diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_smpl.c')
-rw-r--r-- | src/lib/libcrypto/ec/ecp_smpl.c | 1410 |
1 files changed, 0 insertions, 1410 deletions
diff --git a/src/lib/libcrypto/ec/ecp_smpl.c b/src/lib/libcrypto/ec/ecp_smpl.c deleted file mode 100644 index f6db4dc9b1..0000000000 --- a/src/lib/libcrypto/ec/ecp_smpl.c +++ /dev/null | |||
@@ -1,1410 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_smpl.c,v 1.15 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * for the OpenSSL project. | ||
4 | * Includes code written by Bodo Moeller for the OpenSSL project. | ||
5 | */ | ||
6 | /* ==================================================================== | ||
7 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
8 | * | ||
9 | * Redistribution and use in source and binary forms, with or without | ||
10 | * modification, are permitted provided that the following conditions | ||
11 | * are met: | ||
12 | * | ||
13 | * 1. Redistributions of source code must retain the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer. | ||
15 | * | ||
16 | * 2. Redistributions in binary form must reproduce the above copyright | ||
17 | * notice, this list of conditions and the following disclaimer in | ||
18 | * the documentation and/or other materials provided with the | ||
19 | * distribution. | ||
20 | * | ||
21 | * 3. All advertising materials mentioning features or use of this | ||
22 | * software must display the following acknowledgment: | ||
23 | * "This product includes software developed by the OpenSSL Project | ||
24 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
25 | * | ||
26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
27 | * endorse or promote products derived from this software without | ||
28 | * prior written permission. For written permission, please contact | ||
29 | * openssl-core@openssl.org. | ||
30 | * | ||
31 | * 5. Products derived from this software may not be called "OpenSSL" | ||
32 | * nor may "OpenSSL" appear in their names without prior written | ||
33 | * permission of the OpenSSL Project. | ||
34 | * | ||
35 | * 6. Redistributions of any form whatsoever must retain the following | ||
36 | * acknowledgment: | ||
37 | * "This product includes software developed by the OpenSSL Project | ||
38 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
39 | * | ||
40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
52 | * ==================================================================== | ||
53 | * | ||
54 | * This product includes cryptographic software written by Eric Young | ||
55 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
56 | * Hudson (tjh@cryptsoft.com). | ||
57 | * | ||
58 | */ | ||
59 | /* ==================================================================== | ||
60 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
61 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
62 | * and contributed to the OpenSSL project. | ||
63 | */ | ||
64 | |||
65 | #include <openssl/err.h> | ||
66 | |||
67 | #include "ec_lcl.h" | ||
68 | |||
69 | const EC_METHOD * | ||
70 | EC_GFp_simple_method(void) | ||
71 | { | ||
72 | static const EC_METHOD ret = { | ||
73 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
74 | .field_type = NID_X9_62_prime_field, | ||
75 | .group_init = ec_GFp_simple_group_init, | ||
76 | .group_finish = ec_GFp_simple_group_finish, | ||
77 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
78 | .group_copy = ec_GFp_simple_group_copy, | ||
79 | .group_set_curve = ec_GFp_simple_group_set_curve, | ||
80 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
81 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
82 | .group_check_discriminant = | ||
83 | ec_GFp_simple_group_check_discriminant, | ||
84 | .point_init = ec_GFp_simple_point_init, | ||
85 | .point_finish = ec_GFp_simple_point_finish, | ||
86 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
87 | .point_copy = ec_GFp_simple_point_copy, | ||
88 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
89 | .point_set_Jprojective_coordinates_GFp = | ||
90 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
91 | .point_get_Jprojective_coordinates_GFp = | ||
92 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
93 | .point_set_affine_coordinates = | ||
94 | ec_GFp_simple_point_set_affine_coordinates, | ||
95 | .point_get_affine_coordinates = | ||
96 | ec_GFp_simple_point_get_affine_coordinates, | ||
97 | .add = ec_GFp_simple_add, | ||
98 | .dbl = ec_GFp_simple_dbl, | ||
99 | .invert = ec_GFp_simple_invert, | ||
100 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
101 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
102 | .point_cmp = ec_GFp_simple_cmp, | ||
103 | .make_affine = ec_GFp_simple_make_affine, | ||
104 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
105 | .field_mul = ec_GFp_simple_field_mul, | ||
106 | .field_sqr = ec_GFp_simple_field_sqr | ||
107 | }; | ||
108 | |||
109 | return &ret; | ||
110 | } | ||
111 | |||
112 | |||
113 | /* Most method functions in this file are designed to work with | ||
114 | * non-trivial representations of field elements if necessary | ||
115 | * (see ecp_mont.c): while standard modular addition and subtraction | ||
116 | * are used, the field_mul and field_sqr methods will be used for | ||
117 | * multiplication, and field_encode and field_decode (if defined) | ||
118 | * will be used for converting between representations. | ||
119 | |||
120 | * Functions ec_GFp_simple_points_make_affine() and | ||
121 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume | ||
122 | * that if a non-trivial representation is used, it is a Montgomery | ||
123 | * representation (i.e. 'encoding' means multiplying by some factor R). | ||
