summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/rc4/asm/rc4-x86_64.pl')
-rwxr-xr-xsrc/lib/libcrypto/rc4/asm/rc4-x86_64.pl543
1 files changed, 0 insertions, 543 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
deleted file mode 100755
index 197749dda7..0000000000
--- a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
+++ /dev/null
@@ -1,543 +0,0 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# July 2004
11#
12# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
13# "hand-coded assembler"] doesn't stand for the whole improvement
14# coefficient. It turned out that eliminating RC4_CHAR from config
15# line results in ~40% improvement (yes, even for C implementation).
16# Presumably it has everything to do with AMD cache architecture and
17# RAW or whatever penalties. Once again! The module *requires* config
18# line *without* RC4_CHAR! As for coding "secret," I bet on partial
19# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
20# I simply 'inc %r8b'. Even though optimization manual discourages
21# to operate on partial registers, it turned out to be the best bet.
22# At least for AMD... How IA32E would perform remains to be seen...
23
24# November 2004
25#
26# As was shown by Marc Bevand reordering of couple of load operations
27# results in even higher performance gain of 3.3x:-) At least on
28# Opteron... For reference, 1x in this case is RC4_CHAR C-code
29# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
30# Latter means that if you want to *estimate* what to expect from
31# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
32
33# November 2004
34#
35# Intel P4 EM64T core was found to run the AMD64 code really slow...
36# The only way to achieve comparable performance on P4 was to keep
37# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
38# compose blended code, which would perform even within 30% marginal
39# on either AMD and Intel platforms, I implement both cases. See
40# rc4_skey.c for further details...
41
42# April 2005
43#
44# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
45# those with add/sub results in 50% performance improvement of folded
46# loop...
47
48# May 2005
49#
50# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
51# performance by >30% [unlike P4 32-bit case that is]. But this is
52# provided that loads are reordered even more aggressively! Both code
53# pathes, AMD64 and EM64T, reorder loads in essentially same manner
54# as my IA-64 implementation. On Opteron this resulted in modest 5%
55# improvement [I had to test it], while final Intel P4 performance
56# achieves respectful 432MBps on 2.8GHz processor now. For reference.
57# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
58# RC4_INT code-path. While if executed on Opteron, it's only 25%
59# slower than the RC4_INT one [meaning that if CPU µ-arch detection
60# is not implemented, then this final RC4_CHAR code-path should be
61# preferred, as it provides better *all-round* performance].
62
63# March 2007
64#
65# Intel Core2 was observed to perform poorly on both code paths:-( It
66# apparently suffers from some kind of partial register stall, which
67# occurs in 64-bit mode only [as virtually identical 32-bit loop was
68# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
69# cloop1 boosts its performance by 80%! This loop appears to be optimal
70# fit for Core2 and therefore the code was modified to skip cloop8 on
71# this CPU.
72
73# May 2010
74#
75# Intel Westmere was observed to perform suboptimally. Adding yet
76# another movzb to cloop1 improved performance by almost 50%! Core2
77# performance is improved too, but nominally...
78
79# May 2011
80#
81# The only code path that was not modified is P4-specific one. Non-P4
82# Intel code path optimization is heavily based on submission by Maxim
83# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84# some of the ideas even in attempt to optmize the original RC4_INT
85# code path... Current performance in cycles per processed byte (less
86# is better) and improvement coefficients relative to previous
87# version of this module are:
88#
89# Opteron 5.3/+0%(*)
90# P4 6.5
91# Core2 6.2/+15%(**)
92# Westmere 4.2/+60%
93# Sandy Bridge 4.2/+120%
94# Atom 9.3/+80%
95#
96# (*) But corresponding loop has less instructions, which should have
97# positive effect on upcoming Bulldozer, which has one less ALU.
98# For reference, Intel code runs at 6.8 cpb rate on Opteron.
99# (**) Note that Core2 result is ~15% lower than corresponding result
100# for 32-bit code, meaning that it's possible to improve it,
101# but more than likely at the cost of the others (see rc4-586.pl
102# to get the idea)...
