summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/rc4/asm/rc4-586.pl
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/rc4/asm/rc4-586.pl')
-rw-r--r--src/lib/libcrypto/rc4/asm/rc4-586.pl410
1 files changed, 0 insertions, 410 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-586.pl b/src/lib/libcrypto/rc4/asm/rc4-586.pl
deleted file mode 100644
index 84f1a798cb..0000000000
--- a/src/lib/libcrypto/rc4/asm/rc4-586.pl
+++ /dev/null
@@ -1,410 +0,0 @@
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# At some point it became apparent that the original SSLeay RC4
11# assembler implementation performs suboptimally on latest IA-32
12# microarchitectures. After re-tuning performance has changed as
13# following:
14#
15# Pentium -10%
16# Pentium III +12%
17# AMD +50%(*)
18# P4 +250%(**)
19#
20# (*) This number is actually a trade-off:-) It's possible to
21# achieve +72%, but at the cost of -48% off PIII performance.
22# In other words code performing further 13% faster on AMD
23# would perform almost 2 times slower on Intel PIII...
24# For reference! This code delivers ~80% of rc4-amd64.pl
25# performance on the same Opteron machine.
26# (**) This number requires compressed key schedule set up by
27# RC4_set_key [see commentary below for further details].
28#
29# <appro@fy.chalmers.se>
30
31# May 2011
32#
33# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
34# performance in cycles per processed byte (less is better) and
35# improvement relative to previous version of this module is:
36#
37# Pentium 10.2 # original numbers
38# Pentium III 7.8(*)
39# Intel P4 7.5
40#
41# Opteron 6.1/+20% # new MMX numbers
42# Core2 5.3/+67%(**)
43# Westmere 5.1/+94%(**)
44# Sandy Bridge 5.0/+8%
45# Atom 12.6/+6%
46#
47# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
48# but this specific code performs poorly on Core2. And vice
49# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
50# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
51# [anymore], I chose to discard PIII-specific code path and opt
52# for original IALU-only code, which is why MMX/SSE code path
53# is guarded by SSE2 bit (see below), not MMX/SSE.
54# (**) Performance vs. block size on Core2 and Westmere had a maximum
55# at ... 64 bytes block size. And it was quite a maximum, 40-60%
56# in comparison to largest 8KB block size. Above improvement
57# coefficients are for the largest block size.
58
59$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
60push(@INC,"${dir}","${dir}../../perlasm");
61require "x86asm.pl";
62
63&asm_init($ARGV[0],"rc4-586.pl");
64
65$xx="eax";
66$yy="ebx";
67$tx="ecx";
68$ty="edx";
69$inp="esi";
70$out="ebp";
71$dat="edi";
72
73sub RC4_loop {
74 my $i=shift;
75 my $func = ($i==0)?*mov:*or;
76
77 &add (&LB($yy),&LB($tx));
78 &mov ($ty,&DWP(0,$dat,$yy,4));
79 &mov (&DWP(0,$dat,$yy,4),$tx);
80 &mov (&DWP(0,$dat,$xx,4),$ty);
81 &add ($ty,$tx);
82 &inc (&LB($xx));
83 &and ($ty,0xff);
84 &ror ($out,8) if ($i!=0);
85 if ($i<3) {
86 &mov ($tx,&DWP(0,$dat,$xx,4));
87 } else {
88 &mov ($tx,&wparam(3)); # reload [re-biased] out
89 }
90 &$func ($out,&DWP(0,$dat,$ty,4));
91}
92
93if ($alt=0) {
94 # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
95 # but ~40% slower on Core2 and Westmere... Attempt to add movz
96 # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
97 # on Core2 with movz it's almost 20% slower than below alternative
98 # code... Yes, it's a total mess...
99 my @XX=($xx,$out);
100 $RC4_loop_mmx = sub { # SSE actually...
