diff options
Diffstat (limited to 'src/lib/libcrypto/pem/pvkfmt.c')
-rw-r--r-- | src/lib/libcrypto/pem/pvkfmt.c | 938 |
1 files changed, 0 insertions, 938 deletions
diff --git a/src/lib/libcrypto/pem/pvkfmt.c b/src/lib/libcrypto/pem/pvkfmt.c deleted file mode 100644 index 5f130c4528..0000000000 --- a/src/lib/libcrypto/pem/pvkfmt.c +++ /dev/null | |||
@@ -1,938 +0,0 @@ | |||
1 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | ||
2 | * project 2005. | ||
3 | */ | ||
4 | /* ==================================================================== | ||
5 | * Copyright (c) 2005 The OpenSSL Project. All rights reserved. | ||
6 | * | ||
7 | * Redistribution and use in source and binary forms, with or without | ||
8 | * modification, are permitted provided that the following conditions | ||
9 | * are met: | ||
10 | * | ||
11 | * 1. Redistributions of source code must retain the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer. | ||
13 | * | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in | ||
16 | * the documentation and/or other materials provided with the | ||
17 | * distribution. | ||
18 | * | ||
19 | * 3. All advertising materials mentioning features or use of this | ||
20 | * software must display the following acknowledgment: | ||
21 | * "This product includes software developed by the OpenSSL Project | ||
22 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
23 | * | ||
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
25 | * endorse or promote products derived from this software without | ||
26 | * prior written permission. For written permission, please contact | ||
27 | * licensing@OpenSSL.org. | ||
28 | * | ||
29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
30 | * nor may "OpenSSL" appear in their names without prior written | ||
31 | * permission of the OpenSSL Project. | ||
32 | * | ||
33 | * 6. Redistributions of any form whatsoever must retain the following | ||
34 | * acknowledgment: | ||
35 | * "This product includes software developed by the OpenSSL Project | ||
36 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
37 | * | ||
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
50 | * ==================================================================== | ||
51 | * | ||
52 | * This product includes cryptographic software written by Eric Young | ||
53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
54 | * Hudson (tjh@cryptsoft.com). | ||
55 | * | ||
56 | */ | ||
57 | |||
58 | /* Support for PVK format keys and related structures (such a PUBLICKEYBLOB | ||
59 | * and PRIVATEKEYBLOB). | ||
60 | */ | ||
61 | |||
62 | #include "cryptlib.h" | ||
63 | #include <openssl/pem.h> | ||
64 | #include <openssl/rand.h> | ||
65 | #include <openssl/bn.h> | ||
66 | #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) | ||
67 | #include <openssl/dsa.h> | ||
68 | #include <openssl/rsa.h> | ||
69 | |||
70 | /* Utility function: read a DWORD (4 byte unsigned integer) in little endian | ||
71 | * format | ||
72 | */ | ||
73 | |||
74 | static unsigned int read_ledword(const unsigned char **in) | ||
75 | { | ||
76 | const unsigned char *p = *in; | ||
77 | unsigned int ret; | ||
78 | ret = *p++; | ||
79 | ret |= (*p++ << 8); | ||
80 | ret |= (*p++ << 16); | ||
81 | ret |= (*p++ << 24); | ||
82 | *in = p; | ||
83 | return ret; | ||
84 | } | ||
85 | |||
86 | /* Read a BIGNUM in little endian format. The docs say that this should take up | ||
87 | * bitlen/8 bytes. | ||
88 | */ | ||
89 | |||
90 | static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | ||
91 | { | ||
92 | const unsigned char *p; | ||
93 | unsigned char *tmpbuf, *q; | ||
94 | unsigned int i; | ||
