 'a' once | ||
| 857 | * we have written the corresponding components of 'r'. ('r' might | ||
| 858 | * the same as 'a'.) | ||
| 859 | */ | ||
| 860 | |||
| 861 | /* n1 */ | ||
| 862 | if (a->Z_is_one) { | ||
| 863 | if (!field_sqr(group, n0, &a->X, ctx)) | ||
| 864 | goto err; | ||
| 865 | if (!BN_mod_lshift1_quick(n1, n0, p)) | ||
| 866 | goto err; | ||
| 867 | if (!BN_mod_add_quick(n0, n0, n1, p)) | ||
| 868 | goto err; | ||
| 869 | if (!BN_mod_add_quick(n1, n0, &group->a, p)) | ||
| 870 | goto err; | ||
| 871 | /* n1 = 3 * X_a^2 + a_curve */ | ||
| 872 | } else if (group->a_is_minus3) { | ||
| 873 | if (!field_sqr(group, n1, &a->Z, ctx)) | ||
| 874 | goto err; | ||
| 875 | if (!BN_mod_add_quick(n0, &a->X, n1, p)) | ||
| 876 | goto err; | ||
| 877 | if (!BN_mod_sub_quick(n2, &a->X, n1, p)) | ||
| 878 | goto err; | ||
| 879 | if (!field_mul(group, n1, n0, n2, ctx)) | ||
| 880 | goto err; | ||
| 881 | if (!BN_mod_lshift1_quick(n0, n1, p)) | ||
| 882 | goto err; | ||
| 883 | if (!BN_mod_add_quick(n1, n0, n1, p)) | ||
| 884 | goto err; | ||
| 885 | /* | ||
| 886 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * | ||
| 887 | * Z_a^4 | ||
| 888 | */ | ||
| 889 | } else { | ||
| 890 | if (!field_sqr(group, n0, &a->X, ctx)) | ||
| 891 | goto err; | ||
| 892 | if (!BN_mod_lshift1_quick(n1, n0, p)) | ||
| 893 | goto err; | ||
| 894 | if (!BN_mod_add_quick(n0, n0, n1, p)) | ||
| 895 | goto err; | ||
| 896 | if (!field_sqr(group, n1, &a->Z, ctx)) | ||
| 897 | goto err; | ||
| 898 | if (!field_sqr(group, n1, n1, ctx)) | ||
| 899 | goto err; | ||
| 900 | if (!field_mul(group, n1, n1, &group->a, ctx)) | ||
| 901 | goto err; | ||
| 902 | if (!BN_mod_add_quick(n1, n1, n0, p)) | ||
| 903 | goto err; | ||
| 904 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | ||
| 905 | } | ||
| 906 | |||
| 907 | /* Z_r */ | ||
| 908 | if (a->Z_is_one) { | ||
| 909 | if (!BN_copy(n0, &a->Y)) | ||
| 910 | goto err; | ||
| 911 | } else { | ||
| 912 | if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) | ||
| 913 | goto err; | ||
| 914 | } | ||
| 915 | if (!BN_mod_lshift1_quick(&r->Z, n0, p)) | ||
| 916 | goto err; | ||
| 917 | r->Z_is_one = 0; | ||
| 918 | /* Z_r = 2 * Y_a * Z_a */ | ||
| 919 | |||
| 920 | /* n2 */ | ||
| 921 | if (!field_sqr(group, n3, &a->Y, ctx)) | ||
| 922 | goto err; | ||
| 923 | if (!field_mul(group, n2, &a->X, n3, ctx)) | ||
| 924 | goto err; | ||
| 925 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) | ||
| 926 | goto err; | ||
| 927 | /* n2 = 4 * X_a * Y_a^2 */ | ||
| 928 | |||
| 929 | /* X_r */ | ||
| 930 | if (!BN_mod_lshift1_quick(n0, n2, p)) | ||
| 931 | goto err; | ||
| 932 | if (!field_sqr(group, &r->X, n1, ctx)) | ||
| 933 | goto err; | ||
| 934 | if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) | ||
| 935 | goto err; | ||
| 936 | /* X_r = n1^2 - 2 * n2 */ | ||
| 937 | |||
| 938 | /* n3 */ | ||
| 939 | if (!field_sqr(group, n0, n3, ctx)) | ||
| 940 | goto err; | ||
| 941 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) | ||
| 942 | goto err; | ||
| 943 | /* n3 = 8 * Y_a^4 */ | ||
| 944 | |||
| 945 | /* Y_r */ | ||
| 946 | if (!BN_mod_sub_quick(n0, n2, &r->X, p)) | ||
| 947 | goto err; | ||
| 948 | if (!field_mul(group, n0, n1, n0, ctx)) | ||