124 | */ | ||
125 | |||
126 | |||
127 | int | ||
128 | ec_GFp_simple_group_init(EC_GROUP * group) | ||
129 | { | ||
130 | BN_init(&group->field); | ||
131 | BN_init(&group->a); | ||
132 | BN_init(&group->b); | ||
133 | group->a_is_minus3 = 0; | ||
134 | return 1; | ||
135 | } | ||
136 | |||
137 | |||
138 | void | ||
139 | ec_GFp_simple_group_finish(EC_GROUP * group) | ||
140 | { | ||
141 | BN_free(&group->field); | ||
142 | BN_free(&group->a); | ||
143 | BN_free(&group->b); | ||
144 | } | ||
145 | |||
146 | |||
147 | void | ||
148 | ec_GFp_simple_group_clear_finish(EC_GROUP * group) | ||
149 | { | ||
150 | BN_clear_free(&group->field); | ||
151 | BN_clear_free(&group->a); | ||
152 | BN_clear_free(&group->b); | ||
153 | } | ||
154 | |||
155 | |||
156 | int | ||
157 | ec_GFp_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
158 | { | ||
159 | if (!BN_copy(&dest->field, &src->field)) | ||
160 | return 0; | ||
161 | if (!BN_copy(&dest->a, &src->a)) | ||
162 | return 0; | ||
163 | if (!BN_copy(&dest->b, &src->b)) | ||
164 | return 0; | ||
165 | |||
166 | dest->a_is_minus3 = src->a_is_minus3; | ||
167 | |||
168 | return 1; | ||
169 | } | ||
170 | |||
171 | |||
172 | int | ||
173 | ec_GFp_simple_group_set_curve(EC_GROUP * group, | ||
174 | const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
175 | { | ||
176 | int ret = 0; | ||
177 | BN_CTX *new_ctx = NULL; | ||
178 | BIGNUM *tmp_a; | ||
179 | |||
180 | /* p must be a prime > 3 */ | ||
181 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | ||
182 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); | ||
183 | return 0; | ||
184 | } | ||
185 | if (ctx == NULL) { | ||
186 | ctx = new_ctx = BN_CTX_new(); | ||
187 | if (ctx == NULL) | ||
188 | return 0; | ||
189 | } | ||
190 | BN_CTX_start(ctx); | ||
191 | if ((tmp_a = BN_CTX_get(ctx)) == NULL) | ||
192 | goto err; | ||
193 | |||
194 | /* group->field */ | ||
195 | if (!BN_copy(&group->field, p)) | ||
196 | goto err; | ||
197 | BN_set_negative(&group->field, 0); | ||
198 | |||
199 | /* group->a */ | ||
200 | if (!BN_nnmod(tmp_a, a, p, ctx)) | ||
201 | goto err; | ||
202 | if (group->meth->field_encode) { | ||
203 | if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) | ||
204 | goto err; | ||
205 | } else if (!BN_copy(&group->a, tmp_a)) | ||
206 | goto err; | ||
207 | |||
208 | /* group->b */ | ||
209 | if (!BN_nnmod(&group->b, b, p, ctx)) | ||
210 | goto err; | ||
211 | if (group->meth->field_encode) | ||
212 | if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) | ||
213 | goto err; | ||
214 | |||
215 | /* group->a_is_minus3 */ | ||
216 | if (!BN_add_word(tmp_a, 3)) | ||
217 | goto err; | ||
218 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); | ||
219 | |||
220 | ret = 1; | ||
221 | |||
222 | err: | ||
223 | BN_CTX_end(ctx); | ||
224 | BN_CTX_free(new_ctx); | ||
225 | return ret; | ||
226 | } | ||
227 | |||
228 | |||
229 | int | ||
230 | ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BIGNUM * b, BN_CTX * ctx) | ||
231 | { | ||
232 | int ret = 0; | ||
233 | BN_CTX *new_ctx = NULL; | ||
234 | |||
235 | if (p != NULL) { | ||
236 | if (!BN_copy(p, &group->field)) | ||
237 | return 0; | ||
238 | } | ||
239 | if (a != NULL || b != NULL) { | ||
240 | if (group->meth->field_decode) { | ||
241 | if (ctx == NULL) { | ||
242 | ctx = new_ctx = BN_CTX_new(); | ||
243 | if (ctx == NULL) | ||
244 | return 0; | ||
245 | } | ||
246 | if (a != NULL) { | ||
247 | if (!group->meth->field_decode(group, a, &group->a, ctx)) | ||
248 | goto err; | ||
249 | } | ||
250 | if (b != NULL) { | ||
251 | if (!group->meth->field_decode(group, b, &group->b, ctx)) | ||
252 | goto err; | ||
253 | } | ||
254 | } else { | ||
255 | if (a != NULL) { | ||
256 | if (!BN_copy(a, &group->a)) | ||
257 | goto err; | ||
258 | } | ||
259 | if (b != NULL) { | ||
260 | if (!BN_copy(b, &group->b)) | ||
261 | goto err; | ||
262 | } | ||
263 | } | ||
264 | } | ||
265 | ret = 1; | ||
266 | |||
267 | err: | ||
268 | BN_CTX_free(new_ctx); | ||
269 | return ret; | ||
270 | } | ||
271 | |||
272 | |||
273 | int | ||
274 | ec_GFp_simple_group_get_degree(const EC_GROUP * group) | ||
275 | { | ||
276 | return BN_num_bits(&group->field); | ||
277 | } | ||
278 | |||
279 | |||
280 | int | ||
281 | ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) | ||
282 | { | ||
283 | int ret = 0; | ||
284 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2; | ||
285 | const BIGNUM *p = &group->field; | ||
286 | BN_CTX *new_ctx = NULL; | ||
287 | |||
288 | if (ctx == NULL) { | ||
289 | ctx = new_ctx = BN_CTX_new(); | ||
290 | if (ctx == NULL) { | ||
291 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
292 | goto err; | ||
293 | } | ||
294 | } | ||
295 | BN_CTX_start(ctx); | ||
296 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
297 | goto err; | ||
298 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
299 | goto err; | ||
300 | if ((tmp_1 = BN_CTX_get(ctx)) == NULL) | ||
301 | goto err; | ||
302 | if ((tmp_2 = BN_CTX_get(ctx)) == NULL) | ||
303 | goto err; | ||
304 | if ((order = BN_CTX_get(ctx)) == NULL) | ||
305 | goto err; | ||
306 | |||
307 | if (group->meth->field_decode) { | ||
308 | if (!group->meth->field_decode(group, a, &group->a, ctx)) | ||
309 | goto err; | ||
310 | if (!group->meth->field_decode(group, b, &group->b, ctx)) | ||
311 | goto err; | ||
312 | } else { | ||
313 | if (!BN_copy(a, &group->a)) | ||
314 | goto err; | ||
315 | if (!BN_copy(b, &group->b)) | ||
316 | goto err; | ||
317 | } | ||
318 | |||
319 | /* | ||
320 | * check the discriminant: y^2 = x^3 + a*x + b is an elliptic curve | ||
321 | * <=> 4*a^3 + 27*b^2 != 0 (mod p) 0 =< a, b < p | ||
322 | */ | ||
323 | if (BN_is_zero(a)) { | ||
