diff options
Diffstat (limited to 'src/lib/libcrypto/rc4/asm/rc4-x86_64.pl')
-rwxr-xr-x | src/lib/libcrypto/rc4/asm/rc4-x86_64.pl | 543 |
1 files changed, 0 insertions, 543 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl deleted file mode 100755 index 197749dda7..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl +++ /dev/null | |||
@@ -1,543 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # July 2004 | ||
11 | # | ||
12 | # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in | ||
13 | # "hand-coded assembler"] doesn't stand for the whole improvement | ||
14 | # coefficient. It turned out that eliminating RC4_CHAR from config | ||
15 | # line results in ~40% improvement (yes, even for C implementation). | ||
16 | # Presumably it has everything to do with AMD cache architecture and | ||
17 | # RAW or whatever penalties. Once again! The module *requires* config | ||
18 | # line *without* RC4_CHAR! As for coding "secret," I bet on partial | ||
19 | # register arithmetics. For example instead of 'inc %r8; and $255,%r8' | ||
20 | # I simply 'inc %r8b'. Even though optimization manual discourages | ||
21 | # to operate on partial registers, it turned out to be the best bet. | ||
22 | # At least for AMD... How IA32E would perform remains to be seen... | ||
23 | |||
24 | # November 2004 | ||
25 | # | ||
26 | # As was shown by Marc Bevand reordering of couple of load operations | ||
27 | # results in even higher performance gain of 3.3x:-) At least on | ||
28 | # Opteron... For reference, 1x in this case is RC4_CHAR C-code | ||
29 | # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. | ||
30 | # Latter means that if you want to *estimate* what to expect from | ||
31 | # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. | ||
32 | |||
33 | # November 2004 | ||
34 | # | ||
35 | # Intel P4 EM64T core was found to run the AMD64 code really slow... | ||
36 | # The only way to achieve comparable performance on P4 was to keep | ||
37 | # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to | ||
38 | # compose blended code, which would perform even within 30% marginal | ||
39 | # on either AMD and Intel platforms, I implement both cases. See | ||
40 | # rc4_skey.c for further details... | ||
41 | |||
42 | # April 2005 | ||
43 | # | ||
44 | # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing | ||
45 | # those with add/sub results in 50% performance improvement of folded | ||
46 | # loop... | ||
47 | |||
48 | # May 2005 | ||
49 | # | ||
50 | # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T | ||
51 | # performance by >30% [unlike P4 32-bit case that is]. But this is | ||
52 | # provided that loads are reordered even more aggressively! Both code | ||
53 | # pathes, AMD64 and EM64T, reorder loads in essentially same manner | ||
54 | # as my IA-64 implementation. On Opteron this resulted in modest 5% | ||
55 | # improvement [I had to test it], while final Intel P4 performance | ||
56 | # achieves respectful 432MBps on 2.8GHz processor now. For reference. | ||