103
104$flavour = shift;
105$output = shift;
106if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
107
108$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
109( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
110( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
111die "can't locate x86_64-xlate.pl";
112
113open OUT,"| \"$^X\" $xlate $flavour $output";
114*STDOUT=*OUT;
115
116$dat="%rdi"; # arg1
117$len="%rsi"; # arg2
118$inp="%rdx"; # arg3
119$out="%rcx"; # arg4
120
121{
122$code=<<___;
123.text
124.extern OPENSSL_ia32cap_P
125
126.globl RC4
127.type RC4,\@function,4
128.align 16
129RC4: or $len,$len
130 jne .Lentry
131 ret
132.Lentry:
133 push %rbx
134 push %r12
135 push %r13
136.Lprologue:
137 mov $len,%r11
138 mov $inp,%r12
139 mov $out,%r13
140___
141my $len="%r11"; # reassign input arguments
142my $inp="%r12";
143my $out="%r13";
144
145my @XX=("%r10","%rsi");
146my @TX=("%rax","%rbx");
147my $YY="%rcx";
148my $TY="%rdx";
149
150$code.=<<___;
151 xor $XX[0],$XX[0]
152 xor $YY,$YY
153
154 lea 8($dat),$dat
155 mov -8($dat),$XX[0]#b
156 mov -4($dat),$YY#b
157 cmpl \$-1,256($dat)
158 je .LRC4_CHAR
159 mov OPENSSL_ia32cap_P(%rip),%r8d
160 xor $TX[1],$TX[1]
161 inc $XX[0]#b
162 sub $XX[0],$TX[1]
163 sub $inp,$out
164 movl ($dat,$XX[0],4),$TX[0]#d
165 test \$-16,$len
166 jz .Lloop1
167 bt \$30,%r8d # Intel CPU?
168 jc .Lintel
169 and \$7,$TX[1]
170 lea 1($XX[0]),$XX[1]
171 jz .Loop8
172 sub $TX[1],$len
173.Loop8_warmup:
174 add $TX[0]#b,$YY#b
175 movl ($dat,$YY,4),$TY#d
176 movl $TX[0]#d,($dat,$YY,4)
177 movl $TY#d,($dat,$XX[0],4)
178 add $TY#b,$TX[0]#b
179 inc $XX[0]#b
180 movl ($dat,$TX[0],4),$TY#d
181 movl ($dat,$XX[0],4),$TX[0]#d
182 xorb ($inp),$TY#b
183 movb $TY#b,($out,$inp)
184 lea 1($inp),$inp
185 dec $TX[1]
186 jnz .Loop8_warmup
187
188 lea 1($XX[0]),$XX[1]
189 jmp .Loop8
190.align 16
191.Loop8:
192___
193for ($i=0;$i<8;$i++) {
194$code.=<<___ if ($i==7);
195 add \$8,$XX[1]#b
196___
197$code.=<<___;
198 add $TX[0]#b,$YY#b
199 movl ($dat,$YY,4),$TY#d
200 movl $TX[0]#d,($dat,$YY,4)
201 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
202 ror \$8,%r8 # ror is redundant when $i=0
203 movl $TY#d,4*$i($dat,$XX[0],4)
204 add $TX[0]#b,$TY#b
205 movb ($dat,$TY,4),%r8b
206___
207push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
208}
209$code.=<<___;
210 add \$8,$XX[0]#b
211 ror \$8,%r8
212 sub \$8,$len
213
214 xor ($inp),%r8
215 mov %r8,($out,$inp)
216 lea 8($inp),$inp
217
218 test \$-8,$len
219 jnz .Loop8
220 cmp \$0,$len
221 jne .Lloop1
222 jmp .Lexit
223
224.align 16
225.Lintel:
226 test \$-32,$len
227 jz .Lloop1
228 and \$15,$TX[1]
229 jz .Loop16_is_hot
230 sub $TX[1],$len
231.Loop16_warmup:
232 add $TX[0]#b,$YY#b
233 movl ($dat,$YY,4),$TY#d
234 movl $TX[0]#d,($dat,$YY,4)
235 movl $TY#d,($dat,$XX[0],4)
236 add $TY#b,$TX[0]#b
237 inc $XX[0]#b
238 movl ($dat,$TX[0],4),$TY#d
239 movl ($dat,$XX[0],4),$TX[0]#d
240 xorb ($inp),$TY#b
241 movb $TY#b,($out,$inp)
242 lea 1($inp),$inp
243 dec $TX[1]
244 jnz .Loop16_warmup
245
246 mov $YY,$TX[1]
247 xor $YY,$YY
248 mov $TX[1]#b,$YY#b
249
250.Loop16_is_hot:
251 lea ($dat,$XX[0],4),$XX[1]
252___
253sub RC4_loop {
254 my $i=shift;
255 my $j=$i<0?0:$i;
256 my $xmm="%xmm".($j&1);
257
258 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
259 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
260 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
261 $code.=" movl ($dat,$YY,4),$TY#d\n";
262 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
263 $code.=" psllq \$8,%xmm1\n" if ($i==0);
264 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
265 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
266 $code.=" add $TY#b,$TX[0]#b\n";
267 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
268 $code.=" movz $TX[0]#b,$TX[0]#d\n";
269 $code.=" movl $TY#d,4*$j($XX[1])\n";
270 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
271 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
272 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
273 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
274 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
275 $code.=" lea 16($inp),$inp\n" if ($i==0);
276 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
277}
278 RC4_loop(-1);
279$code.=<<___;
280 jmp .Loop16_enter
281.align 16
282.Loop16:
283___
284
285for ($i=0;$i<16;$i++) {
286 $code.=".Loop16_enter:\n" if ($i==1);
287 RC4_loop($i);
288 push(@TX,shift(@TX)); # "rotate" registers
289}
290$code.=<<___;
291 mov $YY,$TX[1]
292 xor $YY,$YY # keyword to partial register
293 sub \$16,$len
294 mov $TX[1]#b,$YY#b
295 test \$-16,$len
296 jnz .Loop16
297
298 psllq \$8,%xmm1
299 pxor %xmm0,%xmm2
300 pxor %xmm1,%xmm2
301 movdqu %xmm2,($out,$inp)
302 lea 16($inp),$inp
303
304 cmp \$0,$len
305 jne .Lloop1
306 jmp .Lexit
307
308.align 16
309.Lloop1:
310 add $TX[0]#b,$YY#b
311 movl ($dat,$YY,4),$TY#d
312 movl $TX[0]#d,($dat,$YY,4)
313 movl $TY#d,($dat,$XX[0],4)
314 add $TY#b,$TX[0]#b
315 inc $XX[0]#b
316 movl ($dat,$TX[0],4),$TY#d
317 movl ($dat,$XX[0],4),$TX[0]#d
318 xorb ($inp),$TY#b
319 movb $TY#b,($out,$inp)
320 lea 1($inp),$inp
321 dec $len
322 jnz .Lloop1
323 jmp .Lexit
324
325.align 16
326.LRC4_CHAR:
327 add \$1,$XX[0]#b
328 movzb ($dat,$XX[0]),$TX[0]#d
329 test \$-8,$len
330 jz .Lcloop1
331 jmp .Lcloop8
332.align 16
333.Lcloop8:
334 mov ($inp),%r8d
335 mov 4($inp),%r9d
336___
337# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
338for ($i=0;$i<4;$i++) {
339$code.=<<___;
340 add $TX[0]#b,$YY#b
341 lea 1($XX[0]),$XX[1]
342 movzb ($dat,$YY),$TY#d
343 movzb $XX[1]#b,$XX[1]#d
344 movzb ($dat,$XX[1]),$TX[1]#d
345 movb $TX[0]#b,($dat,$YY)
346 cmp $XX[1],$YY
347 movb $TY#b,($dat,$XX[0])
348 jne .Lcmov$i # Intel cmov is sloooow...
349 mov $TX[0],$TX[1]
350.Lcmov$i:
351 add $TX[0]#b,$TY#b
352 xor ($dat,$TY),%r8b
353 ror \$8,%r8d
354___
355push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
356}
357for ($i=4;$i<8;$i++) {
358$code.=<<___;
359 add $TX[0]#b,$YY#b
360 lea 1($XX[0]),$XX[1]
361 movzb ($dat,$YY),$TY#d
362 movzb $XX[1]#b,$XX[1]#d
363 movzb ($dat,$XX[1]),$TX[1]#d
364 movb $TX[0]#b,($dat,$YY)
365 cmp $XX[1],$YY
366 movb $TY#b,($dat,$XX[0])
367 jne .Lcmov$i # Intel cmov is sloooow...