324 | if (BN_is_zero(b)) | ||
325 | goto err; | ||
326 | } else if (!BN_is_zero(b)) { | ||
327 | if (!BN_mod_sqr(tmp_1, a, p, ctx)) | ||
328 | goto err; | ||
329 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) | ||
330 | goto err; | ||
331 | if (!BN_lshift(tmp_1, tmp_2, 2)) | ||
332 | goto err; | ||
333 | /* tmp_1 = 4*a^3 */ | ||
334 | |||
335 | if (!BN_mod_sqr(tmp_2, b, p, ctx)) | ||
336 | goto err; | ||
337 | if (!BN_mul_word(tmp_2, 27)) | ||
338 | goto err; | ||
339 | /* tmp_2 = 27*b^2 */ | ||
340 | |||
341 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) | ||
342 | goto err; | ||
343 | if (BN_is_zero(a)) | ||
344 | goto err; | ||
345 | } | ||
346 | ret = 1; | ||
347 | |||
348 | err: | ||
349 | if (ctx != NULL) | ||
350 | BN_CTX_end(ctx); | ||
351 | BN_CTX_free(new_ctx); | ||
352 | return ret; | ||
353 | } | ||
354 | |||
355 | |||
356 | int | ||
357 | ec_GFp_simple_point_init(EC_POINT * point) | ||
358 | { | ||
359 | BN_init(&point->X); | ||
360 | BN_init(&point->Y); | ||
361 | BN_init(&point->Z); | ||
362 | point->Z_is_one = 0; | ||
363 | |||
364 | return 1; | ||
365 | } | ||
366 | |||
367 | |||
368 | void | ||
369 | ec_GFp_simple_point_finish(EC_POINT * point) | ||
370 | { | ||
371 | BN_free(&point->X); | ||
372 | BN_free(&point->Y); | ||
373 | BN_free(&point->Z); | ||
374 | } | ||
375 | |||
376 | |||
377 | void | ||
378 | ec_GFp_simple_point_clear_finish(EC_POINT * point) | ||
379 | { | ||
380 | BN_clear_free(&point->X); | ||
381 | BN_clear_free(&point->Y); | ||
382 | BN_clear_free(&point->Z); | ||
383 | point->Z_is_one = 0; | ||
384 | } | ||
385 | |||
386 | |||
387 | int | ||
388 | ec_GFp_simple_point_copy(EC_POINT * dest, const EC_POINT * src) | ||
389 | { | ||
390 | if (!BN_copy(&dest->X, &src->X)) | ||
391 | return 0; | ||
392 | if (!BN_copy(&dest->Y, &src->Y)) | ||
393 | return 0; | ||
394 | if (!BN_copy(&dest->Z, &src->Z)) | ||
395 | return 0; | ||
396 | dest->Z_is_one = src->Z_is_one; | ||
397 | |||
398 | return 1; | ||
399 | } | ||
400 | |||
401 | |||
402 | int | ||
403 | ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) | ||
404 | { | ||
405 | point->Z_is_one = 0; | ||
406 | BN_zero(&point->Z); | ||
407 | return 1; | ||
408 | } | ||
409 | |||
410 | |||
411 | int | ||
412 | ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP * group, EC_POINT * point, | ||
413 | const BIGNUM * x, const BIGNUM * y, const BIGNUM * z, BN_CTX * ctx) | ||
414 | { | ||
415 | BN_CTX *new_ctx = NULL; | ||
416 | int ret = 0; | ||
417 | |||
418 | if (ctx == NULL) { | ||
419 | ctx = new_ctx = BN_CTX_new(); | ||
420 | if (ctx == NULL) | ||
421 | return 0; | ||
422 | } | ||
423 | if (x != NULL) { | ||
424 | if (!BN_nnmod(&point->X, x, &group->field, ctx)) | ||
425 | goto err; | ||
426 | if (group->meth->field_encode) { | ||
427 | if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) | ||
428 | goto err; | ||
429 | } | ||
430 | } | ||
431 | if (y != NULL) { | ||
432 | if (!BN_nnmod(&point->Y, y, &group->field, ctx)) | ||
433 | goto err; | ||
434 | if (group->meth->field_encode) { | ||
435 | if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) | ||
436 | goto err; | ||
437 | } | ||
438 | } | ||
439 | if (z != NULL) { | ||
440 | int Z_is_one; | ||
441 | |||
442 | if (!BN_nnmod(&point->Z, z, &group->field, ctx)) | ||
443 | goto err; | ||
444 | Z_is_one = BN_is_one(&point->Z); | ||
445 | if (group->meth->field_encode) { | ||
446 | if (Z_is_one && (group->meth->field_set_to_one != 0)) { | ||
447 | if (!group->meth->field_set_to_one(group, &point->Z, ctx)) | ||
448 | goto err; | ||
449 | } else { | ||
450 | if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) | ||
451 | goto err; | ||
452 | } | ||
453 | } | ||
454 | point->Z_is_one = Z_is_one; | ||
455 | } | ||
456 | ret = 1; | ||
457 | |||
458 | err: | ||
459 | BN_CTX_free(new_ctx); | ||
460 | return ret; | ||
461 | } | ||
462 | |||
463 | |||
464 | int | ||
465 | ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP * group, const EC_POINT * point, | ||
466 | BIGNUM * x, BIGNUM * y, BIGNUM * z, BN_CTX * ctx) | ||
467 | { | ||
468 | BN_CTX *new_ctx = NULL; | ||
469 | int ret = 0; | ||
470 | |||
471 | if (group->meth->field_decode != 0) { | ||
472 | if (ctx == NULL) { | ||
473 | ctx = new_ctx = BN_CTX_new(); | ||
474 | if (ctx == NULL) | ||
475 | return 0; | ||
476 | } | ||
477 | if (x != NULL) { | ||
478 | if (!group->meth->field_decode(group, x, &point->X, ctx)) | ||
479 | goto err; | ||
480 | } | ||
481 | if (y != NULL) { | ||
482 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) | ||
483 | goto err; | ||
484 | } | ||
485 | if (z != NULL) { | ||
486 | if (!group->meth->field_decode(group, z, &point->Z, ctx)) | ||
487 | goto err; | ||
488 | } | ||
489 | } else { | ||
490 | if (x != NULL) { | ||
491 | if (!BN_copy(x, &point->X)) | ||
492 | goto err; | ||
493 | } | ||
494 | if (y != NULL) { | ||
495 | if (!BN_copy(y, &point->Y)) | ||
496 | goto err; | ||
497 | } | ||
498 | if (z != NULL) { | ||
499 | if (!BN_copy(z, &point->Z)) | ||
500 | goto err; | ||
501 | } | ||
502 | } | ||
503 | |||
504 | ret = 1; | ||
505 | |||
506 | err: | ||
507 | BN_CTX_free(new_ctx); | ||
508 | return ret; | ||
509 | } | ||
510 | |||
511 | |||
512 | int | ||
513 | ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point, | ||
514 | const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx) | ||
515 | { | ||
516 | if (x == NULL || y == NULL) { | ||
517 | /* unlike for projective coordinates, we do not tolerate this */ | ||
518 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
519 | return 0; | ||
520 | } | ||
521 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); | ||
522 | } | ||
523 | |||
524 | |||
525 | int | ||
526 | ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, | ||