57 | # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than | ||
58 | # RC4_INT code-path. While if executed on Opteron, it's only 25% | ||
59 | # slower than the RC4_INT one [meaning that if CPU µ-arch detection | ||
60 | # is not implemented, then this final RC4_CHAR code-path should be | ||
61 | # preferred, as it provides better *all-round* performance]. | ||
62 | |||
63 | # March 2007 | ||
64 | # | ||
65 | # Intel Core2 was observed to perform poorly on both code paths:-( It | ||
66 | # apparently suffers from some kind of partial register stall, which | ||
67 | # occurs in 64-bit mode only [as virtually identical 32-bit loop was | ||
68 | # observed to outperform 64-bit one by almost 50%]. Adding two movzb to | ||
69 | # cloop1 boosts its performance by 80%! This loop appears to be optimal | ||
70 | # fit for Core2 and therefore the code was modified to skip cloop8 on | ||
71 | # this CPU. | ||
72 | |||
73 | # May 2010 | ||
74 | # | ||
75 | # Intel Westmere was observed to perform suboptimally. Adding yet | ||
76 | # another movzb to cloop1 improved performance by almost 50%! Core2 | ||
77 | # performance is improved too, but nominally... | ||
78 | |||
79 | # May 2011 | ||
80 | # | ||
81 | # The only code path that was not modified is P4-specific one. Non-P4 | ||
82 | # Intel code path optimization is heavily based on submission by Maxim | ||
83 | # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used | ||
84 | # some of the ideas even in attempt to optmize the original RC4_INT | ||
85 | # code path... Current performance in cycles per processed byte (less | ||
86 | # is better) and improvement coefficients relative to previous | ||
87 | # version of this module are: | ||
88 | # | ||
89 | # Opteron 5.3/+0%(*) | ||
90 | # P4 6.5 | ||
91 | # Core2 6.2/+15%(**) | ||
92 | # Westmere 4.2/+60% | ||
93 | # Sandy Bridge 4.2/+120% | ||
94 | # Atom 9.3/+80% | ||
95 | # | ||
96 | # (*) But corresponding loop has less instructions, which should have | ||
97 | # positive effect on upcoming Bulldozer, which has one less ALU. | ||
98 | # For reference, Intel code runs at 6.8 cpb rate on Opteron. | ||
99 | # (**) Note that Core2 result is ~15% lower than corresponding result | ||
100 | # for 32-bit code, meaning that it's possible to improve it, | ||
101 | # but more than likely at the cost of the others (see rc4-586.pl | ||
102 | # to get the idea)... | ||
103 | |||
104 | $flavour = shift; | ||
105 | $output = shift; | ||
106 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
107 | |||
108 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
109 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
110 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
111 | die "can't locate x86_64-xlate.pl"; | ||
112 | |||
113 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
114 | *STDOUT=*OUT; | ||
115 | |||
116 | $dat="%rdi"; # arg1 | ||
117 | $len="%rsi"; # arg2 | ||
118 | $inp="%rdx"; # arg3 | ||
119 | $out="%rcx"; # arg4 | ||
120 | |||
121 | { | ||
122 | $code=<<___; | ||
