diff options
Diffstat (limited to 'src/lib/libcrypto/rc4')
-rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-586.pl | 388 | ||||
-rwxr-xr-x | src/lib/libcrypto/rc4/asm/rc4-x86_64.pl | 522 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/rc4.c | 305 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/rc4.h | 83 |
4 files changed, 0 insertions, 1298 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-586.pl b/src/lib/libcrypto/rc4/asm/rc4-586.pl deleted file mode 100644 index 8fffe91e74..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-586.pl +++ /dev/null | |||
@@ -1,388 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # At some point it became apparent that the original SSLeay RC4 | ||
11 | # assembler implementation performs suboptimally on latest IA-32 | ||
12 | # microarchitectures. After re-tuning performance has changed as | ||
13 | # following: | ||
14 | # | ||
15 | # Pentium -10% | ||
16 | # Pentium III +12% | ||
17 | # AMD +50%(*) | ||
18 | # P4 +250%(**) | ||
19 | # | ||
20 | # (*) This number is actually a trade-off:-) It's possible to | ||
21 | # achieve +72%, but at the cost of -48% off PIII performance. | ||
22 | # In other words code performing further 13% faster on AMD | ||
23 | # would perform almost 2 times slower on Intel PIII... | ||
24 | # For reference! This code delivers ~80% of rc4-amd64.pl | ||
25 | # performance on the same Opteron machine. | ||
26 | # (**) This number requires compressed key schedule set up by | ||
27 | # RC4_set_key [see commentary below for further details]. | ||
28 | # | ||
29 | # <appro@fy.chalmers.se> | ||
30 | |||
31 | # May 2011 | ||
32 | # | ||
33 | # Optimize for Core2 and Westmere [and incidentally Opteron]. Current | ||
34 | # performance in cycles per processed byte (less is better) and | ||
35 | # improvement relative to previous version of this module is: | ||
36 | # | ||
37 | # Pentium 10.2 # original numbers | ||
38 | # Pentium III 7.8(*) | ||
39 | # Intel P4 7.5 | ||
40 | # | ||
41 | # Opteron 6.1/+20% # new MMX numbers | ||
42 | # Core2 5.3/+67%(**) | ||
43 | # Westmere 5.1/+94%(**) | ||
44 | # Sandy Bridge 5.0/+8% | ||
45 | # Atom 12.6/+6% | ||
46 | # | ||
47 | # (*) PIII can actually deliver 6.6 cycles per byte with MMX code, | ||
48 | # but this specific code performs poorly on Core2. And vice | ||
49 | # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs | ||
50 | # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU | ||
51 | # [anymore], I chose to discard PIII-specific code path and opt | ||
52 | # for original IALU-only code, which is why MMX/SSE code path | ||
53 | # is guarded by SSE2 bit (see below), not MMX/SSE. | ||
54 | # (**) Performance vs. block size on Core2 and Westmere had a maximum | ||
55 | # at ... 64 bytes block size. And it was quite a maximum, 40-60% | ||
56 | # in comparison to largest 8KB block size. Above improvement | ||
57 | # coefficients are for the largest block size. | ||
58 | |||
59 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
60 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
61 | require "x86asm.pl"; | ||
62 | |||
63 | &asm_init($ARGV[0],"rc4-586.pl"); | ||
64 | |||
65 | $xx="eax"; | ||
66 | $yy="ebx"; | ||
67 | $tx="ecx"; | ||
68 | $ty="edx"; | ||
69 | $inp="esi"; | ||
70 | $out="ebp"; | ||
71 | $dat="edi"; | ||
72 | |||
73 | sub RC4_loop { | ||
74 | my $i=shift; | ||
75 | my $func = ($i==0)?*mov:*or; | ||
76 | |||
77 | &add (&LB($yy),&LB($tx)); | ||