95 | p = *in + nbyte - 1; | ||
96 | tmpbuf = OPENSSL_malloc(nbyte); | ||
97 | if (!tmpbuf) | ||
98 | return 0; | ||
99 | q = tmpbuf; | ||
100 | for (i = 0; i < nbyte; i++) | ||
101 | *q++ = *p--; | ||
102 | *r = BN_bin2bn(tmpbuf, nbyte, NULL); | ||
103 | OPENSSL_free(tmpbuf); | ||
104 | if (*r) | ||
105 | { | ||
106 | *in += nbyte; | ||
107 | return 1; | ||
108 | } | ||
109 | else | ||
110 | return 0; | ||
111 | } | ||
112 | |||
113 | |||
114 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ | ||
115 | |||
116 | #define MS_PUBLICKEYBLOB 0x6 | ||
117 | #define MS_PRIVATEKEYBLOB 0x7 | ||
118 | #define MS_RSA1MAGIC 0x31415352L | ||
119 | #define MS_RSA2MAGIC 0x32415352L | ||
120 | #define MS_DSS1MAGIC 0x31535344L | ||
121 | #define MS_DSS2MAGIC 0x32535344L | ||
122 | |||
123 | #define MS_KEYALG_RSA_KEYX 0xa400 | ||
124 | #define MS_KEYALG_DSS_SIGN 0x2200 | ||
125 | |||
126 | #define MS_KEYTYPE_KEYX 0x1 | ||
127 | #define MS_KEYTYPE_SIGN 0x2 | ||
128 | |||
129 | /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */ | ||
130 | #define MS_PVKMAGIC 0xb0b5f11eL | ||
131 | /* Salt length for PVK files */ | ||
132 | #define PVK_SALTLEN 0x10 | ||
133 | |||
134 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | ||
135 | unsigned int bitlen, int ispub); | ||
136 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | ||
137 | unsigned int bitlen, int ispub); | ||
138 | |||
139 | static int do_blob_header(const unsigned char **in, unsigned int length, | ||
140 | unsigned int *pmagic, unsigned int *pbitlen, | ||
141 | int *pisdss, int *pispub) | ||
142 | { | ||
143 | const unsigned char *p = *in; | ||
144 | if (length < 16) | ||
145 | return 0; | ||
146 | /* bType */ | ||
147 | if (*p == MS_PUBLICKEYBLOB) | ||
148 | { | ||
149 | if (*pispub == 0) | ||
150 | { | ||
151 | PEMerr(PEM_F_DO_BLOB_HEADER, | ||
152 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | ||
153 | return 0; | ||
154 | } | ||
155 | *pispub = 1; | ||
156 | } | ||
157 | else if (*p == MS_PRIVATEKEYBLOB) | ||
158 | { | ||
159 | if (*pispub == 1) | ||
160 | { | ||
161 | PEMerr(PEM_F_DO_BLOB_HEADER, | ||
162 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | ||
163 | return 0; | ||
164 | } | ||
165 | *pispub = 0; | ||
166 | } | ||
167 | else | ||
168 | return 0; | ||
169 | p++; | ||
170 | /* Version */ | ||
171 | if (*p++ != 0x2) | ||
172 | { | ||
173 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); | ||
174 | return 0; | ||
175 | } | ||
176 | /* Ignore reserved, aiKeyAlg */ | ||
177 | p+= 6; | ||
178 | *pmagic = read_ledword(&p); | ||
179 | *pbitlen = read_ledword(&p); | ||
180 | *pisdss = 0; | ||
181 | switch (*pmagic) | ||
182 | { | ||
183 | |||
184 | case MS_DSS1MAGIC: | ||
185 | *pisdss = 1; | ||
186 | case MS_RSA1MAGIC: | ||
187 | if (*pispub == 0) | ||
188 | { | ||
189 | PEMerr(PEM_F_DO_BLOB_HEADER, | ||
190 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | ||
191 | return 0; | ||
192 | } | ||
193 | break; | ||
194 | |||
195 | case MS_DSS2MAGIC: | ||
196 | *pisdss = 1; | ||
197 | case MS_RSA2MAGIC: | ||
198 | if (*pispub == 1) | ||
199 | { | ||
200 | PEMerr(PEM_F_DO_BLOB_HEADER, | ||
201 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | ||
202 | return 0; | ||
203 | } | ||
204 | break; | ||
205 | |||
206 | default: | ||
207 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); | ||
208 | return -1; | ||
209 | } | ||
210 | *in = p; | ||
211 | return 1; | ||
212 | } | ||
213 | |||
214 | static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) | ||
215 | { | ||
216 | unsigned int nbyte, hnbyte; | ||
217 | nbyte = (bitlen + 7) >> 3; | ||
218 | hnbyte = (bitlen + 15) >> 4; | ||
219 | if (isdss) | ||
220 | { | ||