123 | .text | ||
124 | .extern OPENSSL_ia32cap_P | ||
125 | |||
126 | .globl RC4 | ||
127 | .type RC4,\@function,4 | ||
128 | .align 16 | ||
129 | RC4: or $len,$len | ||
130 | jne .Lentry | ||
131 | ret | ||
132 | .Lentry: | ||
133 | push %rbx | ||
134 | push %r12 | ||
135 | push %r13 | ||
136 | .Lprologue: | ||
137 | mov $len,%r11 | ||
138 | mov $inp,%r12 | ||
139 | mov $out,%r13 | ||
140 | ___ | ||
141 | my $len="%r11"; # reassign input arguments | ||
142 | my $inp="%r12"; | ||
143 | my $out="%r13"; | ||
144 | |||
145 | my @XX=("%r10","%rsi"); | ||
146 | my @TX=("%rax","%rbx"); | ||
147 | my $YY="%rcx"; | ||
148 | my $TY="%rdx"; | ||
149 | |||
150 | $code.=<<___; | ||
151 | xor $XX[0],$XX[0] | ||
152 | xor $YY,$YY | ||
153 | |||
154 | lea 8($dat),$dat | ||
155 | mov -8($dat),$XX[0]#b | ||
156 | mov -4($dat),$YY#b | ||
157 | cmpl \$-1,256($dat) | ||
158 | je .LRC4_CHAR | ||
159 | mov OPENSSL_ia32cap_P(%rip),%r8d | ||
160 | xor $TX[1],$TX[1] | ||
161 | inc $XX[0]#b | ||
162 | sub $XX[0],$TX[1] | ||
163 | sub $inp,$out | ||
164 | movl ($dat,$XX[0],4),$TX[0]#d | ||
165 | test \$-16,$len | ||
166 | jz .Lloop1 | ||
167 | bt \$30,%r8d # Intel CPU? | ||
168 | jc .Lintel | ||
169 | and \$7,$TX[1] | ||
170 | lea 1($XX[0]),$XX[1] | ||
171 | jz .Loop8 | ||
172 | sub $TX[1],$len | ||
173 | .Loop8_warmup: | ||
174 | add $TX[0]#b,$YY#b | ||
175 | movl ($dat,$YY,4),$TY#d | ||
176 | movl $TX[0]#d,($dat,$YY,4) | ||
177 | movl $TY#d,($dat,$XX[0],4) | ||
178 | add $TY#b,$TX[0]#b | ||
179 | inc $XX[0]#b | ||
180 | movl ($dat,$TX[0],4),$TY#d | ||
181 | movl ($dat,$XX[0],4),$TX[0]#d | ||
182 | xorb ($inp),$TY#b | ||
183 | movb $TY#b,($out,$inp) | ||
184 | lea 1($inp),$inp | ||
185 | dec $TX[1] | ||
186 | jnz .Loop8_warmup | ||
187 | |||
188 | lea 1($XX[0]),$XX[1] | ||
189 | jmp .Loop8 | ||
190 | .align 16 | ||
191 | .Loop8: | ||
192 | ___ | ||
193 | for ($i=0;$i<8;$i++) { | ||
194 | $code.=<<___ if ($i==7); | ||
195 | add \$8,$XX[1]#b | ||
196 | ___ | ||
197 | $code.=<<___; | ||
198 | add $TX[0]#b,$YY#b | ||
199 | movl ($dat,$YY,4),$TY#d | ||
200 | movl $TX[0]#d,($dat,$YY,4) | ||
201 | movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d | ||
202 | ror \$8,%r8 # ror is redundant when $i=0 | ||
203 | movl $TY#d,4*$i($dat,$XX[0],4) | ||
204 | add $TX[0]#b,$TY#b | ||
205 | movb ($dat,$TY,4),%r8b | ||
206 | ___ | ||
207 | push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers | ||
208 | } | ||
209 | $code.=<<___; | ||
210 | add \$8,$XX[0]#b | ||
211 | ror \$8,%r8 | ||
212 | sub \$8,$len | ||
213 | |||
214 | xor ($inp),%r8 | ||
215 | mov %r8,($out,$inp) | ||
216 | lea 8($inp),$inp | ||
217 | |||
218 | test \$-8,$len | ||
219 | jnz .Loop8 | ||
220 | cmp \$0,$len | ||
221 | jne .Lloop1 | ||
222 | jmp .Lexit | ||
223 | |||
224 | .align 16 | ||
225 | .Lintel: | ||
226 | test \$-32,$len | ||
227 | jz .Lloop1 | ||
228 | and \$15,$TX[1] | ||
229 | jz .Loop16_is_hot | ||
230 | sub $TX[1],$len | ||
231 | .Loop16_warmup: | ||
232 | add $TX[0]#b,$YY#b | ||
233 | movl ($dat,$YY,4),$TY#d | ||