78 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
79 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
80 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
81 | &add ($ty,$tx); | ||
82 | &inc (&LB($xx)); | ||
83 | &and ($ty,0xff); | ||
84 | &ror ($out,8) if ($i!=0); | ||
85 | if ($i<3) { | ||
86 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
87 | } else { | ||
88 | &mov ($tx,&wparam(3)); # reload [re-biased] out | ||
89 | } | ||
90 | &$func ($out,&DWP(0,$dat,$ty,4)); | ||
91 | } | ||
92 | |||
93 | if ($alt=0) { | ||
94 | # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, | ||
95 | # but ~40% slower on Core2 and Westmere... Attempt to add movz | ||
96 | # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet | ||
97 | # on Core2 with movz it's almost 20% slower than below alternative | ||
98 | # code... Yes, it's a total mess... | ||
99 | my @XX=($xx,$out); | ||
100 | $RC4_loop_mmx = sub { # SSE actually... | ||
101 | my $i=shift; | ||
102 | my $j=$i<=0?0:$i>>1; | ||
103 | my $mm=$i<=0?"mm0":"mm".($i&1); | ||
104 | |||
105 | &add (&LB($yy),&LB($tx)); | ||
106 | &lea (@XX[1],&DWP(1,@XX[0])); | ||
107 | &pxor ("mm2","mm0") if ($i==0); | ||
108 | &psllq ("mm1",8) if ($i==0); | ||
109 | &and (@XX[1],0xff); | ||
110 | &pxor ("mm0","mm0") if ($i<=0); | ||
111 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
112 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
113 | &pxor ("mm1","mm2") if ($i==0); | ||
114 | &mov (&DWP(0,$dat,$XX[0],4),$ty); | ||
115 | &add (&LB($ty),&LB($tx)); | ||
116 | &movd (@XX[0],"mm7") if ($i==0); | ||
117 | &mov ($tx,&DWP(0,$dat,@XX[1],4)); | ||
118 | &pxor ("mm1","mm1") if ($i==1); | ||
119 | &movq ("mm2",&QWP(0,$inp)) if ($i==1); | ||
120 | &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); | ||
121 | &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); | ||
122 | |||
123 | push (@XX,shift(@XX)) if ($i>=0); | ||
124 | } | ||
125 | } else { | ||
126 | # Using pinsrw here improves performance on Intel CPUs by 2-3%, but | ||
127 | # brings down AMD by 7%... | ||
128 | $RC4_loop_mmx = sub { | ||
129 | my $i=shift; | ||
130 | |||
131 | &add (&LB($yy),&LB($tx)); | ||
132 | &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); | ||
133 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
134 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
135 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
136 | &inc ($xx); | ||
137 | &add ($ty,$tx); | ||
138 | &movz ($xx,&LB($xx)); # (*) | ||
139 | &movz ($ty,&LB($ty)); # (*) | ||
140 | &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); | ||
141 | &movq ("mm0",&QWP(0,$inp)) if ($i<=0); | ||
142 | &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); | ||
143 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
144 | &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); | ||
145 | |||
146 | # (*) This is the key to Core2 and Westmere performance. | ||
147 | # Without movz out-of-order execution logic confuses | ||
148 | # itself and fails to reorder loads and stores. Problem | ||
149 | # appears to be fixed in Sandy Bridge... | ||
150 | } | ||
151 | } | ||
152 | |||
153 | &external_label("OPENSSL_ia32cap_P"); | ||
154 | |||
155 | # void rc4_internal(RC4_KEY *key, size_t len, const unsigned char *inp, | ||
156 | # unsigned char *out); | ||
157 | &function_begin("rc4_internal"); | ||
158 | &mov ($dat,&wparam(0)); # load key schedule pointer | ||