368 mov $TX[0],$TX[1]
369.Lcmov$i:
370 add $TX[0]#b,$TY#b
371 xor ($dat,$TY),%r9b
372 ror \$8,%r9d
373___
374push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
375}
376$code.=<<___;
377 lea -8($len),$len
378 mov %r8d,($out)
379 lea 8($inp),$inp
380 mov %r9d,4($out)
381 lea 8($out),$out
382
383 test \$-8,$len
384 jnz .Lcloop8
385 cmp \$0,$len
386 jne .Lcloop1
387 jmp .Lexit
388___
389$code.=<<___;
390.align 16
391.Lcloop1:
392 add $TX[0]#b,$YY#b
393 movzb $YY#b,$YY#d
394 movzb ($dat,$YY),$TY#d
395 movb $TX[0]#b,($dat,$YY)
396 movb $TY#b,($dat,$XX[0])
397 add $TX[0]#b,$TY#b
398 add \$1,$XX[0]#b
399 movzb $TY#b,$TY#d
400 movzb $XX[0]#b,$XX[0]#d
401 movzb ($dat,$TY),$TY#d
402 movzb ($dat,$XX[0]),$TX[0]#d
403 xorb ($inp),$TY#b
404 lea 1($inp),$inp
405 movb $TY#b,($out)
406 lea 1($out),$out
407 sub \$1,$len
408 jnz .Lcloop1
409 jmp .Lexit
410
411.align 16
412.Lexit:
413 sub \$1,$XX[0]#b
414 movl $XX[0]#d,-8($dat)
415 movl $YY#d,-4($dat)
416
417 mov (%rsp),%r13
418 mov 8(%rsp),%r12
419 mov 16(%rsp),%rbx
420 add \$24,%rsp
421.Lepilogue:
422 ret
423.size RC4,.-RC4
424___
425}
426
427$idx="%r8";
428$ido="%r9";
429
430$code.=<<___;
431.globl RC4_set_key
432.type RC4_set_key,\@function,3
433.align 16
434RC4_set_key:
435 lea 8($dat),$dat
436 lea ($inp,$len),$inp
437 neg $len
438 mov $len,%rcx
439 xor %eax,%eax
440 xor $ido,$ido
441 xor %r10,%r10
442 xor %r11,%r11
443
444 mov OPENSSL_ia32cap_P(%rip),$idx#d
445 bt \$20,$idx#d # RC4_CHAR?
446 jc .Lc1stloop
447 jmp .Lw1stloop
448
449.align 16
450.Lw1stloop:
451 mov %eax,($dat,%rax,4)
452 add \$1,%al
453 jnc .Lw1stloop
454
455 xor $ido,$ido
456 xor $idx,$idx
457.align 16
458.Lw2ndloop:
459 mov ($dat,$ido,4),%r10d
460 add ($inp,$len,1),$idx#b
461 add %r10b,$idx#b
462 add \$1,$len
463 mov ($dat,$idx,4),%r11d
464 cmovz %rcx,$len
465 mov %r10d,($dat,$idx,4)
466 mov %r11d,($dat,$ido,4)
467 add \$1,$ido#b
468 jnc .Lw2ndloop
469 jmp .Lexit_key
470
471.align 16
472.Lc1stloop:
473 mov %al,($dat,%rax)
474 add \$1,%al
475 jnc .Lc1stloop
476
477 xor $ido,$ido
478 xor $idx,$idx
479.align 16
480.Lc2ndloop:
481 mov ($dat,$ido),%r10b
482 add ($inp,$len),$idx#b
483 add %r10b,$idx#b
484 add \$1,$len
485 mov ($dat,$idx),%r11b
486 jnz .Lcnowrap
487 mov %rcx,$len
488.Lcnowrap:
489 mov %r10b,($dat,$idx)
490 mov %r11b,($dat,$ido)
491 add \$1,$ido#b
492 jnc .Lc2ndloop
493 movl \$-1,256($dat)
494
495.align 16
496.Lexit_key:
497 xor %eax,%eax
498 mov %eax,-8($dat)
499 mov %eax,-4($dat)
500 ret
501.size RC4_set_key,.-RC4_set_key
502
503.globl RC4_options
504.type RC4_options,\@abi-omnipotent
505.align 16
506RC4_options:
507 lea .Lopts(%rip),%rax
508 mov OPENSSL_ia32cap_P(%rip),%edx
509 bt \$20,%edx
510 jc .L8xchar
511 bt \$30,%edx
512 jnc .Ldone
513 add \$25,%rax
514 ret
515.L8xchar:
516 add \$12,%rax
517.Ldone:
518 ret
519.align 64
520.Lopts:
521.asciz "rc4(8x,int)"
522.asciz "rc4(8x,char)"
523.asciz "rc4(16x,int)"
524.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
525.align 64
526.size RC4_options,.-RC4_options
527___
528
529sub reg_part {
530my ($reg,$conv)=@_;
531 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
532 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
533 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
534 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
535 return $reg;
536}
537
538$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
539$code =~ s/\`([^\`]*)\`/eval $1/gem;
540
541print $code;
542
543close STDOUT;