221 | |||
222 | /* Expected length: 20 for q + 3 components bitlen each + 24 | ||
223 | * for seed structure. | ||
224 | */ | ||
225 | if (ispub) | ||
226 | return 44 + 3 * nbyte; | ||
227 | /* Expected length: 20 for q, priv, 2 bitlen components + 24 | ||
228 | * for seed structure. | ||
229 | */ | ||
230 | else | ||
231 | return 64 + 2 * nbyte; | ||
232 | } | ||
233 | else | ||
234 | { | ||
235 | /* Expected length: 4 for 'e' + 'n' */ | ||
236 | if (ispub) | ||
237 | return 4 + nbyte; | ||
238 | else | ||
239 | /* Expected length: 4 for 'e' and 7 other components. | ||
240 | * 2 components are bitlen size, 5 are bitlen/2 | ||
241 | */ | ||
242 | return 4 + 2*nbyte + 5*hnbyte; | ||
243 | } | ||
244 | |||
245 | } | ||
246 | |||
247 | static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length, | ||
248 | int ispub) | ||
249 | { | ||
250 | const unsigned char *p = *in; | ||
251 | unsigned int bitlen, magic; | ||
252 | int isdss; | ||
253 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) | ||
254 | { | ||
255 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); | ||
256 | return NULL; | ||
257 | } | ||
258 | length -= 16; | ||
259 | if (length < blob_length(bitlen, isdss, ispub)) | ||
260 | { | ||
261 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); | ||
262 | return NULL; | ||
263 | } | ||
264 | if (isdss) | ||
265 | return b2i_dss(&p, length, bitlen, ispub); | ||
266 | else | ||
267 | return b2i_rsa(&p, length, bitlen, ispub); | ||
268 | } | ||
269 | |||
270 | static EVP_PKEY *do_b2i_bio(BIO *in, int ispub) | ||
271 | { | ||
272 | const unsigned char *p; | ||
273 | unsigned char hdr_buf[16], *buf = NULL; | ||
274 | unsigned int bitlen, magic, length; | ||
275 | int isdss; | ||
276 | EVP_PKEY *ret = NULL; | ||
277 | if (BIO_read(in, hdr_buf, 16) != 16) | ||
278 | { | ||
279 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | ||
280 | return NULL; | ||
281 | } | ||
282 | p = hdr_buf; | ||
283 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) | ||
284 | return NULL; | ||
285 | |||
286 | length = blob_length(bitlen, isdss, ispub); | ||
287 | buf = OPENSSL_malloc(length); | ||
288 | if (!buf) | ||
289 | { | ||
290 | PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); | ||
291 | goto err; | ||
292 | } | ||
293 | p = buf; | ||
294 | if (BIO_read(in, buf, length) != (int)length) | ||
295 | { | ||
296 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | ||
297 | goto err; | ||
298 | } | ||
299 | |||
300 | if (isdss) | ||
301 | ret = b2i_dss(&p, length, bitlen, ispub); | ||
302 | else | ||
303 | ret = b2i_rsa(&p, length, bitlen, ispub); | ||
304 | |||
305 | err: | ||
306 | if (buf) | ||
307 | OPENSSL_free(buf); | ||
308 | return ret; | ||
309 | } | ||
310 | |||
311 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | ||
312 | unsigned int bitlen, int ispub) | ||
313 | { | ||
314 | const unsigned char *p = *in; | ||
315 | EVP_PKEY *ret = NULL; | ||
316 | DSA *dsa = NULL; | ||
317 | BN_CTX *ctx = NULL; | ||
318 | unsigned int nbyte; | ||
319 | nbyte = (bitlen + 7) >> 3; | ||
320 | |||
321 | dsa = DSA_new(); | ||
322 | ret = EVP_PKEY_new(); | ||
323 | if (!dsa || !ret) | ||
324 | goto memerr; | ||
325 | if (!read_lebn(&p, nbyte, &dsa->p)) | ||
326 | goto memerr; | ||
327 | if (!read_lebn(&p, 20, &dsa->q)) | ||
328 | goto memerr; | ||
329 | if (!read_lebn(&p, nbyte, &dsa->g)) | ||
330 | goto memerr; | ||
331 | if (ispub) | ||
332 | { | ||
333 | if (!read_lebn(&p, nbyte, &dsa->pub_key)) | ||
334 | goto memerr; | ||
335 | } | ||
336 | else | ||
337 | { | ||
338 | if (!read_lebn(&p, 20, &dsa->priv_key)) | ||
339 | goto memerr; | ||
340 | /* Calculate public key */ | ||