159 | &mov ($ty, &wparam(1)); # load len | ||
160 | &mov ($inp,&wparam(2)); # load inp | ||
161 | &mov ($out,&wparam(3)); # load out | ||
162 | |||
163 | &xor ($xx,$xx); # avoid partial register stalls | ||
164 | &xor ($yy,$yy); | ||
165 | |||
166 | &cmp ($ty,0); # safety net | ||
167 | &je (&label("abort")); | ||
168 | |||
169 | &mov (&LB($xx),&BP(0,$dat)); # load key->x | ||
170 | &mov (&LB($yy),&BP(4,$dat)); # load key->y | ||
171 | &add ($dat,8); | ||
172 | |||
173 | &lea ($tx,&DWP(0,$inp,$ty)); | ||
174 | &sub ($out,$inp); # re-bias out | ||
175 | &mov (&wparam(1),$tx); # save input+len | ||
176 | |||
177 | &inc (&LB($xx)); | ||
178 | |||
179 | # detect compressed key schedule... | ||
180 | &cmp (&DWP(256,$dat),-1); | ||
181 | &je (&label("RC4_CHAR")); | ||
182 | |||
183 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
184 | |||
185 | &and ($ty,-4); # how many 4-byte chunks? | ||
186 | &jz (&label("loop1")); | ||
187 | |||
188 | &test ($ty,-8); | ||
189 | &mov (&wparam(3),$out); # $out as accumulator in these loops | ||
190 | &jz (&label("go4loop4")); | ||
191 | |||
192 | &picsetup($out); | ||
193 | &picsymbol($out, "OPENSSL_ia32cap_P", $out); | ||
194 | # check SSE2 bit [could have been MMX] | ||
195 | &bt (&DWP(0,$out),"\$IA32CAP_BIT0_SSE2"); | ||
196 | &jnc (&label("go4loop4")); | ||
197 | |||
198 | &mov ($out,&wparam(3)) if (!$alt); | ||
199 | &movd ("mm7",&wparam(3)) if ($alt); | ||
200 | &and ($ty,-8); | ||
201 | &lea ($ty,&DWP(-8,$inp,$ty)); | ||
202 | &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 | ||
203 | |||
204 | &$RC4_loop_mmx(-1); | ||
205 | &jmp(&label("loop_mmx_enter")); | ||
206 | |||
207 | &set_label("loop_mmx",16); | ||
208 | &$RC4_loop_mmx(0); | ||
209 | &set_label("loop_mmx_enter"); | ||
210 | for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } | ||
211 | &mov ($ty,$yy); | ||
212 | &xor ($yy,$yy); # this is second key to Core2 | ||
213 | &mov (&LB($yy),&LB($ty)); # and Westmere performance... | ||
214 | &cmp ($inp,&DWP(-4,$dat)); | ||
215 | &lea ($inp,&DWP(8,$inp)); | ||
216 | &jb (&label("loop_mmx")); | ||
217 | |||
218 | if ($alt) { | ||
219 | &movd ($out,"mm7"); | ||
220 | &pxor ("mm2","mm0"); | ||
221 | &psllq ("mm1",8); | ||
222 | &pxor ("mm1","mm2"); | ||
223 | &movq (&QWP(-8,$out,$inp),"mm1"); | ||
224 | } else { | ||
225 | &psllq ("mm1",56); | ||
226 | &pxor ("mm2","mm1"); | ||
227 | &movq (&QWP(-8,$out,$inp),"mm2"); | ||
228 | } | ||
229 | &emms (); | ||
230 | |||
231 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
232 | &je (&label("done")); | ||
233 | &jmp (&label("loop1")); | ||
234 | |||
235 | &set_label("go4loop4",16); | ||
236 | &lea ($ty,&DWP(-4,$inp,$ty)); | ||
237 | &mov (&wparam(2),$ty); # save input+(len/4)*4-4 | ||
238 | |||
239 | &set_label("loop4"); | ||
240 | for ($i=0;$i<4;$i++) { RC4_loop($i); } | ||
241 | &ror ($out,8); | ||
242 | &xor ($out,&DWP(0,$inp)); | ||
243 | &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 | ||
244 | &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here | ||
245 | &lea ($inp,&DWP(4,$inp)); | ||
246 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
247 | &jb (&label("loop4")); | ||
248 | |||
249 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
250 | &je (&label("done")); | ||
251 | &mov ($out,&wparam(3)); # restore $out | ||
252 | |||
253 | &set_label("loop1",16); | ||
254 | &add (&LB($yy),&LB($tx)); | ||
255 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