| 949 | goto err; | ||
| 950 | if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) | ||
| 951 | goto err; | ||
| 952 | /* Y_r = n1 * (n2 - X_r) - n3 */ | ||
| 953 | |||
| 954 | ret = 1; | ||
| 955 | |||
| 956 | err: | ||
| 957 | BN_CTX_end(ctx); | ||
| 958 | BN_CTX_free(new_ctx); | ||
| 959 | return ret; | ||
| 960 | } | ||
| 961 | |||
| 962 | |||
| 963 | int | ||
| 964 | ec_GFp_simple_invert(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
| 965 | { | ||
| 966 | if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) | ||
| 967 | /* point is its own inverse */ | ||
| 968 | return 1; | ||
| 969 | |||
| 970 | return BN_usub(&point->Y, &group->field, &point->Y); | ||
| 971 | } | ||
| 972 | |||
| 973 | |||
| 974 | int | ||
| 975 | ec_GFp_simple_is_at_infinity(const EC_GROUP * group, const EC_POINT * point) | ||
| 976 | { | ||
| 977 | return BN_is_zero(&point->Z); | ||
| 978 | } | ||
| 979 | |||
| 980 | |||
| 981 | int | ||
| 982 | ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx) | ||
| 983 | { | ||
| 984 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 985 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 986 | const BIGNUM *p; | ||
| 987 | BN_CTX *new_ctx = NULL; | ||
| 988 | BIGNUM *rh, *tmp, *Z4, *Z6; | ||
| 989 | int ret = -1; | ||
| 990 | |||
| 991 | if (EC_POINT_is_at_infinity(group, point) > 0) | ||
| 992 | return 1; | ||
| 993 | |||
| 994 | field_mul = group->meth->field_mul; | ||
| 995 | field_sqr = group->meth->field_sqr; | ||
| 996 | p = &group->field; | ||
| 997 | |||
| 998 | if (ctx == NULL) { | ||
| 999 | ctx = new_ctx = BN_CTX_new(); | ||
| 1000 | if (ctx == NULL) | ||
| 1001 | return -1; | ||
| 1002 | } | ||
| 1003 | BN_CTX_start(ctx); | ||
| 1004 | if ((rh = BN_CTX_get(ctx)) == NULL) | ||
| 1005 | goto err; | ||
| 1006 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 1007 | goto err; | ||
| 1008 | if ((Z4 = BN_CTX_get(ctx)) == NULL) | ||
| 1009 | goto err; | ||
| 1010 | if ((Z6 = BN_CTX_get(ctx)) == NULL) | ||
| 1011 | goto err; | ||
| 1012 | |||
| 1013 | /* | ||
| 1014 | * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x | ||
| 1015 | * + b. The point to consider is given in Jacobian projective | ||
| 1016 | * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). | ||
| 1017 | * Substituting this and multiplying by Z^6 transforms the above | ||
| 1018 | * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up | ||
| 1019 | * the right-hand side in 'rh'. | ||
| 1020 | */ | ||
| 1021 | |||
| 1022 | /* rh := X^2 */ | ||
| 1023 | if (!field_sqr(group, rh, &point->X, ctx)) | ||
| 1024 | goto err; | ||
| 1025 | |||
| 1026 | if (!point->Z_is_one) { | ||
| 1027 | if (!field_sqr(group, tmp, &point->Z, ctx)) | ||
| 1028 | goto err; | ||
| 1029 | if (!field_sqr(group, Z4, tmp, ctx)) | ||
| 1030 | goto err; | ||
| 1031 | if (!field_mul(group, Z6, Z4, tmp, ctx)) | ||
| 1032 | goto err; | ||
| 1033 | |||
| 1034 | /* rh := (rh + a*Z^4)*X */ | ||
| 1035 | if (group->a_is_minus3) { | ||
| 1036 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) | ||
| 1037 | goto err; | ||
| 1038 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) | ||
| 1039 | goto err; | ||
| 1040 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) | ||