101 my $i=shift;
102 my $j=$i<=0?0:$i>>1;
103 my $mm=$i<=0?"mm0":"mm".($i&1);
104
105 &add (&LB($yy),&LB($tx));
106 &lea (@XX[1],&DWP(1,@XX[0]));
107 &pxor ("mm2","mm0") if ($i==0);
108 &psllq ("mm1",8) if ($i==0);
109 &and (@XX[1],0xff);
110 &pxor ("mm0","mm0") if ($i<=0);
111 &mov ($ty,&DWP(0,$dat,$yy,4));
112 &mov (&DWP(0,$dat,$yy,4),$tx);
113 &pxor ("mm1","mm2") if ($i==0);
114 &mov (&DWP(0,$dat,$XX[0],4),$ty);
115 &add (&LB($ty),&LB($tx));
116 &movd (@XX[0],"mm7") if ($i==0);
117 &mov ($tx,&DWP(0,$dat,@XX[1],4));
118 &pxor ("mm1","mm1") if ($i==1);
119 &movq ("mm2",&QWP(0,$inp)) if ($i==1);
120 &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
121 &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
122
123 push (@XX,shift(@XX)) if ($i>=0);
124 }
125} else {
126 # Using pinsrw here improves performane on Intel CPUs by 2-3%, but
127 # brings down AMD by 7%...
128 $RC4_loop_mmx = sub {
129 my $i=shift;
130
131 &add (&LB($yy),&LB($tx));
132 &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
133 &mov ($ty,&DWP(0,$dat,$yy,4));
134 &mov (&DWP(0,$dat,$yy,4),$tx);
135 &mov (&DWP(0,$dat,$xx,4),$ty);
136 &inc ($xx);
137 &add ($ty,$tx);
138 &movz ($xx,&LB($xx)); # (*)
139 &movz ($ty,&LB($ty)); # (*)
140 &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
141 &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
142 &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
143 &mov ($tx,&DWP(0,$dat,$xx,4));
144 &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
145
146 # (*) This is the key to Core2 and Westmere performance.
147 # Whithout movz out-of-order execution logic confuses
148 # itself and fails to reorder loads and stores. Problem
149 # appears to be fixed in Sandy Bridge...
150 }
151}
152
153&external_label("OPENSSL_ia32cap_P");
154
155# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
156&function_begin("RC4");
157 &mov ($dat,&wparam(0)); # load key schedule pointer
158 &mov ($ty, &wparam(1)); # load len
159 &mov ($inp,&wparam(2)); # load inp
160 &mov ($out,&wparam(3)); # load out
161
162 &xor ($xx,$xx); # avoid partial register stalls
163 &xor ($yy,$yy);
164
165 &cmp ($ty,0); # safety net
166 &je (&label("abort"));
167
168 &mov (&LB($xx),&BP(0,$dat)); # load key->x
169 &mov (&LB($yy),&BP(4,$dat)); # load key->y
170 &add ($dat,8);
171
172 &lea ($tx,&DWP(0,$inp,$ty));
173 &sub ($out,$inp); # re-bias out
174 &mov (&wparam(1),$tx); # save input+len
175
176 &inc (&LB($xx));
177
178 # detect compressed key schedule...
179 &cmp (&DWP(256,$dat),-1);
180 &je (&label("RC4_CHAR"));
181
182 &mov ($tx,&DWP(0,$dat,$xx,4));
183
184 &and ($ty,-4); # how many 4-byte chunks?
185 &jz (&label("loop1"));
186
187 &test ($ty,-8);
188 &mov (&wparam(3),$out); # $out as accumulator in these loops
189 &jz (&label("go4loop4"));
190
191 &picmeup($out,"OPENSSL_ia32cap_P");
192 &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
193 &jnc (&label("go4loop4"));
194
195 &mov ($out,&wparam(3)) if (!$alt);
196 &movd ("mm7",&wparam(3)) if ($alt);
197 &and ($ty,-8);
198 &lea ($ty,&DWP(-8,$inp,$ty));
199 &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
200
201 &$RC4_loop_mmx(-1);
202 &jmp(&label("loop_mmx_enter"));
203
204 &set_label("loop_mmx",16);
205 &$RC4_loop_mmx(0);
206 &set_label("loop_mmx_enter");
207 for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
208 &mov ($ty,$yy);
209 &xor ($yy,$yy); # this is second key to Core2
210 &mov (&LB($yy),&LB($ty)); # and Westmere performance...