256 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
257 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
258 | &add ($ty,$tx); | ||
259 | &inc (&LB($xx)); | ||
260 | &and ($ty,0xff); | ||
261 | &mov ($ty,&DWP(0,$dat,$ty,4)); | ||
262 | &xor (&LB($ty),&BP(0,$inp)); | ||
263 | &lea ($inp,&DWP(1,$inp)); | ||
264 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
265 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
266 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
267 | &jb (&label("loop1")); | ||
268 | |||
269 | &jmp (&label("done")); | ||
270 | |||
271 | # this is essentially Intel P4 specific codepath... | ||
272 | &set_label("RC4_CHAR",16); | ||
273 | &movz ($tx,&BP(0,$dat,$xx)); | ||
274 | # strangely enough unrolled loop performs over 20% slower... | ||
275 | &set_label("cloop1"); | ||
276 | &add (&LB($yy),&LB($tx)); | ||
277 | &movz ($ty,&BP(0,$dat,$yy)); | ||
278 | &mov (&BP(0,$dat,$yy),&LB($tx)); | ||
279 | &mov (&BP(0,$dat,$xx),&LB($ty)); | ||
280 | &add (&LB($ty),&LB($tx)); | ||
281 | &movz ($ty,&BP(0,$dat,$ty)); | ||
282 | &add (&LB($xx),1); | ||
283 | &xor (&LB($ty),&BP(0,$inp)); | ||
284 | &lea ($inp,&DWP(1,$inp)); | ||
285 | &movz ($tx,&BP(0,$dat,$xx)); | ||
286 | &cmp ($inp,&wparam(1)); | ||
287 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
288 | &jb (&label("cloop1")); | ||
289 | |||
290 | &set_label("done"); | ||
291 | &dec (&LB($xx)); | ||
292 | &mov (&DWP(-4,$dat),$yy); # save key->y | ||
293 | &mov (&BP(-8,$dat),&LB($xx)); # save key->x | ||
294 | &set_label("abort"); | ||
295 | &function_end("rc4_internal"); | ||
296 | |||
297 | ######################################################################## | ||
298 | |||
299 | $inp="esi"; | ||
300 | $out="edi"; | ||
301 | $idi="ebp"; | ||
302 | $ido="ecx"; | ||
303 | $idx="edx"; | ||
304 | |||
305 | # void rc4_set_key_internal(RC4_KEY *key,int len,const unsigned char *data); | ||
306 | &function_begin("rc4_set_key_internal"); | ||
307 | &mov ($out,&wparam(0)); # load key | ||
308 | &mov ($idi,&wparam(1)); # load len | ||
309 | &mov ($inp,&wparam(2)); # load data | ||
310 | |||
311 | &picsetup($idx); | ||
312 | &picsymbol($idx, "OPENSSL_ia32cap_P", $idx); | ||
313 | |||
314 | &lea ($out,&DWP(2*4,$out)); # &key->data | ||
315 | &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end | ||
316 | &neg ($idi); | ||
317 | &xor ("eax","eax"); | ||
318 | &mov (&DWP(-4,$out),$idi); # borrow key->y | ||
319 | |||
320 | &bt (&DWP(0,$idx),"\$IA32CAP_BIT0_INTELP4"); | ||
321 | &jc (&label("c1stloop")); | ||
322 | |||
323 | &set_label("w1stloop",16); | ||
324 | &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; | ||
325 | &add (&LB("eax"),1); # i++; | ||
326 | &jnc (&label("w1stloop")); | ||
327 | |||
328 | &xor ($ido,$ido); | ||
329 | &xor ($idx,$idx); | ||
330 | |||
331 | &set_label("w2ndloop",16); | ||
332 | &mov ("eax",&DWP(0,$out,$ido,4)); | ||
333 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
334 | &add (&LB($idx),&LB("eax")); | ||
335 | &add ($idi,1); | ||
336 | &mov ("ebx",&DWP(0,$out,$idx,4)); | ||
337 | &jnz (&label("wnowrap")); | ||
338 | &mov ($idi,&DWP(-4,$out)); | ||
339 | &set_label("wnowrap"); | ||
340 | &mov (&DWP(0,$out,$idx,4),"eax"); | ||
341 | &mov (&DWP(0,$out,$ido,4),"ebx"); | ||
342 | &add (&LB($ido),1); | ||
343 | &jnc (&label("w2ndloop")); | ||
344 | &jmp (&label("exit")); | ||
345 | |||
346 | # Unlike all other x86 [and x86_64] implementations, Intel P4 core | ||