341 | if (!(dsa->pub_key = BN_new())) | ||
342 | goto memerr; | ||
343 | if (!(ctx = BN_CTX_new())) | ||
344 | goto memerr; | ||
345 | |||
346 | if (!BN_mod_exp(dsa->pub_key, dsa->g, | ||
347 | dsa->priv_key, dsa->p, ctx)) | ||
348 | |||
349 | goto memerr; | ||
350 | BN_CTX_free(ctx); | ||
351 | } | ||
352 | |||
353 | EVP_PKEY_set1_DSA(ret, dsa); | ||
354 | DSA_free(dsa); | ||
355 | *in = p; | ||
356 | return ret; | ||
357 | |||
358 | memerr: | ||
359 | PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); | ||
360 | if (dsa) | ||
361 | DSA_free(dsa); | ||
362 | if (ret) | ||
363 | EVP_PKEY_free(ret); | ||
364 | if (ctx) | ||
365 | BN_CTX_free(ctx); | ||
366 | return NULL; | ||
367 | } | ||
368 | |||
369 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | ||
370 | unsigned int bitlen, int ispub) | ||
371 | |||
372 | { | ||
373 | const unsigned char *p = *in; | ||
374 | EVP_PKEY *ret = NULL; | ||
375 | RSA *rsa = NULL; | ||
376 | unsigned int nbyte, hnbyte; | ||
377 | nbyte = (bitlen + 7) >> 3; | ||
378 | hnbyte = (bitlen + 15) >> 4; | ||
379 | rsa = RSA_new(); | ||
380 | ret = EVP_PKEY_new(); | ||
381 | if (!rsa || !ret) | ||
382 | goto memerr; | ||
383 | rsa->e = BN_new(); | ||
384 | if (!rsa->e) | ||
385 | goto memerr; | ||
386 | if (!BN_set_word(rsa->e, read_ledword(&p))) | ||
387 | goto memerr; | ||
388 | if (!read_lebn(&p, nbyte, &rsa->n)) | ||
389 | goto memerr; | ||
390 | if (!ispub) | ||
391 | { | ||
392 | if (!read_lebn(&p, hnbyte, &rsa->p)) | ||
393 | goto memerr; | ||
394 | if (!read_lebn(&p, hnbyte, &rsa->q)) | ||
395 | goto memerr; | ||
396 | if (!read_lebn(&p, hnbyte, &rsa->dmp1)) | ||
397 | goto memerr; | ||
398 | if (!read_lebn(&p, hnbyte, &rsa->dmq1)) | ||
399 | goto memerr; | ||
400 | if (!read_lebn(&p, hnbyte, &rsa->iqmp)) | ||
401 | goto memerr; | ||
402 | if (!read_lebn(&p, nbyte, &rsa->d)) | ||
403 | goto memerr; | ||
404 | } | ||
405 | |||
406 | EVP_PKEY_set1_RSA(ret, rsa); | ||
407 | RSA_free(rsa); | ||
408 | *in = p; | ||
409 | return ret; | ||
410 | memerr: | ||
411 | PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); | ||
412 | if (rsa) | ||
413 | RSA_free(rsa); | ||
414 | if (ret) | ||
415 | EVP_PKEY_free(ret); | ||
416 | return NULL; | ||
417 | } | ||
418 | |||
419 | EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length) | ||
420 | { | ||
421 | return do_b2i(in, length, 0); | ||
422 | } | ||
423 | |||
424 | EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length) | ||
425 | { | ||
426 | return do_b2i(in, length, 1); | ||
427 | } | ||
428 | |||
429 | |||
430 | EVP_PKEY *b2i_PrivateKey_bio(BIO *in) | ||
431 | { | ||
432 | return do_b2i_bio(in, 0); | ||
433 | } | ||
434 | |||
435 | EVP_PKEY *b2i_PublicKey_bio(BIO *in) | ||
436 | { | ||
437 | return do_b2i_bio(in, 1); | ||
438 | } | ||
439 | |||
440 | static void write_ledword(unsigned char **out, unsigned int dw) | ||
441 | { | ||
442 | unsigned char *p = *out; | ||
443 | *p++ = dw & 0xff; | ||
444 | *p++ = (dw>>8) & 0xff; | ||
445 | *p++ = (dw>>16) & 0xff; | ||
446 | *p++ = (dw>>24) & 0xff; | ||
447 | *out = p; | ||
448 | } | ||
449 | |||
450 | static void write_lebn(unsigned char **out, const BIGNUM *bn, int len) | ||
451 | { | ||
452 | int nb, i; | ||
453 | unsigned char *p = *out, *q, c; | ||
454 | nb = BN_num_bytes(bn); | ||
455 | BN_bn2bin(bn, p); | ||
456 | q = p + nb - 1; | ||
457 | /* In place byte order reversal */ | ||
458 | for (i = 0; i < nb/2; i++) | ||
459 | { | ||
460 | c = *p; | ||
461 | *p++ = *q; | ||
462 | *q-- = c; | ||
463 | } | ||
464 | *out += nb; | ||
465 | /* Pad with zeroes if we have to */ | ||
466 | if (len > 0) | ||
467 | { | ||
468 | len -= nb; | ||
469 | if (len > 0) | ||