| 1041 | goto err; | ||
| 1042 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
| 1043 | goto err; | ||
| 1044 | } else { | ||
| 1045 | if (!field_mul(group, tmp, Z4, &group->a, ctx)) | ||
| 1046 | goto err; | ||
| 1047 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | ||
| 1048 | goto err; | ||
| 1049 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
| 1050 | goto err; | ||
| 1051 | } | ||
| 1052 | |||
| 1053 | /* rh := rh + b*Z^6 */ | ||
| 1054 | if (!field_mul(group, tmp, &group->b, Z6, ctx)) | ||
| 1055 | goto err; | ||
| 1056 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | ||
| 1057 | goto err; | ||
| 1058 | } else { | ||
| 1059 | /* point->Z_is_one */ | ||
| 1060 | |||
| 1061 | /* rh := (rh + a)*X */ | ||
| 1062 | if (!BN_mod_add_quick(rh, rh, &group->a, p)) | ||
| 1063 | goto err; | ||
| 1064 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
| 1065 | goto err; | ||
| 1066 | /* rh := rh + b */ | ||
| 1067 | if (!BN_mod_add_quick(rh, rh, &group->b, p)) | ||
| 1068 | goto err; | ||
| 1069 | } | ||
| 1070 | |||
| 1071 | /* 'lh' := Y^2 */ | ||
| 1072 | if (!field_sqr(group, tmp, &point->Y, ctx)) | ||
| 1073 | goto err; | ||
| 1074 | |||
| 1075 | ret = (0 == BN_ucmp(tmp, rh)); | ||
| 1076 | |||
| 1077 | err: | ||
| 1078 | BN_CTX_end(ctx); | ||
| 1079 | BN_CTX_free(new_ctx); | ||
| 1080 | return ret; | ||
| 1081 | } | ||
| 1082 | |||
| 1083 | |||
| 1084 | int | ||
| 1085 | ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) | ||
| 1086 | { | ||
| 1087 | /* | ||
| 1088 | * return values: -1 error 0 equal (in affine coordinates) 1 | ||
| 1089 | * not equal | ||
| 1090 | */ | ||
| 1091 | |||
| 1092 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1093 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1094 | BN_CTX *new_ctx = NULL; | ||
| 1095 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | ||
| 1096 | const BIGNUM *tmp1_, *tmp2_; | ||
| 1097 | int ret = -1; | ||
| 1098 | |||
| 1099 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
| 1100 | return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; | ||
| 1101 | } | ||
| 1102 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
| 1103 | return 1; | ||
| 1104 | |||
| 1105 | if (a->Z_is_one && b->Z_is_one) { | ||
| 1106 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
| 1107 | } | ||
| 1108 | field_mul = group->meth->field_mul; | ||
| 1109 | field_sqr = group->meth->field_sqr; | ||
| 1110 | |||
| 1111 | if (ctx == NULL) { | ||
| 1112 | ctx = new_ctx = BN_CTX_new(); | ||
| 1113 | if (ctx == NULL) | ||
| 1114 | return -1; | ||
| 1115 | } | ||
| 1116 | BN_CTX_start(ctx); | ||
| 1117 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
| 1118 | goto end; | ||
| 1119 | if ((tmp2 = BN_CTX_get(ctx)) == NULL) | ||
| 1120 | goto end; | ||
| 1121 | if ((Za23 = BN_CTX_get(ctx)) == NULL) | ||
| 1122 | goto end; | ||
| 1123 | if ((Zb23 = BN_CTX_get(ctx)) == NULL) | ||
| 1124 | goto end; | ||
| 1125 | |||
| 1126 | /* | ||
| 1127 | * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, | ||
| 1128 | * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) = | ||
| 1129 | * (X_b*Z_a^2, Y_b*Z_a^3). | ||
| 1130 | */ | ||
| 1131 | |||
| 1132 | if (!b->Z_is_one) { | ||