347 | # [including EM64T] was found to perform poorly with above "32-bit" key | ||
348 | # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded | ||
349 | # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, | ||
350 | # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit | ||
351 | # schedule for x86[_64], because non-P4 implementations suffer from | ||
352 | # significant performance losses then, e.g. PIII exhibits >2x | ||
353 | # deterioration, and so does Opteron. In order to assure optimal | ||
354 | # all-round performance, we detect P4 at run-time and set up compressed | ||
355 | # key schedule, which is recognized by RC4 procedure. | ||
356 | |||
357 | &set_label("c1stloop",16); | ||
358 | &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; | ||
359 | &add (&LB("eax"),1); # i++; | ||
360 | &jnc (&label("c1stloop")); | ||
361 | |||
362 | &xor ($ido,$ido); | ||
363 | &xor ($idx,$idx); | ||
364 | &xor ("ebx","ebx"); | ||
365 | |||
366 | &set_label("c2ndloop",16); | ||
367 | &mov (&LB("eax"),&BP(0,$out,$ido)); | ||
368 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
369 | &add (&LB($idx),&LB("eax")); | ||
370 | &add ($idi,1); | ||
371 | &mov (&LB("ebx"),&BP(0,$out,$idx)); | ||
372 | &jnz (&label("cnowrap")); | ||
373 | &mov ($idi,&DWP(-4,$out)); | ||
374 | &set_label("cnowrap"); | ||
375 | &mov (&BP(0,$out,$idx),&LB("eax")); | ||
376 | &mov (&BP(0,$out,$ido),&LB("ebx")); | ||
377 | &add (&LB($ido),1); | ||
378 | &jnc (&label("c2ndloop")); | ||
379 | |||
380 | &mov (&DWP(256,$out),-1); # mark schedule as compressed | ||
381 | |||
382 | &set_label("exit"); | ||
383 | &xor ("eax","eax"); | ||
384 | &mov (&DWP(-8,$out),"eax"); # key->x=0; | ||
385 | &mov (&DWP(-4,$out),"eax"); # key->y=0; | ||
386 | &function_end("rc4_set_key_internal"); | ||
387 | |||
388 | &asm_finish(); | ||
diff --git a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl deleted file mode 100755 index 4dfce6a9ad..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl +++ /dev/null | |||
@@ -1,522 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # July 2004 | ||
11 | # | ||
12 | # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in | ||
13 | # "hand-coded assembler"] doesn't stand for the whole improvement | ||
14 | # coefficient. It turned out that eliminating RC4_CHAR from config | ||
15 | # line results in ~40% improvement (yes, even for C implementation). | ||
16 | # Presumably it has everything to do with AMD cache architecture and | ||
17 | # RAW or whatever penalties. Once again! The module *requires* config | ||
18 | # line *without* RC4_CHAR! As for coding "secret," I bet on partial | ||
19 | # register arithmetics. For example instead of 'inc %r8; and $255,%r8' | ||
20 | # I simply 'inc %r8b'. Even though optimization manual discourages | ||
21 | # to operate on partial registers, it turned out to be the best bet. | ||
22 | # At least for AMD... How IA32E would perform remains to be seen... | ||
23 | |||
24 | # November 2004 | ||
25 | # | ||
26 | # As was shown by Marc Bevand reordering of couple of load operations | ||
27 | # results in even higher performance gain of 3.3x:-) At least on | ||
28 | # Opteron... For reference, 1x in this case is RC4_CHAR C-code | ||
29 | # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. | ||
30 | # Latter means that if you want to *estimate* what to expect from | ||
31 | # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. | ||