527 | BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
528 | { | ||
529 | BN_CTX *new_ctx = NULL; | ||
530 | BIGNUM *Z, *Z_1, *Z_2, *Z_3; | ||
531 | const BIGNUM *Z_; | ||
532 | int ret = 0; | ||
533 | |||
534 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
535 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
536 | return 0; | ||
537 | } | ||
538 | if (ctx == NULL) { | ||
539 | ctx = new_ctx = BN_CTX_new(); | ||
540 | if (ctx == NULL) | ||
541 | return 0; | ||
542 | } | ||
543 | BN_CTX_start(ctx); | ||
544 | if ((Z = BN_CTX_get(ctx)) == NULL) | ||
545 | goto err; | ||
546 | if ((Z_1 = BN_CTX_get(ctx)) == NULL) | ||
547 | goto err; | ||
548 | if ((Z_2 = BN_CTX_get(ctx)) == NULL) | ||
549 | goto err; | ||
550 | if ((Z_3 = BN_CTX_get(ctx)) == NULL) | ||
551 | goto err; | ||
552 | |||
553 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ | ||
554 | |||
555 | if (group->meth->field_decode) { | ||
556 | if (!group->meth->field_decode(group, Z, &point->Z, ctx)) | ||
557 | goto err; | ||
558 | Z_ = Z; | ||
559 | } else { | ||
560 | Z_ = &point->Z; | ||
561 | } | ||
562 | |||
563 | if (BN_is_one(Z_)) { | ||
564 | if (group->meth->field_decode) { | ||
565 | if (x != NULL) { | ||
566 | if (!group->meth->field_decode(group, x, &point->X, ctx)) | ||
567 | goto err; | ||
568 | } | ||
569 | if (y != NULL) { | ||
570 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) | ||
571 | goto err; | ||
572 | } | ||
573 | } else { | ||
574 | if (x != NULL) { | ||
575 | if (!BN_copy(x, &point->X)) | ||
576 | goto err; | ||
577 | } | ||
578 | if (y != NULL) { | ||
579 | if (!BN_copy(y, &point->Y)) | ||
580 | goto err; | ||
581 | } | ||
582 | } | ||
583 | } else { | ||
584 | if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) { | ||
585 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
586 | goto err; | ||
587 | } | ||
588 | if (group->meth->field_encode == 0) { | ||
589 | /* field_sqr works on standard representation */ | ||
590 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) | ||
591 | goto err; | ||
592 | } else { | ||
593 | if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) | ||
594 | goto err; | ||
595 | } | ||
596 | |||
597 | if (x != NULL) { | ||
598 | /* | ||
599 | * in the Montgomery case, field_mul will cancel out | ||
600 | * Montgomery factor in X: | ||
601 | */ | ||
602 | if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) | ||
603 | goto err; | ||
604 | } | ||
605 | if (y != NULL) { | ||
606 | if (group->meth->field_encode == 0) { | ||
607 | /* field_mul works on standard representation */ | ||
608 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) | ||
609 | goto err; | ||
610 | } else { | ||
611 | if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) | ||
612 | goto err; | ||
613 | } | ||
614 | |||
615 | /* | ||
616 | * in the Montgomery case, field_mul will cancel out | ||
617 | * Montgomery factor in Y: | ||
618 | */ | ||
619 | if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) | ||
620 | goto err; | ||
621 | } | ||
622 | } | ||
623 | |||
624 | ret = 1; | ||
625 | |||
626 | err: | ||
627 | BN_CTX_end(ctx); | ||
628 | BN_CTX_free(new_ctx); | ||
629 | return ret; | ||
630 | } | ||
631 | |||
632 | int | ||
633 | ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) | ||
634 | { | ||
635 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
636 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
637 | const BIGNUM *p; | ||
638 | BN_CTX *new_ctx = NULL; | ||
639 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | ||
640 | int ret = 0; | ||
641 | |||
642 | if (a == b) | ||
643 | return EC_POINT_dbl(group, r, a, ctx); | ||
644 | if (EC_POINT_is_at_infinity(group, a) > 0) | ||
645 | return EC_POINT_copy(r, b); | ||
646 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
647 | return EC_POINT_copy(r, a); | ||
648 | |||
649 | field_mul = group->meth->field_mul; | ||
650 | field_sqr = group->meth->field_sqr; | ||
651 | p = &group->field; | ||
652 | |||
653 | if (ctx == NULL) { | ||
654 | ctx = new_ctx = BN_CTX_new(); | ||
655 | if (ctx == NULL) | ||
656 | return 0; | ||
657 | } | ||
658 | BN_CTX_start(ctx); | ||
659 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
660 | goto end; | ||
661 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
662 | goto end; | ||
663 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
664 | goto end; | ||
665 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
666 | goto end; | ||
667 | if ((n4 = BN_CTX_get(ctx)) == NULL) | ||
668 | goto end; | ||
669 | if ((n5 = BN_CTX_get(ctx)) == NULL) | ||
670 | goto end; | ||
671 | if ((n6 = BN_CTX_get(ctx)) == NULL) | ||
672 | goto end; | ||
673 | |||
674 | /* | ||
675 | * Note that in this function we must not read components of 'a' or | ||
676 | * 'b' once we have written the corresponding components of 'r'. ('r' | ||
677 | * might be one of 'a' or 'b'.) | ||
678 | */ | ||
679 | |||
680 | /* n1, n2 */ | ||
681 | if (b->Z_is_one) { | ||
682 | if (!BN_copy(n1, &a->X)) | ||
683 | goto end; | ||
684 | if (!BN_copy(n2, &a->Y)) | ||
685 | goto end; | ||
686 | /* n1 = X_a */ | ||
687 | /* n2 = Y_a */ | ||
688 | } else { | ||
689 | if (!field_sqr(group, n0, &b->Z, ctx)) | ||
690 | goto end; | ||
691 | if (!field_mul(group, n1, &a->X, n0, ctx)) | ||
692 | goto end; | ||
693 | /* n1 = X_a * Z_b^2 */ | ||
694 | |||
695 | if (!field_mul(group, n0, n0, &b->Z, ctx)) | ||
696 | goto end; | ||
697 | if (!field_mul(group, n2, &a->Y, n0, ctx)) | ||
698 | goto end; | ||
699 | /* n2 = Y_a * Z_b^3 */ | ||
700 | } | ||
701 | |||
702 | /* n3, n4 */ | ||
703 | if (a->Z_is_one) { | ||
704 | if (!BN_copy(n3, &b->X)) | ||
705 | goto end; | ||
706 | if (!BN_copy(n4, &b->Y)) | ||