| 1133 | if (!field_sqr(group, Zb23, &b->Z, ctx)) | ||
| 1134 | goto end; | ||
| 1135 | if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) | ||
| 1136 | goto end; | ||
| 1137 | tmp1_ = tmp1; | ||
| 1138 | } else | ||
| 1139 | tmp1_ = &a->X; | ||
| 1140 | if (!a->Z_is_one) { | ||
| 1141 | if (!field_sqr(group, Za23, &a->Z, ctx)) | ||
| 1142 | goto end; | ||
| 1143 | if (!field_mul(group, tmp2, &b->X, Za23, ctx)) | ||
| 1144 | goto end; | ||
| 1145 | tmp2_ = tmp2; | ||
| 1146 | } else | ||
| 1147 | tmp2_ = &b->X; | ||
| 1148 | |||
| 1149 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ | ||
| 1150 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
| 1151 | ret = 1; /* points differ */ | ||
| 1152 | goto end; | ||
| 1153 | } | ||
| 1154 | if (!b->Z_is_one) { | ||
| 1155 | if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) | ||
| 1156 | goto end; | ||
| 1157 | if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) | ||
| 1158 | goto end; | ||
| 1159 | /* tmp1_ = tmp1 */ | ||
| 1160 | } else | ||
| 1161 | tmp1_ = &a->Y; | ||
| 1162 | if (!a->Z_is_one) { | ||
| 1163 | if (!field_mul(group, Za23, Za23, &a->Z, ctx)) | ||
| 1164 | goto end; | ||
| 1165 | if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) | ||
| 1166 | goto end; | ||
| 1167 | /* tmp2_ = tmp2 */ | ||
| 1168 | } else | ||
| 1169 | tmp2_ = &b->Y; | ||
| 1170 | |||
| 1171 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ | ||
| 1172 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
| 1173 | ret = 1; /* points differ */ | ||
| 1174 | goto end; | ||
| 1175 | } | ||
| 1176 | /* points are equal */ | ||
| 1177 | ret = 0; | ||
| 1178 | |||
| 1179 | end: | ||
| 1180 | BN_CTX_end(ctx); | ||
| 1181 | BN_CTX_free(new_ctx); | ||
| 1182 | return ret; | ||
| 1183 | } | ||
| 1184 | |||
| 1185 | |||
| 1186 | int | ||
| 1187 | ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
| 1188 | { | ||
| 1189 | BN_CTX *new_ctx = NULL; | ||
| 1190 | BIGNUM *x, *y; | ||
| 1191 | int ret = 0; | ||
| 1192 | |||
| 1193 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) | ||
| 1194 | return 1; | ||
| 1195 | |||
| 1196 | if (ctx == NULL) { | ||
| 1197 | ctx = new_ctx = BN_CTX_new(); | ||
| 1198 | if (ctx == NULL) | ||
| 1199 | return 0; | ||
| 1200 | } | ||
| 1201 | BN_CTX_start(ctx); | ||
| 1202 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
| 1203 | goto err; | ||
| 1204 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
| 1205 | goto err; | ||
| 1206 | |||
| 1207 | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
| 1208 | goto err; | ||
| 1209 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
| 1210 | goto err; | ||
| 1211 | if (!point->Z_is_one) { | ||
| 1212 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); | ||
| 1213 | goto err; | ||
| 1214 | } | ||
| 1215 | ret = 1; | ||
| 1216 | |||
| 1217 | err: | ||
| 1218 | BN_CTX_end(ctx); | ||
| 1219 | BN_CTX_free(new_ctx); | ||
| 1220 | return ret; | ||
| 1221 | } | ||
| 1222 | |||
| 1223 | |||
| 1224 | int | ||
| 1225 | ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * points[], BN_CTX * ctx) | ||
| 1226 | { | ||
| 1227 | BN_CTX *new_ctx = NULL; | ||
| 1228 | BIGNUM *tmp0, *tmp1; | ||
| 1229 | size_t pow2 = 0; | ||
| 1230 | BIGNUM **heap = NULL; | ||