470 | { | ||
471 | memset(*out, 0, len); | ||
472 | *out += len; | ||
473 | } | ||
474 | } | ||
475 | } | ||
476 | |||
477 | |||
478 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); | ||
479 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); | ||
480 | |||
481 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); | ||
482 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); | ||
483 | |||
484 | static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) | ||
485 | { | ||
486 | unsigned char *p; | ||
487 | unsigned int bitlen, magic = 0, keyalg; | ||
488 | int outlen, noinc = 0; | ||
489 | if (pk->type == EVP_PKEY_DSA) | ||
490 | { | ||
491 | bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic); | ||
492 | keyalg = MS_KEYALG_DSS_SIGN; | ||
493 | } | ||
494 | else if (pk->type == EVP_PKEY_RSA) | ||
495 | { | ||
496 | bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic); | ||
497 | keyalg = MS_KEYALG_RSA_KEYX; | ||
498 | } | ||
499 | else | ||
500 | return -1; | ||
501 | if (bitlen == 0) | ||
502 | return -1; | ||
503 | outlen = 16 + blob_length(bitlen, | ||
504 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); | ||
505 | if (out == NULL) | ||
506 | return outlen; | ||
507 | if (*out) | ||
508 | p = *out; | ||
509 | else | ||
510 | { | ||
511 | p = OPENSSL_malloc(outlen); | ||
512 | if (!p) | ||
513 | return -1; | ||
514 | *out = p; | ||
515 | noinc = 1; | ||
516 | } | ||
517 | if (ispub) | ||
518 | *p++ = MS_PUBLICKEYBLOB; | ||
519 | else | ||
520 | *p++ = MS_PRIVATEKEYBLOB; | ||
521 | *p++ = 0x2; | ||
522 | *p++ = 0; | ||
523 | *p++ = 0; | ||
524 | write_ledword(&p, keyalg); | ||
525 | write_ledword(&p, magic); | ||
526 | write_ledword(&p, bitlen); | ||
527 | if (keyalg == MS_KEYALG_DSS_SIGN) | ||
528 | write_dsa(&p, pk->pkey.dsa, ispub); | ||
529 | else | ||
530 | write_rsa(&p, pk->pkey.rsa, ispub); | ||
531 | if (!noinc) | ||
532 | *out += outlen; | ||
533 | return outlen; | ||
534 | } | ||
535 | |||
536 | static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) | ||
537 | { | ||
538 | unsigned char *tmp = NULL; | ||
539 | int outlen, wrlen; | ||
540 | outlen = do_i2b(&tmp, pk, ispub); | ||
541 | if (outlen < 0) | ||
542 | return -1; | ||
543 | wrlen = BIO_write(out, tmp, outlen); | ||
544 | OPENSSL_free(tmp); | ||
545 | if (wrlen == outlen) | ||
546 | return outlen; | ||
547 | return -1; | ||
548 | } | ||
549 | |||
550 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) | ||
551 | { | ||
552 | int bitlen; | ||
553 | bitlen = BN_num_bits(dsa->p); | ||
554 | if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) | ||
555 | || (BN_num_bits(dsa->g) > bitlen)) | ||
556 | goto badkey; | ||
557 | if (ispub) | ||
558 | { | ||
559 | if (BN_num_bits(dsa->pub_key) > bitlen) | ||
560 | goto badkey; | ||
561 | *pmagic = MS_DSS1MAGIC; | ||
562 | } | ||
563 | else | ||
564 | { | ||
565 | if (BN_num_bits(dsa->priv_key) > 160) | ||
566 | goto badkey; | ||
567 | *pmagic = MS_DSS2MAGIC; | ||
568 | } | ||
569 | |||
570 | return bitlen; | ||
571 | badkey: | ||
572 | PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | ||
573 | return 0; | ||
574 | } | ||
575 | |||
576 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) | ||
577 | { | ||
578 | int nbyte, hnbyte, bitlen; | ||
579 | if (BN_num_bits(rsa->e) > 32) | ||
580 | goto badkey; | ||
581 | bitlen = BN_num_bits(rsa->n); | ||
582 | nbyte = BN_num_bytes(rsa->n); | ||
583 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | ||
584 | if (ispub) | ||
585 | { | ||
586 | *pmagic = MS_RSA1MAGIC; | ||
587 | return bitlen; | ||
588 | } | ||
589 | else | ||
590 | { | ||
591 | *pmagic = MS_RSA2MAGIC; | ||