707 | goto end; | ||
708 | /* n3 = X_b */ | ||
709 | /* n4 = Y_b */ | ||
710 | } else { | ||
711 | if (!field_sqr(group, n0, &a->Z, ctx)) | ||
712 | goto end; | ||
713 | if (!field_mul(group, n3, &b->X, n0, ctx)) | ||
714 | goto end; | ||
715 | /* n3 = X_b * Z_a^2 */ | ||
716 | |||
717 | if (!field_mul(group, n0, n0, &a->Z, ctx)) | ||
718 | goto end; | ||
719 | if (!field_mul(group, n4, &b->Y, n0, ctx)) | ||
720 | goto end; | ||
721 | /* n4 = Y_b * Z_a^3 */ | ||
722 | } | ||
723 | |||
724 | /* n5, n6 */ | ||
725 | if (!BN_mod_sub_quick(n5, n1, n3, p)) | ||
726 | goto end; | ||
727 | if (!BN_mod_sub_quick(n6, n2, n4, p)) | ||
728 | goto end; | ||
729 | /* n5 = n1 - n3 */ | ||
730 | /* n6 = n2 - n4 */ | ||
731 | |||
732 | if (BN_is_zero(n5)) { | ||
733 | if (BN_is_zero(n6)) { | ||
734 | /* a is the same point as b */ | ||
735 | BN_CTX_end(ctx); | ||
736 | ret = EC_POINT_dbl(group, r, a, ctx); | ||
737 | ctx = NULL; | ||
738 | goto end; | ||
739 | } else { | ||
740 | /* a is the inverse of b */ | ||
741 | BN_zero(&r->Z); | ||
742 | r->Z_is_one = 0; | ||
743 | ret = 1; | ||
744 | goto end; | ||
745 | } | ||
746 | } | ||
747 | /* 'n7', 'n8' */ | ||
748 | if (!BN_mod_add_quick(n1, n1, n3, p)) | ||
749 | goto end; | ||
750 | if (!BN_mod_add_quick(n2, n2, n4, p)) | ||
751 | goto end; | ||
752 | /* 'n7' = n1 + n3 */ | ||
753 | /* 'n8' = n2 + n4 */ | ||
754 | |||
755 | /* Z_r */ | ||
756 | if (a->Z_is_one && b->Z_is_one) { | ||
757 | if (!BN_copy(&r->Z, n5)) | ||
758 | goto end; | ||
759 | } else { | ||
760 | if (a->Z_is_one) { | ||
761 | if (!BN_copy(n0, &b->Z)) | ||
762 | goto end; | ||
763 | } else if (b->Z_is_one) { | ||
764 | if (!BN_copy(n0, &a->Z)) | ||
765 | goto end; | ||
766 | } else { | ||
767 | if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) | ||
768 | goto end; | ||
769 | } | ||
770 | if (!field_mul(group, &r->Z, n0, n5, ctx)) | ||
771 | goto end; | ||
772 | } | ||
773 | r->Z_is_one = 0; | ||
774 | /* Z_r = Z_a * Z_b * n5 */ | ||
775 | |||
776 | /* X_r */ | ||
777 | if (!field_sqr(group, n0, n6, ctx)) | ||
778 | goto end; | ||
779 | if (!field_sqr(group, n4, n5, ctx)) | ||
780 | goto end; | ||
781 | if (!field_mul(group, n3, n1, n4, ctx)) | ||
782 | goto end; | ||
783 | if (!BN_mod_sub_quick(&r->X, n0, n3, p)) | ||
784 | goto end; | ||
785 | /* X_r = n6^2 - n5^2 * 'n7' */ | ||
786 | |||
787 | /* 'n9' */ | ||
788 | if (!BN_mod_lshift1_quick(n0, &r->X, p)) | ||
789 | goto end; | ||
790 | if (!BN_mod_sub_quick(n0, n3, n0, p)) | ||
791 | goto end; | ||
792 | /* n9 = n5^2 * 'n7' - 2 * X_r */ | ||
793 | |||
794 | /* Y_r */ | ||
795 | if (!field_mul(group, n0, n0, n6, ctx)) | ||
796 | goto end; | ||
797 | if (!field_mul(group, n5, n4, n5, ctx)) | ||
798 | goto end; /* now n5 is n5^3 */ | ||
799 | if (!field_mul(group, n1, n2, n5, ctx)) | ||
800 | goto end; | ||
801 | if (!BN_mod_sub_quick(n0, n0, n1, p)) | ||
802 | goto end; | ||
803 | if (BN_is_odd(n0)) | ||
804 | if (!BN_add(n0, n0, p)) | ||
805 | goto end; | ||
806 | /* now 0 <= n0 < 2*p, and n0 is even */ | ||
807 | if (!BN_rshift1(&r->Y, n0)) | ||
808 | goto end; | ||
809 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | ||
810 | |||
811 | ret = 1; | ||
812 | |||
813 | end: | ||
814 | if (ctx) /* otherwise we already called BN_CTX_end */ | ||
815 | BN_CTX_end(ctx); | ||
816 | BN_CTX_free(new_ctx); | ||
817 | return ret; | ||
818 | } | ||
819 | |||
820 | |||
821 | int | ||
822 | ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_CTX * ctx) | ||
823 | { | ||
824 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
825 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
826 | const BIGNUM *p; | ||
827 | BN_CTX *new_ctx = NULL; | ||
828 | BIGNUM *n0, *n1, *n2, *n3; | ||
829 | int ret = 0; | ||
830 | |||
831 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
832 | BN_zero(&r->Z); | ||
833 | r->Z_is_one = 0; | ||
834 | return 1; | ||
835 | } | ||
836 | field_mul = group->meth->field_mul; | ||
837 | field_sqr = group->meth->field_sqr; | ||
838 | p = &group->field; | ||
839 | |||
840 | if (ctx == NULL) { | ||
841 | ctx = new_ctx = BN_CTX_new(); | ||
842 | if (ctx == NULL) | ||
843 | return 0; | ||
844 | } | ||
845 | BN_CTX_start(ctx); | ||
846 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
847 | goto err; | ||
848 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
849 | goto err; | ||
850 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
851 | goto err; | ||
852 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
853 | goto err; | ||
854 | |||
855 | /* | ||
856 | * Note that in this function we must not read components of 'a' once | ||
857 | * we have written the corresponding components of 'r'. ('r' might | ||
858 | * the same as 'a'.) | ||
859 | */ | ||
860 | |||
861 | /* n1 */ | ||
862 | if (a->Z_is_one) { | ||
863 | if (!field_sqr(group, n0, &a->X, ctx)) | ||
864 | goto err; | ||
865 | if (!BN_mod_lshift1_quick(n1, n0, p)) | ||
866 | goto err; | ||
867 | if (!BN_mod_add_quick(n0, n0, n1, p)) | ||
868 | goto err; | ||
869 | if (!BN_mod_add_quick(n1, n0, &group->a, p)) | ||
870 | goto err; | ||
871 | /* n1 = 3 * X_a^2 + a_curve */ | ||
872 | } else if (group->a_is_minus3) { | ||
873 | if (!field_sqr(group, n1, &a->Z, ctx)) | ||
874 | goto err; | ||
875 | if (!BN_mod_add_quick(n0, &a->X, n1, p)) | ||
876 | goto err; | ||
877 | if (!BN_mod_sub_quick(n2, &a->X, n1, p)) | ||
878 | goto err; | ||
879 | if (!field_mul(group, n1, n0, n2, ctx)) | ||
880 | goto err; | ||
881 | if (!BN_mod_lshift1_quick(n0, n1, p)) | ||
882 | goto err; | ||
883 | if (!BN_mod_add_quick(n1, n0, n1, p)) | ||
884 | goto err; | ||
885 | /* | ||
886 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * | ||
887 | * Z_a^4 | ||
888 | */ | ||
889 | } else { | ||