32 | |||
33 | # November 2004 | ||
34 | # | ||
35 | # Intel P4 EM64T core was found to run the AMD64 code really slow... | ||
36 | # The only way to achieve comparable performance on P4 was to keep | ||
37 | # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to | ||
38 | # compose blended code, which would perform even within 30% marginal | ||
39 | # on either AMD and Intel platforms, I implement both cases. See | ||
40 | # rc4_skey.c for further details... | ||
41 | |||
42 | # April 2005 | ||
43 | # | ||
44 | # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing | ||
45 | # those with add/sub results in 50% performance improvement of folded | ||
46 | # loop... | ||
47 | |||
48 | # May 2005 | ||
49 | # | ||
50 | # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T | ||
51 | # performance by >30% [unlike P4 32-bit case that is]. But this is | ||
52 | # provided that loads are reordered even more aggressively! Both code | ||
53 | # paths, AMD64 and EM64T, reorder loads in essentially same manner | ||
54 | # as my IA-64 implementation. On Opteron this resulted in modest 5% | ||
55 | # improvement [I had to test it], while final Intel P4 performance | ||
56 | # achieves respectful 432MBps on 2.8GHz processor now. For reference. | ||
57 | # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than | ||
58 | # RC4_INT code-path. While if executed on Opteron, it's only 25% | ||
59 | # slower than the RC4_INT one [meaning that if CPU µ-arch detection | ||
60 | # is not implemented, then this final RC4_CHAR code-path should be | ||
61 | # preferred, as it provides better *all-round* performance]. | ||
62 | |||
63 | # March 2007 | ||
64 | # | ||
65 | # Intel Core2 was observed to perform poorly on both code paths:-( It | ||
66 | # apparently suffers from some kind of partial register stall, which | ||
67 | # occurs in 64-bit mode only [as virtually identical 32-bit loop was | ||
68 | # observed to outperform 64-bit one by almost 50%]. Adding two movzb to | ||
69 | # cloop1 boosts its performance by 80%! This loop appears to be optimal | ||
70 | # fit for Core2 and therefore the code was modified to skip cloop8 on | ||
71 | # this CPU. | ||
72 | |||
73 | # May 2010 | ||
74 | # | ||
75 | # Intel Westmere was observed to perform suboptimally. Adding yet | ||
76 | # another movzb to cloop1 improved performance by almost 50%! Core2 | ||
77 | # performance is improved too, but nominally... | ||
78 | |||
79 | # May 2011 | ||
80 | # | ||
81 | # The only code path that was not modified is P4-specific one. Non-P4 | ||
82 | # Intel code path optimization is heavily based on submission by Maxim | ||
83 | # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used | ||
84 | # some of the ideas even in attempt to optimize the original RC4_INT | ||
85 | # code path... Current performance in cycles per processed byte (less | ||
86 | # is better) and improvement coefficients relative to previous | ||
87 | # version of this module are: | ||
88 | # | ||
89 | # Opteron 5.3/+0%(*) | ||
90 | # P4 6.5 | ||
91 | # Core2 6.2/+15%(**) | ||
92 | # Westmere 4.2/+60% | ||
93 | # Sandy Bridge 4.2/+120% | ||
94 | # Atom 9.3/+80% | ||
95 | # | ||
96 | # (*) But corresponding loop has less instructions, which should have | ||
97 | # positive effect on upcoming Bulldozer, which has one less ALU. | ||
98 | # For reference, Intel code runs at 6.8 cpb rate on Opteron. | ||
99 | # (**) Note that Core2 result is ~15% lower than corresponding result | ||