| 1231 | size_t i; | ||
| 1232 | int ret = 0; | ||
| 1233 | |||
| 1234 | if (num == 0) | ||
| 1235 | return 1; | ||
| 1236 | |||
| 1237 | if (ctx == NULL) { | ||
| 1238 | ctx = new_ctx = BN_CTX_new(); | ||
| 1239 | if (ctx == NULL) | ||
| 1240 | return 0; | ||
| 1241 | } | ||
| 1242 | BN_CTX_start(ctx); | ||
| 1243 | if ((tmp0 = BN_CTX_get(ctx)) == NULL) | ||
| 1244 | goto err; | ||
| 1245 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
| 1246 | goto err; | ||
| 1247 | |||
| 1248 | /* | ||
| 1249 | * Before converting the individual points, compute inverses of all Z | ||
| 1250 | * values. Modular inversion is rather slow, but luckily we can do | ||
| 1251 | * with a single explicit inversion, plus about 3 multiplications per | ||
| 1252 | * input value. | ||
| 1253 | */ | ||
| 1254 | |||
| 1255 | pow2 = 1; | ||
| 1256 | while (num > pow2) | ||
| 1257 | pow2 <<= 1; | ||
| 1258 | /* | ||
| 1259 | * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We | ||
| 1260 | * need twice that. | ||
| 1261 | */ | ||
| 1262 | pow2 <<= 1; | ||
| 1263 | |||
| 1264 | heap = reallocarray(NULL, pow2, sizeof heap[0]); | ||
| 1265 | if (heap == NULL) | ||
| 1266 | goto err; | ||
| 1267 | |||
| 1268 | /* | ||
| 1269 | * The array is used as a binary tree, exactly as in heapsort: | ||
| 1270 | * | ||
| 1271 | * heap[1] heap[2] heap[3] heap[4] heap[5] | ||
| 1272 | * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] | ||
| 1273 | * heap[12]heap[13] heap[14] heap[15] | ||
| 1274 | * | ||
| 1275 | * We put the Z's in the last line; then we set each other node to the | ||
| 1276 | * product of its two child-nodes (where empty or 0 entries are | ||
| 1277 | * treated as ones); then we invert heap[1]; then we invert each | ||
| 1278 | * other node by replacing it by the product of its parent (after | ||
| 1279 | * inversion) and its sibling (before inversion). | ||
| 1280 | */ | ||
| 1281 | heap[0] = NULL; | ||
| 1282 | for (i = pow2 / 2 - 1; i > 0; i--) | ||
| 1283 | heap[i] = NULL; | ||
| 1284 | for (i = 0; i < num; i++) | ||
| 1285 | heap[pow2 / 2 + i] = &points[i]->Z; | ||
| 1286 | for (i = pow2 / 2 + num; i < pow2; i++) | ||
| 1287 | heap[i] = NULL; | ||
| 1288 | |||
| 1289 | /* set each node to the product of its children */ | ||
| 1290 | for (i = pow2 / 2 - 1; i > 0; i--) { | ||
| 1291 | heap[i] = BN_new(); | ||
| 1292 | if (heap[i] == NULL) | ||
| 1293 | goto err; | ||
| 1294 | |||
| 1295 | if (heap[2 * i] != NULL) { | ||
| 1296 | if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) { | ||
| 1297 | if (!BN_copy(heap[i], heap[2 * i])) | ||
| 1298 | goto err; | ||
| 1299 | } else { | ||
| 1300 | if (BN_is_zero(heap[2 * i])) { | ||
| 1301 | if (!BN_copy(heap[i], heap[2 * i + 1])) | ||
| 1302 | goto err; | ||
| 1303 | } else { | ||
| 1304 | if (!group->meth->field_mul(group, heap[i], | ||
| 1305 | heap[2 * i], heap[2 * i + 1], ctx)) | ||
| 1306 | goto err; | ||
| 1307 | } | ||
| 1308 | } | ||
| 1309 | } | ||
| 1310 | } | ||
| 1311 | |||
| 1312 | /* invert heap[1] */ | ||
| 1313 | if (!BN_is_zero(heap[1])) { | ||
| 1314 | if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) { | ||
| 1315 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); | ||
| 1316 | goto err; | ||