592 | /* For private key each component must fit within nbyte or | ||
593 | * hnbyte. | ||
594 | */ | ||
595 | if (BN_num_bytes(rsa->d) > nbyte) | ||
596 | goto badkey; | ||
597 | if ((BN_num_bytes(rsa->iqmp) > hnbyte) | ||
598 | || (BN_num_bytes(rsa->p) > hnbyte) | ||
599 | || (BN_num_bytes(rsa->q) > hnbyte) | ||
600 | || (BN_num_bytes(rsa->dmp1) > hnbyte) | ||
601 | || (BN_num_bytes(rsa->dmq1) > hnbyte)) | ||
602 | goto badkey; | ||
603 | } | ||
604 | return bitlen; | ||
605 | badkey: | ||
606 | PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | ||
607 | return 0; | ||
608 | } | ||
609 | |||
610 | |||
611 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub) | ||
612 | { | ||
613 | int nbyte, hnbyte; | ||
614 | nbyte = BN_num_bytes(rsa->n); | ||
615 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | ||
616 | write_lebn(out, rsa->e, 4); | ||
617 | write_lebn(out, rsa->n, -1); | ||
618 | if (ispub) | ||
619 | return; | ||
620 | write_lebn(out, rsa->p, hnbyte); | ||
621 | write_lebn(out, rsa->q, hnbyte); | ||
622 | write_lebn(out, rsa->dmp1, hnbyte); | ||
623 | write_lebn(out, rsa->dmq1, hnbyte); | ||
624 | write_lebn(out, rsa->iqmp, hnbyte); | ||
625 | write_lebn(out, rsa->d, nbyte); | ||
626 | } | ||
627 | |||
628 | |||
629 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub) | ||
630 | { | ||
631 | int nbyte; | ||
632 | nbyte = BN_num_bytes(dsa->p); | ||
633 | write_lebn(out, dsa->p, nbyte); | ||
634 | write_lebn(out, dsa->q, 20); | ||
635 | write_lebn(out, dsa->g, nbyte); | ||
636 | if (ispub) | ||
637 | write_lebn(out, dsa->pub_key, nbyte); | ||
638 | else | ||
639 | write_lebn(out, dsa->priv_key, 20); | ||
640 | /* Set "invalid" for seed structure values */ | ||
641 | memset(*out, 0xff, 24); | ||
642 | *out += 24; | ||
643 | return; | ||
644 | } | ||
645 | |||
646 | |||
647 | int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) | ||
648 | { | ||
649 | return do_i2b_bio(out, pk, 0); | ||
650 | } | ||
651 | |||
652 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) | ||
653 | { | ||
654 | return do_i2b_bio(out, pk, 1); | ||
655 | } | ||
656 | |||
657 | #ifndef OPENSSL_NO_RC4 | ||
658 | |||
659 | static int do_PVK_header(const unsigned char **in, unsigned int length, | ||
660 | int skip_magic, | ||
661 | unsigned int *psaltlen, unsigned int *pkeylen) | ||
662 | |||
663 | { | ||
664 | const unsigned char *p = *in; | ||
665 | unsigned int pvk_magic, is_encrypted; | ||
666 | if (skip_magic) | ||
667 | { | ||
668 | if (length < 20) | ||
669 | { | ||
670 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | ||
671 | return 0; | ||
672 | } | ||
673 | length -= 20; | ||
674 | } | ||
675 | else | ||
676 | { | ||
677 | if (length < 24) | ||
678 | { | ||
679 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | ||
680 | return 0; | ||
681 | } | ||
682 | length -= 24; | ||
683 | pvk_magic = read_ledword(&p); | ||
684 | if (pvk_magic != MS_PVKMAGIC) | ||
685 | { | ||
686 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); | ||
687 | return 0; | ||
688 | } | ||
689 | } | ||
690 | /* Skip reserved */ | ||
691 | p += 4; | ||
692 | /*keytype = */read_ledword(&p); | ||
693 | is_encrypted = read_ledword(&p); | ||
694 | *psaltlen = read_ledword(&p); | ||
695 | *pkeylen = read_ledword(&p); | ||
696 | |||
697 | if (is_encrypted && !*psaltlen) | ||
698 | { | ||
699 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); | ||
700 | return 0; | ||
701 | } | ||
702 | |||
703 | *in = p; | ||
704 | return 1; | ||
705 | } | ||
706 | |||
707 | static int derive_pvk_key(unsigned char *key, | ||
708 | const unsigned char *salt, unsigned int saltlen, | ||
709 | const unsigned char *pass, int passlen) | ||
710 | { | ||