890 | if (!field_sqr(group, n0, &a->X, ctx)) | ||
891 | goto err; | ||
892 | if (!BN_mod_lshift1_quick(n1, n0, p)) | ||
893 | goto err; | ||
894 | if (!BN_mod_add_quick(n0, n0, n1, p)) | ||
895 | goto err; | ||
896 | if (!field_sqr(group, n1, &a->Z, ctx)) | ||
897 | goto err; | ||
898 | if (!field_sqr(group, n1, n1, ctx)) | ||
899 | goto err; | ||
900 | if (!field_mul(group, n1, n1, &group->a, ctx)) | ||
901 | goto err; | ||
902 | if (!BN_mod_add_quick(n1, n1, n0, p)) | ||
903 | goto err; | ||
904 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | ||
905 | } | ||
906 | |||
907 | /* Z_r */ | ||
908 | if (a->Z_is_one) { | ||
909 | if (!BN_copy(n0, &a->Y)) | ||
910 | goto err; | ||
911 | } else { | ||
912 | if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) | ||
913 | goto err; | ||
914 | } | ||
915 | if (!BN_mod_lshift1_quick(&r->Z, n0, p)) | ||
916 | goto err; | ||
917 | r->Z_is_one = 0; | ||
918 | /* Z_r = 2 * Y_a * Z_a */ | ||
919 | |||
920 | /* n2 */ | ||
921 | if (!field_sqr(group, n3, &a->Y, ctx)) | ||
922 | goto err; | ||
923 | if (!field_mul(group, n2, &a->X, n3, ctx)) | ||
924 | goto err; | ||
925 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) | ||
926 | goto err; | ||
927 | /* n2 = 4 * X_a * Y_a^2 */ | ||
928 | |||
929 | /* X_r */ | ||
930 | if (!BN_mod_lshift1_quick(n0, n2, p)) | ||
931 | goto err; | ||
932 | if (!field_sqr(group, &r->X, n1, ctx)) | ||
933 | goto err; | ||
934 | if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) | ||
935 | goto err; | ||
936 | /* X_r = n1^2 - 2 * n2 */ | ||
937 | |||
938 | /* n3 */ | ||
939 | if (!field_sqr(group, n0, n3, ctx)) | ||
940 | goto err; | ||
941 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) | ||
942 | goto err; | ||
943 | /* n3 = 8 * Y_a^4 */ | ||
944 | |||
945 | /* Y_r */ | ||
946 | if (!BN_mod_sub_quick(n0, n2, &r->X, p)) | ||
947 | goto err; | ||
948 | if (!field_mul(group, n0, n1, n0, ctx)) | ||
949 | goto err; | ||
950 | if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) | ||
951 | goto err; | ||
952 | /* Y_r = n1 * (n2 - X_r) - n3 */ | ||
953 | |||
954 | ret = 1; | ||
955 | |||
956 | err: | ||
957 | BN_CTX_end(ctx); | ||
958 | BN_CTX_free(new_ctx); | ||
959 | return ret; | ||
960 | } | ||
961 | |||
962 | |||
963 | int | ||
964 | ec_GFp_simple_invert(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
965 | { | ||
966 | if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) | ||
967 | /* point is its own inverse */ | ||
968 | return 1; | ||
969 | |||
970 | return BN_usub(&point->Y, &group->field, &point->Y); | ||
971 | } | ||
972 | |||
973 | |||
974 | int | ||
975 | ec_GFp_simple_is_at_infinity(const EC_GROUP * group, const EC_POINT * point) | ||
976 | { | ||
977 | return BN_is_zero(&point->Z); | ||
978 | } | ||
979 | |||
980 | |||
981 | int | ||
982 | ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx) | ||
983 | { | ||
984 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
985 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
986 | const BIGNUM *p; | ||
987 | BN_CTX *new_ctx = NULL; | ||
988 | BIGNUM *rh, *tmp, *Z4, *Z6; | ||
989 | int ret = -1; | ||
990 | |||
991 | if (EC_POINT_is_at_infinity(group, point) > 0) | ||
992 | return 1; | ||
993 | |||
994 | field_mul = group->meth->field_mul; | ||
995 | field_sqr = group->meth->field_sqr; | ||
996 | p = &group->field; | ||
997 | |||
998 | if (ctx == NULL) { | ||
999 | ctx = new_ctx = BN_CTX_new(); | ||
1000 | if (ctx == NULL) | ||
1001 | return -1; | ||
1002 | } | ||
1003 | BN_CTX_start(ctx); | ||
1004 | if ((rh = BN_CTX_get(ctx)) == NULL) | ||
1005 | goto err; | ||
1006 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
1007 | goto err; | ||
1008 | if ((Z4 = BN_CTX_get(ctx)) == NULL) | ||
1009 | goto err; | ||
1010 | if ((Z6 = BN_CTX_get(ctx)) == NULL) | ||
1011 | goto err; | ||
1012 | |||
1013 | /* | ||
1014 | * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x | ||
1015 | * + b. The point to consider is given in Jacobian projective | ||
1016 | * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). | ||
1017 | * Substituting this and multiplying by Z^6 transforms the above | ||
1018 | * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up | ||
1019 | * the right-hand side in 'rh'. | ||
1020 | */ | ||
1021 | |||
1022 | /* rh := X^2 */ | ||
1023 | if (!field_sqr(group, rh, &point->X, ctx)) | ||
1024 | goto err; | ||
1025 | |||
1026 | if (!point->Z_is_one) { | ||
1027 | if (!field_sqr(group, tmp, &point->Z, ctx)) | ||
1028 | goto err; | ||
1029 | if (!field_sqr(group, Z4, tmp, ctx)) | ||
1030 | goto err; | ||
1031 | if (!field_mul(group, Z6, Z4, tmp, ctx)) | ||
1032 | goto err; | ||
1033 | |||
1034 | /* rh := (rh + a*Z^4)*X */ | ||
1035 | if (group->a_is_minus3) { | ||
1036 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) | ||
1037 | goto err; | ||
1038 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) | ||
1039 | goto err; | ||
1040 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) | ||
1041 | goto err; | ||
1042 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
1043 | goto err; | ||
1044 | } else { | ||
1045 | if (!field_mul(group, tmp, Z4, &group->a, ctx)) | ||
1046 | goto err; | ||
1047 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | ||
1048 | goto err; | ||
1049 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
1050 | goto err; | ||
1051 | } | ||
1052 | |||
1053 | /* rh := rh + b*Z^6 */ | ||
1054 | if (!field_mul(group, tmp, &group->b, Z6, ctx)) | ||
1055 | goto err; | ||
1056 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | ||
1057 | goto err; | ||
1058 | } else { | ||
1059 | /* point->Z_is_one */ | ||
1060 | |||
1061 | /* rh := (rh + a)*X */ | ||
1062 | if (!BN_mod_add_quick(rh, rh, &group->a, p)) | ||