100 | # for 32-bit code, meaning that it's possible to improve it, | ||
101 | # but more than likely at the cost of the others (see rc4-586.pl | ||
102 | # to get the idea)... | ||
103 | |||
104 | $flavour = shift; | ||
105 | $output = shift; | ||
106 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
107 | |||
108 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
109 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
110 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
111 | die "can't locate x86_64-xlate.pl"; | ||
112 | |||
113 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
114 | *STDOUT=*OUT; | ||
115 | |||
116 | $dat="%rdi"; # arg1 | ||
117 | $len="%rsi"; # arg2 | ||
118 | $inp="%rdx"; # arg3 | ||
119 | $out="%rcx"; # arg4 | ||
120 | |||
121 | { | ||
122 | $code=<<___; | ||
123 | .text | ||
124 | .extern OPENSSL_ia32cap_P | ||
125 | .hidden OPENSSL_ia32cap_P | ||
126 | |||
127 | .globl rc4_internal | ||
128 | .type rc4_internal,\@function,4 | ||
129 | .align 16 | ||
130 | rc4_internal: | ||
131 | _CET_ENDBR | ||
132 | or $len,$len | ||
133 | jne .Lentry | ||
134 | ret | ||
135 | .Lentry: | ||
136 | push %rbx | ||
137 | push %r12 | ||
138 | push %r13 | ||
139 | .Lprologue: | ||
140 | mov $len,%r11 | ||
141 | mov $inp,%r12 | ||
142 | mov $out,%r13 | ||
143 | ___ | ||
144 | my $len="%r11"; # reassign input arguments | ||
145 | my $inp="%r12"; | ||
146 | my $out="%r13"; | ||
147 | |||
148 | my @XX=("%r10","%rsi"); | ||
149 | my @TX=("%rax","%rbx"); | ||
150 | my $YY="%rcx"; | ||
151 | my $TY="%rdx"; | ||
152 | |||
153 | $code.=<<___; | ||
154 | xor $XX[0],$XX[0] | ||
155 | xor $YY,$YY | ||
156 | |||
157 | lea 8($dat),$dat | ||
158 | mov -8($dat),$XX[0]#b | ||
159 | mov -4($dat),$YY#b | ||
160 | cmpl \$-1,256($dat) | ||
161 | je .LRC4_CHAR | ||
162 | mov OPENSSL_ia32cap_P(%rip),%r8d | ||
163 | xor $TX[1],$TX[1] | ||
164 | inc $XX[0]#b | ||
165 | sub $XX[0],$TX[1] | ||
166 | sub $inp,$out | ||
167 | movl ($dat,$XX[0],4),$TX[0]#d | ||
168 | test \$-16,$len | ||
169 | jz .Lloop1 | ||
170 | bt \$IA32CAP_BIT0_INTEL,%r8d # Intel CPU? | ||
171 | jc .Lintel | ||
172 | and \$7,$TX[1] | ||
173 | lea 1($XX[0]),$XX[1] | ||
174 | jz .Loop8 | ||
175 | sub $TX[1],$len | ||
176 | .Loop8_warmup: | ||
177 | add $TX[0]#b,$YY#b | ||
178 | movl ($dat,$YY,4),$TY#d | ||
179 | movl $TX[0]#d,($dat,$YY,4) | ||
180 | movl $TY#d,($dat,$XX[0],4) | ||
181 | add $TY#b,$TX[0]#b | ||
182 | inc $XX[0]#b | ||
183 | movl ($dat,$TX[0],4),$TY#d | ||
184 | movl ($dat,$XX[0],4),$TX[0]#d | ||
185 | xorb ($inp),$TY#b | ||
186 | movb $TY#b,($out,$inp) | ||
187 | lea 1($inp),$inp | ||
188 | dec $TX[1] | ||
189 | jnz .Loop8_warmup | ||
190 | |||
191 | lea 1($XX[0]),$XX[1] | ||
192 | jmp .Loop8 | ||
193 | .align 16 | ||
194 | .Loop8: | ||
195 | ___ | ||
196 | for ($i=0;$i<8;$i++) { | ||
197 | $code.=<<___ if ($i==7); | ||
198 | add \$8,$XX[1]#b | ||
199 | ___ | ||
200 | $code.=<<___; | ||
201 | add $TX[0]#b,$YY#b | ||
202 | movl ($dat,$YY,4),$TY#d | ||
203 | movl $TX[0]#d,($dat,$YY,4) | ||
204 | movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d | ||
205 | ror \$8,%r8 # ror is redundant when $i=0 | ||
206 | movl $TY#d,4*$i($dat,$XX[0],4) | ||
207 | add $TX[0]#b,$TY#b | ||
208 | movb ($dat,$TY,4),%r8b | ||
209 | ___ | ||
210 | push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers | ||
211 | } | ||
212 | $code.=<<___; | ||
213 | add \$8,$XX[0]#b | ||