234 | movl $TX[0]#d,($dat,$YY,4) | ||
235 | movl $TY#d,($dat,$XX[0],4) | ||
236 | add $TY#b,$TX[0]#b | ||
237 | inc $XX[0]#b | ||
238 | movl ($dat,$TX[0],4),$TY#d | ||
239 | movl ($dat,$XX[0],4),$TX[0]#d | ||
240 | xorb ($inp),$TY#b | ||
241 | movb $TY#b,($out,$inp) | ||
242 | lea 1($inp),$inp | ||
243 | dec $TX[1] | ||
244 | jnz .Loop16_warmup | ||
245 | |||
246 | mov $YY,$TX[1] | ||
247 | xor $YY,$YY | ||
248 | mov $TX[1]#b,$YY#b | ||
249 | |||
250 | .Loop16_is_hot: | ||
251 | lea ($dat,$XX[0],4),$XX[1] | ||
252 | ___ | ||
253 | sub RC4_loop { | ||
254 | my $i=shift; | ||
255 | my $j=$i<0?0:$i; | ||
256 | my $xmm="%xmm".($j&1); | ||
257 | |||
258 | $code.=" add \$16,$XX[0]#b\n" if ($i==15); | ||
259 | $code.=" movdqu ($inp),%xmm2\n" if ($i==15); | ||
260 | $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); | ||
261 | $code.=" movl ($dat,$YY,4),$TY#d\n"; | ||
262 | $code.=" pxor %xmm0,%xmm2\n" if ($i==0); | ||
263 | $code.=" psllq \$8,%xmm1\n" if ($i==0); | ||
264 | $code.=" pxor $xmm,$xmm\n" if ($i<=1); | ||
265 | $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; | ||
266 | $code.=" add $TY#b,$TX[0]#b\n"; | ||
267 | $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); | ||
268 | $code.=" movz $TX[0]#b,$TX[0]#d\n"; | ||
269 | $code.=" movl $TY#d,4*$j($XX[1])\n"; | ||
270 | $code.=" pxor %xmm1,%xmm2\n" if ($i==0); | ||
271 | $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); | ||
272 | $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); | ||
273 | $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; | ||
274 | $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); | ||
275 | $code.=" lea 16($inp),$inp\n" if ($i==0); | ||
276 | $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); | ||
277 | } | ||
278 | RC4_loop(-1); | ||
279 | $code.=<<___; | ||
280 | jmp .Loop16_enter | ||
281 | .align 16 | ||
282 | .Loop16: | ||
283 | ___ | ||
284 | |||
285 | for ($i=0;$i<16;$i++) { | ||
286 | $code.=".Loop16_enter:\n" if ($i==1); | ||
287 | RC4_loop($i); | ||
288 | push(@TX,shift(@TX)); # "rotate" registers | ||
289 | } | ||
290 | $code.=<<___; | ||
291 | mov $YY,$TX[1] | ||
292 | xor $YY,$YY # keyword to partial register | ||
293 | sub \$16,$len | ||
294 | mov $TX[1]#b,$YY#b | ||
295 | test \$-16,$len | ||
296 | jnz .Loop16 | ||
297 | |||
298 | psllq \$8,%xmm1 | ||
299 | pxor %xmm0,%xmm2 | ||
300 | pxor %xmm1,%xmm2 | ||
301 | movdqu %xmm2,($out,$inp) | ||
302 | lea 16($inp),$inp | ||
303 | |||
304 | cmp \$0,$len | ||
305 | jne .Lloop1 | ||
306 | jmp .Lexit | ||
307 | |||
308 | .align 16 | ||
309 | .Lloop1: | ||
310 | add $TX[0]#b,$YY#b | ||
311 | movl ($dat,$YY,4),$TY#d | ||
312 | movl $TX[0]#d,($dat,$YY,4) | ||
313 | movl $TY#d,($dat,$XX[0],4) | ||
314 | add $TY#b,$TX[0]#b | ||
315 | inc $XX[0]#b | ||
316 | movl ($dat,$TX[0],4),$TY#d | ||
317 | movl ($dat,$XX[0],4),$TX[0]#d | ||
318 | xorb ($inp),$TY#b | ||
319 | movb $TY#b,($out,$inp) | ||
320 | lea 1($inp),$inp | ||
321 | dec $len | ||
322 | jnz .Lloop1 | ||
323 | jmp .Lexit | ||
324 | |||