211 &cmp ($inp,&DWP(-4,$dat));
212 &lea ($inp,&DWP(8,$inp));
213 &jb (&label("loop_mmx"));
214
215 if ($alt) {
216 &movd ($out,"mm7");
217 &pxor ("mm2","mm0");
218 &psllq ("mm1",8);
219 &pxor ("mm1","mm2");
220 &movq (&QWP(-8,$out,$inp),"mm1");
221 } else {
222 &psllq ("mm1",56);
223 &pxor ("mm2","mm1");
224 &movq (&QWP(-8,$out,$inp),"mm2");
225 }
226 &emms ();
227
228 &cmp ($inp,&wparam(1)); # compare to input+len
229 &je (&label("done"));
230 &jmp (&label("loop1"));
231
232&set_label("go4loop4",16);
233 &lea ($ty,&DWP(-4,$inp,$ty));
234 &mov (&wparam(2),$ty); # save input+(len/4)*4-4
235
236 &set_label("loop4");
237 for ($i=0;$i<4;$i++) { RC4_loop($i); }
238 &ror ($out,8);
239 &xor ($out,&DWP(0,$inp));
240 &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
241 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
242 &lea ($inp,&DWP(4,$inp));
243 &mov ($tx,&DWP(0,$dat,$xx,4));
244 &jb (&label("loop4"));
245
246 &cmp ($inp,&wparam(1)); # compare to input+len
247 &je (&label("done"));
248 &mov ($out,&wparam(3)); # restore $out
249
250 &set_label("loop1",16);
251 &add (&LB($yy),&LB($tx));
252 &mov ($ty,&DWP(0,$dat,$yy,4));
253 &mov (&DWP(0,$dat,$yy,4),$tx);
254 &mov (&DWP(0,$dat,$xx,4),$ty);
255 &add ($ty,$tx);
256 &inc (&LB($xx));
257 &and ($ty,0xff);
258 &mov ($ty,&DWP(0,$dat,$ty,4));
259 &xor (&LB($ty),&BP(0,$inp));
260 &lea ($inp,&DWP(1,$inp));
261 &mov ($tx,&DWP(0,$dat,$xx,4));
262 &cmp ($inp,&wparam(1)); # compare to input+len
263 &mov (&BP(-1,$out,$inp),&LB($ty));
264 &jb (&label("loop1"));
265
266 &jmp (&label("done"));
267
268# this is essentially Intel P4 specific codepath...
269&set_label("RC4_CHAR",16);
270 &movz ($tx,&BP(0,$dat,$xx));
271 # strangely enough unrolled loop performs over 20% slower...
272 &set_label("cloop1");
273 &add (&LB($yy),&LB($tx));
274 &movz ($ty,&BP(0,$dat,$yy));
275 &mov (&BP(0,$dat,$yy),&LB($tx));
276 &mov (&BP(0,$dat,$xx),&LB($ty));
277 &add (&LB($ty),&LB($tx));
278 &movz ($ty,&BP(0,$dat,$ty));
279 &add (&LB($xx),1);
280 &xor (&LB($ty),&BP(0,$inp));
281 &lea ($inp,&DWP(1,$inp));
282 &movz ($tx,&BP(0,$dat,$xx));
283 &cmp ($inp,&wparam(1));
284 &mov (&BP(-1,$out,$inp),&LB($ty));
285 &jb (&label("cloop1"));
286
287&set_label("done");
288 &dec (&LB($xx));
289 &mov (&DWP(-4,$dat),$yy); # save key->y
290 &mov (&BP(-8,$dat),&LB($xx)); # save key->x
291&set_label("abort");
292&function_end("RC4");
293
294########################################################################
295
296$inp="esi";
297$out="edi";
298$idi="ebp";
299$ido="ecx";
300$idx="edx";
301
302# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
303&function_begin("RC4_set_key");
304 &mov ($out,&wparam(0)); # load key
305 &mov ($idi,&wparam(1)); # load len
306 &mov ($inp,&wparam(2)); # load data
307 &picmeup($idx,"OPENSSL_ia32cap_P");
308
309 &lea ($out,&DWP(2*4,$out)); # &key->data
310 &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
311 &neg ($idi);
312 &xor ("eax","eax");
313 &mov (&DWP(-4,$out),$idi); # borrow key->y
314