1063 | goto err; | ||
1064 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
1065 | goto err; | ||
1066 | /* rh := rh + b */ | ||
1067 | if (!BN_mod_add_quick(rh, rh, &group->b, p)) | ||
1068 | goto err; | ||
1069 | } | ||
1070 | |||
1071 | /* 'lh' := Y^2 */ | ||
1072 | if (!field_sqr(group, tmp, &point->Y, ctx)) | ||
1073 | goto err; | ||
1074 | |||
1075 | ret = (0 == BN_ucmp(tmp, rh)); | ||
1076 | |||
1077 | err: | ||
1078 | BN_CTX_end(ctx); | ||
1079 | BN_CTX_free(new_ctx); | ||
1080 | return ret; | ||
1081 | } | ||
1082 | |||
1083 | |||
1084 | int | ||
1085 | ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) | ||
1086 | { | ||
1087 | /* | ||
1088 | * return values: -1 error 0 equal (in affine coordinates) 1 | ||
1089 | * not equal | ||
1090 | */ | ||
1091 | |||
1092 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
1093 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
1094 | BN_CTX *new_ctx = NULL; | ||
1095 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | ||
1096 | const BIGNUM *tmp1_, *tmp2_; | ||
1097 | int ret = -1; | ||
1098 | |||
1099 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
1100 | return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; | ||
1101 | } | ||
1102 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
1103 | return 1; | ||
1104 | |||
1105 | if (a->Z_is_one && b->Z_is_one) { | ||
1106 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
1107 | } | ||
1108 | field_mul = group->meth->field_mul; | ||
1109 | field_sqr = group->meth->field_sqr; | ||
1110 | |||
1111 | if (ctx == NULL) { | ||
1112 | ctx = new_ctx = BN_CTX_new(); | ||
1113 | if (ctx == NULL) | ||
1114 | return -1; | ||
1115 | } | ||
1116 | BN_CTX_start(ctx); | ||
1117 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
1118 | goto end; | ||
1119 | if ((tmp2 = BN_CTX_get(ctx)) == NULL) | ||
1120 | goto end; | ||
1121 | if ((Za23 = BN_CTX_get(ctx)) == NULL) | ||
1122 | goto end; | ||
1123 | if ((Zb23 = BN_CTX_get(ctx)) == NULL) | ||
1124 | goto end; | ||
1125 | |||
1126 | /* | ||
1127 | * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, | ||
1128 | * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) = | ||
1129 | * (X_b*Z_a^2, Y_b*Z_a^3). | ||
1130 | */ | ||
1131 | |||
1132 | if (!b->Z_is_one) { | ||
1133 | if (!field_sqr(group, Zb23, &b->Z, ctx)) | ||
1134 | goto end; | ||
1135 | if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) | ||
1136 | goto end; | ||
1137 | tmp1_ = tmp1; | ||
1138 | } else | ||
1139 | tmp1_ = &a->X; | ||
1140 | if (!a->Z_is_one) { | ||
1141 | if (!field_sqr(group, Za23, &a->Z, ctx)) | ||
1142 | goto end; | ||
1143 | if (!field_mul(group, tmp2, &b->X, Za23, ctx)) | ||
1144 | goto end; | ||
1145 | tmp2_ = tmp2; | ||
1146 | } else | ||
1147 | tmp2_ = &b->X; | ||
1148 | |||
1149 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ | ||
1150 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
1151 | ret = 1; /* points differ */ | ||
1152 | goto end; | ||
1153 | } | ||
1154 | if (!b->Z_is_one) { | ||
1155 | if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) | ||
1156 | goto end; | ||
1157 | if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) | ||
1158 | goto end; | ||
1159 | /* tmp1_ = tmp1 */ | ||
1160 | } else | ||
1161 | tmp1_ = &a->Y; | ||
1162 | if (!a->Z_is_one) { | ||
1163 | if (!field_mul(group, Za23, Za23, &a->Z, ctx)) | ||
1164 | goto end; | ||
1165 | if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) | ||
1166 | goto end; | ||
1167 | /* tmp2_ = tmp2 */ | ||
1168 | } else | ||
1169 | tmp2_ = &b->Y; | ||
1170 | |||
1171 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ | ||
1172 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
1173 | ret = 1; /* points differ */ | ||
1174 | goto end; | ||
1175 | } | ||
1176 | /* points are equal */ | ||
1177 | ret = 0; | ||
1178 | |||
1179 | end: | ||
1180 | BN_CTX_end(ctx); | ||
1181 | BN_CTX_free(new_ctx); | ||
1182 | return ret; | ||
1183 | } | ||
1184 | |||
1185 | |||
1186 | int | ||
1187 | ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
1188 | { | ||
1189 | BN_CTX *new_ctx = NULL; | ||
1190 | BIGNUM *x, *y; | ||
1191 | int ret = 0; | ||
1192 | |||
1193 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) | ||
1194 | return 1; | ||
1195 | |||
1196 | if (ctx == NULL) { | ||
1197 | ctx = new_ctx = BN_CTX_new(); | ||
1198 | if (ctx == NULL) | ||
1199 | return 0; | ||
1200 | } | ||
1201 | BN_CTX_start(ctx); | ||
1202 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
1203 | goto err; | ||
1204 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
1205 | goto err; | ||
1206 | |||
1207 | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
1208 | goto err; | ||
1209 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
1210 | goto err; | ||
1211 | if (!point->Z_is_one) { | ||
1212 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); | ||
1213 | goto err; | ||
1214 | } | ||
1215 | ret = 1; | ||
1216 | |||
1217 | err: | ||
1218 | BN_CTX_end(ctx); | ||
1219 | BN_CTX_free(new_ctx); | ||
1220 | return ret; | ||
1221 | } | ||
1222 | |||
1223 | |||
1224 | int | ||
1225 | ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * points[], BN_CTX * ctx) | ||
1226 | { | ||
1227 | BN_CTX *new_ctx = NULL; | ||
1228 | BIGNUM *tmp0, *tmp1; | ||
1229 | size_t pow2 = 0; | ||
1230 | BIGNUM **heap = NULL; | ||
1231 | size_t i; | ||
1232 | int ret = 0; | ||
1233 | |||
1234 | if (num == 0) | ||
1235 | return 1; | ||
1236 | |||
1237 | if (ctx == NULL) { | ||
1238 | ctx = new_ctx = BN_CTX_new(); | ||
1239 | if (ctx == NULL) | ||
1240 | return 0; | ||
1241 | } | ||
1242 | BN_CTX_start(ctx); | ||
1243 | if ((tmp0 = BN_CTX_get(ctx)) == NULL) | ||
1244 | goto err; | ||