325 | .align 16 | ||
326 | .LRC4_CHAR: | ||
327 | add \$1,$XX[0]#b | ||
328 | movzb ($dat,$XX[0]),$TX[0]#d | ||
329 | test \$-8,$len | ||
330 | jz .Lcloop1 | ||
331 | jmp .Lcloop8 | ||
332 | .align 16 | ||
333 | .Lcloop8: | ||
334 | mov ($inp),%r8d | ||
335 | mov 4($inp),%r9d | ||
336 | ___ | ||
337 | # unroll 2x4-wise, because 64-bit rotates kill Intel P4... | ||
338 | for ($i=0;$i<4;$i++) { | ||
339 | $code.=<<___; | ||
340 | add $TX[0]#b,$YY#b | ||
341 | lea 1($XX[0]),$XX[1] | ||
342 | movzb ($dat,$YY),$TY#d | ||
343 | movzb $XX[1]#b,$XX[1]#d | ||
344 | movzb ($dat,$XX[1]),$TX[1]#d | ||
345 | movb $TX[0]#b,($dat,$YY) | ||
346 | cmp $XX[1],$YY | ||
347 | movb $TY#b,($dat,$XX[0]) | ||
348 | jne .Lcmov$i # Intel cmov is sloooow... | ||
349 | mov $TX[0],$TX[1] | ||
350 | .Lcmov$i: | ||
351 | add $TX[0]#b,$TY#b | ||
352 | xor ($dat,$TY),%r8b | ||
353 | ror \$8,%r8d | ||
354 | ___ | ||
355 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
356 | } | ||
357 | for ($i=4;$i<8;$i++) { | ||
358 | $code.=<<___; | ||
359 | add $TX[0]#b,$YY#b | ||
360 | lea 1($XX[0]),$XX[1] | ||
361 | movzb ($dat,$YY),$TY#d | ||
362 | movzb $XX[1]#b,$XX[1]#d | ||
363 | movzb ($dat,$XX[1]),$TX[1]#d | ||
364 | movb $TX[0]#b,($dat,$YY) | ||
365 | cmp $XX[1],$YY | ||
366 | movb $TY#b,($dat,$XX[0]) | ||
367 | jne .Lcmov$i # Intel cmov is sloooow... | ||
368 | mov $TX[0],$TX[1] | ||
369 | .Lcmov$i: | ||
370 | add $TX[0]#b,$TY#b | ||
371 | xor ($dat,$TY),%r9b | ||
372 | ror \$8,%r9d | ||
373 | ___ | ||
374 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
375 | } | ||
376 | $code.=<<___; | ||
377 | lea -8($len),$len | ||
378 | mov %r8d,($out) | ||
379 | lea 8($inp),$inp | ||
380 | mov %r9d,4($out) | ||
381 | lea 8($out),$out | ||
382 | |||
383 | test \$-8,$len | ||
384 | jnz .Lcloop8 | ||
385 | cmp \$0,$len | ||
386 | jne .Lcloop1 | ||
387 | jmp .Lexit | ||
388 | ___ | ||
389 | $code.=<<___; | ||
390 | .align 16 | ||
391 | .Lcloop1: | ||
392 | add $TX[0]#b,$YY#b | ||
393 | movzb $YY#b,$YY#d | ||
394 | movzb ($dat,$YY),$TY#d | ||
395 | movb $TX[0]#b,($dat,$YY) | ||
396 | movb $TY#b,($dat,$XX[0]) | ||
397 | add $TX[0]#b,$TY#b | ||
398 | add \$1,$XX[0]#b | ||
399 | movzb $TY#b,$TY#d | ||
400 | movzb $XX[0]#b,$XX[0]#d | ||
401 | movzb ($dat,$TY),$TY#d | ||
402 | movzb ($dat,$XX[0]),$TX[0]#d | ||
403 | xorb ($inp),$TY#b | ||
404 | lea 1($inp),$inp | ||
405 | movb $TY#b,($out) | ||
406 | lea 1($out),$out | ||
407 | sub \$1,$len | ||
408 | jnz .Lcloop1 | ||
409 | jmp .Lexit | ||
410 | |||
411 | .align 16 | ||
412 | .Lexit: | ||
413 | sub \$1,$XX[0]#b | ||
414 | movl $XX[0]#d,-8($dat) | ||
415 | movl $YY#d,-4($dat) | ||
416 | |||
417 | mov (%rsp),%r13 | ||
418 | mov 8(%rsp),%r12 | ||
419 | mov 16(%rsp),%rbx | ||
420 | add \$24,%rsp | ||
421 | .Lepilogue: | ||
422 | ret | ||
423 | .size RC4,.-RC4 | ||
424 | ___ | ||
425 | } | ||
426 | |||
427 | $idx="%r8"; | ||
428 | $ido="%r9"; | ||
429 | |||
430 | $code.=<<___; | ||
431 | .globl RC4_set_key | ||
432 | .type RC4_set_key,\@function,3 | ||
433 | .align 16 | ||