315 &bt (&DWP(0,$idx),20); # check for bit#20
316 &jc (&label("c1stloop"));
317
318&set_label("w1stloop",16);
319 &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
320 &add (&LB("eax"),1); # i++;
321 &jnc (&label("w1stloop"));
322
323 &xor ($ido,$ido);
324 &xor ($idx,$idx);
325
326&set_label("w2ndloop",16);
327 &mov ("eax",&DWP(0,$out,$ido,4));
328 &add (&LB($idx),&BP(0,$inp,$idi));
329 &add (&LB($idx),&LB("eax"));
330 &add ($idi,1);
331 &mov ("ebx",&DWP(0,$out,$idx,4));
332 &jnz (&label("wnowrap"));
333 &mov ($idi,&DWP(-4,$out));
334 &set_label("wnowrap");
335 &mov (&DWP(0,$out,$idx,4),"eax");
336 &mov (&DWP(0,$out,$ido,4),"ebx");
337 &add (&LB($ido),1);
338 &jnc (&label("w2ndloop"));
339&jmp (&label("exit"));
340
341# Unlike all other x86 [and x86_64] implementations, Intel P4 core
342# [including EM64T] was found to perform poorly with above "32-bit" key
343# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
344# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
345# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
346# schedule for x86[_64], because non-P4 implementations suffer from
347# significant performance losses then, e.g. PIII exhibits >2x
348# deterioration, and so does Opteron. In order to assure optimal
349# all-round performance, we detect P4 at run-time and set up compressed
350# key schedule, which is recognized by RC4 procedure.
351
352&set_label("c1stloop",16);
353 &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
354 &add (&LB("eax"),1); # i++;
355 &jnc (&label("c1stloop"));
356
357 &xor ($ido,$ido);
358 &xor ($idx,$idx);
359 &xor ("ebx","ebx");
360
361&set_label("c2ndloop",16);
362 &mov (&LB("eax"),&BP(0,$out,$ido));
363 &add (&LB($idx),&BP(0,$inp,$idi));
364 &add (&LB($idx),&LB("eax"));
365 &add ($idi,1);
366 &mov (&LB("ebx"),&BP(0,$out,$idx));
367 &jnz (&label("cnowrap"));
368 &mov ($idi,&DWP(-4,$out));
369 &set_label("cnowrap");
370 &mov (&BP(0,$out,$idx),&LB("eax"));
371 &mov (&BP(0,$out,$ido),&LB("ebx"));
372 &add (&LB($ido),1);
373 &jnc (&label("c2ndloop"));
374
375 &mov (&DWP(256,$out),-1); # mark schedule as compressed
376
377&set_label("exit");
378 &xor ("eax","eax");
379 &mov (&DWP(-8,$out),"eax"); # key->x=0;
380 &mov (&DWP(-4,$out),"eax"); # key->y=0;
381&function_end("RC4_set_key");
382
383# const char *RC4_options(void);
384&function_begin_B("RC4_options");
385 &call (&label("pic_point"));
386&set_label("pic_point");
387 &blindpop("eax");
388 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
389 &picmeup("edx","OPENSSL_ia32cap_P");
390 &mov ("edx",&DWP(0,"edx"));
391 &bt ("edx",20);
392 &jc (&label("1xchar"));
393 &bt ("edx",26);
394 &jnc (&label("ret"));
395 &add ("eax",25);
396 &ret ();
397&set_label("1xchar");
398 &add ("eax",12);
399&set_label("ret");
400 &ret ();
401&set_label("opts",64);
402&asciz ("rc4(4x,int)");
403&asciz ("rc4(1x,char)");
404&asciz ("rc4(8x,mmx)");
405&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
406&align (64);
407&function_end_B("RC4_options");
408
409&asm_finish();
410