711 | EVP_MD_CTX mctx; | ||
712 | EVP_MD_CTX_init(&mctx); | ||
713 | EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL); | ||
714 | EVP_DigestUpdate(&mctx, salt, saltlen); | ||
715 | EVP_DigestUpdate(&mctx, pass, passlen); | ||
716 | EVP_DigestFinal_ex(&mctx, key, NULL); | ||
717 | EVP_MD_CTX_cleanup(&mctx); | ||
718 | return 1; | ||
719 | } | ||
720 | |||
721 | |||
722 | static EVP_PKEY *do_PVK_body(const unsigned char **in, | ||
723 | unsigned int saltlen, unsigned int keylen, | ||
724 | pem_password_cb *cb, void *u) | ||
725 | { | ||
726 | EVP_PKEY *ret = NULL; | ||
727 | const unsigned char *p = *in; | ||
728 | unsigned int magic; | ||
729 | unsigned char *enctmp = NULL, *q; | ||
730 | if (saltlen) | ||
731 | { | ||
732 | char psbuf[PEM_BUFSIZE]; | ||
733 | unsigned char keybuf[20]; | ||
734 | EVP_CIPHER_CTX cctx; | ||
735 | int enctmplen, inlen; | ||
736 | if (cb) | ||
737 | inlen=cb(psbuf,PEM_BUFSIZE,0,u); | ||
738 | else | ||
739 | inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u); | ||
740 | if (inlen <= 0) | ||
741 | { | ||
742 | PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ); | ||
743 | return NULL; | ||
744 | } | ||
745 | enctmp = OPENSSL_malloc(keylen + 8); | ||
746 | if (!enctmp) | ||
747 | { | ||
748 | PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); | ||
749 | return NULL; | ||
750 | } | ||
751 | if (!derive_pvk_key(keybuf, p, saltlen, | ||
752 | (unsigned char *)psbuf, inlen)) | ||
753 | return NULL; | ||
754 | p += saltlen; | ||
755 | /* Copy BLOBHEADER across, decrypt rest */ | ||
756 | memcpy(enctmp, p, 8); | ||
757 | p += 8; | ||
758 | inlen = keylen - 8; | ||
759 | q = enctmp + 8; | ||
760 | EVP_CIPHER_CTX_init(&cctx); | ||
761 | EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL); | ||
762 | EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen); | ||
763 | EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen); | ||
764 | magic = read_ledword((const unsigned char **)&q); | ||
765 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) | ||
766 | { | ||
767 | q = enctmp + 8; | ||
768 | memset(keybuf + 5, 0, 11); | ||
769 | EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, | ||
770 | NULL); | ||
771 | OPENSSL_cleanse(keybuf, 20); | ||
772 | EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen); | ||
773 | EVP_DecryptFinal_ex(&cctx, q + enctmplen, | ||
774 | &enctmplen); | ||
775 | magic = read_ledword((const unsigned char **)&q); | ||
776 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) | ||
777 | { | ||
778 | EVP_CIPHER_CTX_cleanup(&cctx); | ||
779 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); | ||
780 | goto err; | ||
781 | } | ||
782 | } | ||
783 | else | ||
784 | OPENSSL_cleanse(keybuf, 20); | ||
785 | EVP_CIPHER_CTX_cleanup(&cctx); | ||
786 | p = enctmp; | ||
787 | } | ||
788 | |||
789 | ret = b2i_PrivateKey(&p, keylen); | ||
790 | err: | ||
791 | if (enctmp && saltlen) | ||
792 | OPENSSL_free(enctmp); | ||
793 | return ret; | ||
794 | } | ||
795 | |||
796 | |||
797 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) | ||
798 | { | ||
799 | unsigned char pvk_hdr[24], *buf = NULL; | ||
800 | const unsigned char *p; | ||
801 | int buflen; | ||
802 | EVP_PKEY *ret = NULL; | ||
803 | unsigned int saltlen, keylen; | ||
804 | if (BIO_read(in, pvk_hdr, 24) != 24) | ||
805 | { | ||
806 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | ||
807 | return NULL; | ||
808 | } | ||
809 | p = pvk_hdr; | ||
810 | |||
811 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) | ||
812 | return 0; | ||
813 | buflen = (int) keylen + saltlen; | ||
814 | buf = OPENSSL_malloc(buflen); | ||
815 | if (!buf) | ||