1245 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
1246 | goto err; | ||
1247 | |||
1248 | /* | ||
1249 | * Before converting the individual points, compute inverses of all Z | ||
1250 | * values. Modular inversion is rather slow, but luckily we can do | ||
1251 | * with a single explicit inversion, plus about 3 multiplications per | ||
1252 | * input value. | ||
1253 | */ | ||
1254 | |||
1255 | pow2 = 1; | ||
1256 | while (num > pow2) | ||
1257 | pow2 <<= 1; | ||
1258 | /* | ||
1259 | * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We | ||
1260 | * need twice that. | ||
1261 | */ | ||
1262 | pow2 <<= 1; | ||
1263 | |||
1264 | heap = reallocarray(NULL, pow2, sizeof heap[0]); | ||
1265 | if (heap == NULL) | ||
1266 | goto err; | ||
1267 | |||
1268 | /* | ||
1269 | * The array is used as a binary tree, exactly as in heapsort: | ||
1270 | * | ||
1271 | * heap[1] heap[2] heap[3] heap[4] heap[5] | ||
1272 | * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] | ||
1273 | * heap[12]heap[13] heap[14] heap[15] | ||
1274 | * | ||
1275 | * We put the Z's in the last line; then we set each other node to the | ||
1276 | * product of its two child-nodes (where empty or 0 entries are | ||
1277 | * treated as ones); then we invert heap[1]; then we invert each | ||
1278 | * other node by replacing it by the product of its parent (after | ||
1279 | * inversion) and its sibling (before inversion). | ||
1280 | */ | ||
1281 | heap[0] = NULL; | ||
1282 | for (i = pow2 / 2 - 1; i > 0; i--) | ||
1283 | heap[i] = NULL; | ||
1284 | for (i = 0; i < num; i++) | ||
1285 | heap[pow2 / 2 + i] = &points[i]->Z; | ||
1286 | for (i = pow2 / 2 + num; i < pow2; i++) | ||
1287 | heap[i] = NULL; | ||
1288 | |||
1289 | /* set each node to the product of its children */ | ||
1290 | for (i = pow2 / 2 - 1; i > 0; i--) { | ||
1291 | heap[i] = BN_new(); | ||
1292 | if (heap[i] == NULL) | ||
1293 | goto err; | ||
1294 | |||
1295 | if (heap[2 * i] != NULL) { | ||
1296 | if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) { | ||
1297 | if (!BN_copy(heap[i], heap[2 * i])) | ||
1298 | goto err; | ||
1299 | } else { | ||
1300 | if (BN_is_zero(heap[2 * i])) { | ||
1301 | if (!BN_copy(heap[i], heap[2 * i + 1])) | ||
1302 | goto err; | ||
1303 | } else { | ||
1304 | if (!group->meth->field_mul(group, heap[i], | ||
1305 | heap[2 * i], heap[2 * i + 1], ctx)) | ||
1306 | goto err; | ||
1307 | } | ||
1308 | } | ||
1309 | } | ||
1310 | } | ||
1311 | |||
1312 | /* invert heap[1] */ | ||
1313 | if (!BN_is_zero(heap[1])) { | ||
1314 | if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) { | ||
1315 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); | ||
1316 | goto err; | ||
1317 | } | ||
1318 | } | ||
1319 | if (group->meth->field_encode != 0) { | ||
1320 | /* | ||
1321 | * in the Montgomery case, we just turned R*H (representing | ||
1322 | * H) into 1/(R*H), but we need R*(1/H) (representing | ||
1323 | * 1/H); i.e. we have need to multiply by the Montgomery | ||
1324 | * factor twice | ||
1325 | */ | ||
1326 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | ||
1327 | goto err; | ||
1328 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | ||
1329 | goto err; | ||
1330 | } | ||
1331 | /* set other heap[i]'s to their inverses */ | ||
1332 | for (i = 2; i < pow2 / 2 + num; i += 2) { | ||
1333 | /* i is even */ | ||
1334 | if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { | ||
1335 | if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) | ||
1336 | goto err; | ||
1337 | if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) | ||
1338 | goto err; | ||
1339 | if (!BN_copy(heap[i], tmp0)) | ||
1340 | goto err; | ||
1341 | if (!BN_copy(heap[i + 1], tmp1)) | ||
1342 | goto err; | ||
1343 | } else { | ||
1344 | if (!BN_copy(heap[i], heap[i / 2])) | ||
1345 | goto err; | ||
1346 | } | ||
1347 | } | ||
1348 | |||
1349 | /* | ||
1350 | * we have replaced all non-zero Z's by their inverses, now fix up | ||
1351 | * all the points | ||
1352 | */ | ||
1353 | for (i = 0; i < num; i++) { | ||
1354 | EC_POINT *p = points[i]; | ||
1355 | |||
1356 | if (!BN_is_zero(&p->Z)) { | ||
1357 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ | ||
1358 | |||
1359 | if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) | ||
1360 | goto err; | ||
1361 | if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) | ||
1362 | goto err; | ||
1363 | |||
1364 | if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) | ||
1365 | goto err; | ||
1366 | if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) | ||
1367 | goto err; | ||
1368 | |||
1369 | if (group->meth->field_set_to_one != 0) { | ||
1370 | if (!group->meth->field_set_to_one(group, &p->Z, ctx)) | ||
1371 | goto err; | ||
1372 | } else { | ||
1373 | if (!BN_one(&p->Z)) | ||
1374 | goto err; | ||
1375 | } | ||
1376 | p->Z_is_one = 1; | ||
1377 | } | ||
1378 | } | ||
1379 | |||
1380 | ret = 1; | ||
1381 | |||
1382 | err: | ||
1383 | BN_CTX_end(ctx); | ||
1384 | BN_CTX_free(new_ctx); | ||
1385 | if (heap != NULL) { | ||
1386 | /* | ||
1387 | * heap[pow2/2] .. heap[pow2-1] have not been allocated | ||
1388 | * locally! | ||
1389 | */ | ||
1390 | for (i = pow2 / 2 - 1; i > 0; i--) { | ||
1391 | BN_clear_free(heap[i]); | ||
1392 | } | ||
1393 | free(heap); | ||
1394 | } | ||
1395 | return ret; | ||
1396 | } | ||
1397 | |||
1398 | |||
1399 | int | ||
1400 | ec_GFp_simple_field_mul(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
1401 | { | ||
1402 | return BN_mod_mul(r, a, b, &group->field, ctx); | ||
1403 | } | ||
1404 | |||
1405 | |||
1406 | int | ||
1407 | ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN_CTX * ctx) | ||
1408 | { | ||
1409 | return BN_mod_sqr(r, a, &group->field, ctx); | ||
1410 | } | ||