434 | RC4_set_key: | ||
435 | lea 8($dat),$dat | ||
436 | lea ($inp,$len),$inp | ||
437 | neg $len | ||
438 | mov $len,%rcx | ||
439 | xor %eax,%eax | ||
440 | xor $ido,$ido | ||
441 | xor %r10,%r10 | ||
442 | xor %r11,%r11 | ||
443 | |||
444 | mov OPENSSL_ia32cap_P(%rip),$idx#d | ||
445 | bt \$20,$idx#d # RC4_CHAR? | ||
446 | jc .Lc1stloop | ||
447 | jmp .Lw1stloop | ||
448 | |||
449 | .align 16 | ||
450 | .Lw1stloop: | ||
451 | mov %eax,($dat,%rax,4) | ||
452 | add \$1,%al | ||
453 | jnc .Lw1stloop | ||
454 | |||
455 | xor $ido,$ido | ||
456 | xor $idx,$idx | ||
457 | .align 16 | ||
458 | .Lw2ndloop: | ||
459 | mov ($dat,$ido,4),%r10d | ||
460 | add ($inp,$len,1),$idx#b | ||
461 | add %r10b,$idx#b | ||
462 | add \$1,$len | ||
463 | mov ($dat,$idx,4),%r11d | ||
464 | cmovz %rcx,$len | ||
465 | mov %r10d,($dat,$idx,4) | ||
466 | mov %r11d,($dat,$ido,4) | ||
467 | add \$1,$ido#b | ||
468 | jnc .Lw2ndloop | ||
469 | jmp .Lexit_key | ||
470 | |||
471 | .align 16 | ||
472 | .Lc1stloop: | ||
473 | mov %al,($dat,%rax) | ||
474 | add \$1,%al | ||
475 | jnc .Lc1stloop | ||
476 | |||
477 | xor $ido,$ido | ||
478 | xor $idx,$idx | ||
479 | .align 16 | ||
480 | .Lc2ndloop: | ||
481 | mov ($dat,$ido),%r10b | ||
482 | add ($inp,$len),$idx#b | ||
483 | add %r10b,$idx#b | ||
484 | add \$1,$len | ||
485 | mov ($dat,$idx),%r11b | ||
486 | jnz .Lcnowrap | ||
487 | mov %rcx,$len | ||
488 | .Lcnowrap: | ||
489 | mov %r10b,($dat,$idx) | ||
490 | mov %r11b,($dat,$ido) | ||
491 | add \$1,$ido#b | ||
492 | jnc .Lc2ndloop | ||
493 | movl \$-1,256($dat) | ||
494 | |||
495 | .align 16 | ||
496 | .Lexit_key: | ||
497 | xor %eax,%eax | ||
498 | mov %eax,-8($dat) | ||
499 | mov %eax,-4($dat) | ||
500 | ret | ||
501 | .size RC4_set_key,.-RC4_set_key | ||
502 | |||
503 | .globl RC4_options | ||
504 | .type RC4_options,\@abi-omnipotent | ||
505 | .align 16 | ||
506 | RC4_options: | ||
507 | lea .Lopts(%rip),%rax | ||
508 | mov OPENSSL_ia32cap_P(%rip),%edx | ||
509 | bt \$20,%edx | ||
510 | jc .L8xchar | ||
511 | bt \$30,%edx | ||
512 | jnc .Ldone | ||
513 | add \$25,%rax | ||
514 | ret | ||
515 | .L8xchar: | ||
516 | add \$12,%rax | ||
517 | .Ldone: | ||
518 | ret | ||
519 | .align 64 | ||
520 | .Lopts: | ||
521 | .asciz "rc4(8x,int)" | ||
522 | .asciz "rc4(8x,char)" | ||
523 | .asciz "rc4(16x,int)" | ||
524 | .asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
525 | .align 64 | ||
526 | .size RC4_options,.-RC4_options | ||
527 | ___ | ||
528 | |||
529 | sub reg_part { | ||
530 | my ($reg,$conv)=@_; | ||
531 | if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } | ||
532 | elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } | ||
533 | elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } | ||
534 | elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } | ||
535 | return $reg; | ||
536 | } | ||
537 | |||
538 | $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; | ||
539 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
540 | |||
541 | print $code; | ||
542 | |||
543 | close STDOUT; | ||