816 | { | ||
817 | PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); | ||
818 | return 0; | ||
819 | } | ||
820 | p = buf; | ||
821 | if (BIO_read(in, buf, buflen) != buflen) | ||
822 | { | ||
823 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | ||
824 | goto err; | ||
825 | } | ||
826 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); | ||
827 | |||
828 | err: | ||
829 | if (buf) | ||
830 | { | ||
831 | OPENSSL_cleanse(buf, buflen); | ||
832 | OPENSSL_free(buf); | ||
833 | } | ||
834 | return ret; | ||
835 | } | ||
836 | |||
837 | |||
838 | |||
839 | static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | ||
840 | pem_password_cb *cb, void *u) | ||
841 | { | ||
842 | int outlen = 24, pklen; | ||
843 | unsigned char *p, *salt = NULL; | ||
844 | if (enclevel) | ||
845 | outlen += PVK_SALTLEN; | ||
846 | pklen = do_i2b(NULL, pk, 0); | ||
847 | if (pklen < 0) | ||
848 | return -1; | ||
849 | outlen += pklen; | ||
850 | if (!out) | ||
851 | return outlen; | ||
852 | if (*out) | ||
853 | p = *out; | ||
854 | else | ||
855 | { | ||
856 | p = OPENSSL_malloc(outlen); | ||
857 | if (!p) | ||
858 | { | ||
859 | PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE); | ||
860 | return -1; | ||
861 | } | ||
862 | *out = p; | ||
863 | } | ||
864 | |||
865 | write_ledword(&p, MS_PVKMAGIC); | ||
866 | write_ledword(&p, 0); | ||
867 | if (pk->type == EVP_PKEY_DSA) | ||
868 | write_ledword(&p, MS_KEYTYPE_SIGN); | ||
869 | else | ||
870 | write_ledword(&p, MS_KEYTYPE_KEYX); | ||
871 | write_ledword(&p, enclevel ? 1 : 0); | ||
872 | write_ledword(&p, enclevel ? PVK_SALTLEN: 0); | ||
873 | write_ledword(&p, pklen); | ||
874 | if (enclevel) | ||
875 | { | ||
876 | if (RAND_bytes(p, PVK_SALTLEN) <= 0) | ||
877 | goto error; | ||
878 | salt = p; | ||
879 | p += PVK_SALTLEN; | ||
880 | } | ||
881 | do_i2b(&p, pk, 0); | ||
882 | if (enclevel == 0) | ||
883 | return outlen; | ||
884 | else | ||
885 | { | ||
886 | char psbuf[PEM_BUFSIZE]; | ||
887 | unsigned char keybuf[20]; | ||
888 | EVP_CIPHER_CTX cctx; | ||
889 | int enctmplen, inlen; | ||
890 | if (cb) | ||
891 | inlen=cb(psbuf,PEM_BUFSIZE,1,u); | ||
892 | else | ||
893 | inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u); | ||
894 | if (inlen <= 0) | ||
895 | { | ||
896 | PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ); | ||
897 | goto error; | ||
898 | } | ||
899 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, | ||
900 | (unsigned char *)psbuf, inlen)) | ||
901 | goto error; | ||
902 | if (enclevel == 1) | ||
903 | memset(keybuf + 5, 0, 11); | ||
904 | p = salt + PVK_SALTLEN + 8; | ||
905 | EVP_CIPHER_CTX_init(&cctx); | ||
906 | EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL); | ||
907 | OPENSSL_cleanse(keybuf, 20); | ||
908 | EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8); | ||
909 | EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen); | ||
910 | EVP_CIPHER_CTX_cleanup(&cctx); | ||
911 | } | ||
912 | return outlen; | ||
913 | |||
914 | error: | ||
915 | return -1; | ||
916 | } | ||
917 | |||
918 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, | ||
919 | pem_password_cb *cb, void *u) | ||
920 | { | ||
921 | unsigned char *tmp = NULL; | ||
922 | int outlen, wrlen; | ||
923 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); | ||
924 | if (outlen < 0) | ||
925 | return -1; | ||
926 | wrlen = BIO_write(out, tmp, outlen); | ||
927 | OPENSSL_free(tmp); | ||
928 | if (wrlen == outlen) | ||
929 | { | ||
930 | PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); | ||
931 | return outlen; | ||
932 | } | ||
933 | return -1; | ||
934 | } | ||
935 | |||
936 | #endif | ||
937 | |||
938 | #endif | ||