| 1317 | } | ||
| 1318 | } | ||
| 1319 | if (group->meth->field_encode != 0) { | ||
| 1320 | /* | ||
| 1321 | * in the Montgomery case, we just turned R*H (representing | ||
| 1322 | * H) into 1/(R*H), but we need R*(1/H) (representing | ||
| 1323 | * 1/H); i.e. we have need to multiply by the Montgomery | ||
| 1324 | * factor twice | ||
| 1325 | */ | ||
| 1326 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | ||
| 1327 | goto err; | ||
| 1328 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | ||
| 1329 | goto err; | ||
| 1330 | } | ||
| 1331 | /* set other heap[i]'s to their inverses */ | ||
| 1332 | for (i = 2; i < pow2 / 2 + num; i += 2) { | ||
| 1333 | /* i is even */ | ||
| 1334 | if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { | ||
| 1335 | if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) | ||
| 1336 | goto err; | ||
| 1337 | if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) | ||
| 1338 | goto err; | ||
| 1339 | if (!BN_copy(heap[i], tmp0)) | ||
| 1340 | goto err; | ||
| 1341 | if (!BN_copy(heap[i + 1], tmp1)) | ||
| 1342 | goto err; | ||
| 1343 | } else { | ||
| 1344 | if (!BN_copy(heap[i], heap[i / 2])) | ||
| 1345 | goto err; | ||
| 1346 | } | ||
| 1347 | } | ||
| 1348 | |||
| 1349 | /* | ||
| 1350 | * we have replaced all non-zero Z's by their inverses, now fix up | ||
| 1351 | * all the points | ||
| 1352 | */ | ||
| 1353 | for (i = 0; i < num; i++) { | ||
| 1354 | EC_POINT *p = points[i]; | ||
| 1355 | |||
| 1356 | if (!BN_is_zero(&p->Z)) { | ||
| 1357 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ | ||
| 1358 | |||
| 1359 | if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) | ||
| 1360 | goto err; | ||
| 1361 | if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) | ||
| 1362 | goto err; | ||
| 1363 | |||
| 1364 | if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) | ||
| 1365 | goto err; | ||
| 1366 | if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) | ||
| 1367 | goto err; | ||
| 1368 | |||
| 1369 | if (group->meth->field_set_to_one != 0) { | ||
| 1370 | if (!group->meth->field_set_to_one(group, &p->Z, ctx)) | ||
| 1371 | goto err; | ||
| 1372 | } else { | ||
| 1373 | if (!BN_one(&p->Z)) | ||
| 1374 | goto err; | ||
| 1375 | } | ||
| 1376 | p->Z_is_one = 1; | ||
| 1377 | } | ||
| 1378 | } | ||
| 1379 | |||
| 1380 | ret = 1; | ||
| 1381 | |||
| 1382 | err: | ||
| 1383 | BN_CTX_end(ctx); | ||
| 1384 | BN_CTX_free(new_ctx); | ||
| 1385 | if (heap != NULL) { | ||
| 1386 | /* | ||
| 1387 | * heap[pow2/2] .. heap[pow2-1] have not been allocated | ||
| 1388 | * locally! | ||
| 1389 | */ | ||
| 1390 | for (i = pow2 / 2 - 1; i > 0; i--) { | ||
| 1391 | BN_clear_free(heap[i]); | ||
| 1392 | } | ||
| 1393 | free(heap); | ||
| 1394 | } | ||
| 1395 | return ret; | ||
| 1396 | } | ||
| 1397 | |||
| 1398 | |||
| 1399 | int | ||
| 1400 | ec_GFp_simple_field_mul(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
| 1401 | { | ||
| 1402 | return BN_mod_mul(r, a, b, &group->field, ctx); | ||
| 1403 | } | ||
| 1404 | |||
| 1405 | |||
| 1406 | int | ||
| 1407 | ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN_CTX * ctx) | ||
| 1408 | { | ||
| 1409 | return BN_mod_sqr(r, a, &group->field, ctx); | ||
| 1410 | } | ||