214 | ror \$8,%r8 | ||
215 | sub \$8,$len | ||
216 | |||
217 | xor ($inp),%r8 | ||
218 | mov %r8,($out,$inp) | ||
219 | lea 8($inp),$inp | ||
220 | |||
221 | test \$-8,$len | ||
222 | jnz .Loop8 | ||
223 | cmp \$0,$len | ||
224 | jne .Lloop1 | ||
225 | jmp .Lexit | ||
226 | |||
227 | .align 16 | ||
228 | .Lintel: | ||
229 | test \$-32,$len | ||
230 | jz .Lloop1 | ||
231 | and \$15,$TX[1] | ||
232 | jz .Loop16_is_hot | ||
233 | sub $TX[1],$len | ||
234 | .Loop16_warmup: | ||
235 | add $TX[0]#b,$YY#b | ||
236 | movl ($dat,$YY,4),$TY#d | ||
237 | movl $TX[0]#d,($dat,$YY,4) | ||
238 | movl $TY#d,($dat,$XX[0],4) | ||
239 | add $TY#b,$TX[0]#b | ||
240 | inc $XX[0]#b | ||
241 | movl ($dat,$TX[0],4),$TY#d | ||
242 | movl ($dat,$XX[0],4),$TX[0]#d | ||
243 | xorb ($inp),$TY#b | ||
244 | movb $TY#b,($out,$inp) | ||
245 | lea 1($inp),$inp | ||
246 | dec $TX[1] | ||
247 | jnz .Loop16_warmup | ||
248 | |||
249 | mov $YY,$TX[1] | ||
250 | xor $YY,$YY | ||
251 | mov $TX[1]#b,$YY#b | ||
252 | |||
253 | .Loop16_is_hot: | ||
254 | lea ($dat,$XX[0],4),$XX[1] | ||
255 | ___ | ||
256 | sub RC4_loop { | ||
257 | my $i=shift; | ||
258 | my $j=$i<0?0:$i; | ||
259 | my $xmm="%xmm".($j&1); | ||
260 | |||
261 | $code.=" add \$16,$XX[0]#b\n" if ($i==15); | ||
262 | $code.=" movdqu ($inp),%xmm2\n" if ($i==15); | ||
263 | $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); | ||
264 | $code.=" movl ($dat,$YY,4),$TY#d\n"; | ||
265 | $code.=" pxor %xmm0,%xmm2\n" if ($i==0); | ||
266 | $code.=" psllq \$8,%xmm1\n" if ($i==0); | ||
267 | $code.=" pxor $xmm,$xmm\n" if ($i<=1); | ||
268 | $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; | ||
269 | $code.=" add $TY#b,$TX[0]#b\n"; | ||
270 | $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); | ||
271 | $code.=" movz $TX[0]#b,$TX[0]#d\n"; | ||
272 | $code.=" movl $TY#d,4*$j($XX[1])\n"; | ||
273 | $code.=" pxor %xmm1,%xmm2\n" if ($i==0); | ||
274 | $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); | ||
275 | $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); | ||
276 | $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; | ||
277 | $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); | ||
278 | $code.=" lea 16($inp),$inp\n" if ($i==0); | ||
279 | $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); | ||
280 | } | ||
281 | RC4_loop(-1); | ||
282 | $code.=<<___; | ||
283 | jmp .Loop16_enter | ||
284 | .align 16 | ||
285 | .Loop16: | ||
286 | ___ | ||
287 | |||
288 | for ($i=0;$i<16;$i++) { | ||
289 | $code.=".Loop16_enter:\n" if ($i==1); | ||
290 | RC4_loop($i); | ||
291 | push(@TX,shift(@TX)); # "rotate" registers | ||
292 | } | ||
293 | $code.=<<___; | ||
294 | mov $YY,$TX[1] | ||
295 | xor $YY,$YY # keyword to partial register | ||
296 | sub \$16,$len | ||
297 | mov $TX[1]#b,$YY#b | ||
298 | test \$-16,$len | ||
299 | jnz .Loop16 | ||
300 | |||
301 | psllq \$8,%xmm1 | ||
302 | pxor %xmm0,%xmm2 | ||
303 | pxor %xmm1,%xmm2 | ||
304 | movdqu %xmm2,($out,$inp) | ||
305 | lea 16($inp),$inp | ||
306 | |||
307 | cmp \$0,$len | ||
308 | jne .Lloop1 | ||
309 | jmp .Lexit | ||
310 | |||
311 | .align 16 | ||
312 | .Lloop1: | ||
313 | add $TX[0]#b,$YY#b | ||
314 | movl ($dat,$YY,4),$TY#d | ||
315 | movl $TX[0]#d,($dat,$YY,4) | ||
316 | movl $TY#d,($dat,$XX[0],4) | ||
317 | add $TY#b,$TX[0]#b | ||
318 | inc $XX[0]#b | ||
319 | movl ($dat,$TX[0],4),$TY#d | ||
320 | movl ($dat,$XX[0],4),$TX[0]#d | ||
321 | xorb ($inp),$TY#b | ||
322 | movb $TY#b,($out,$inp) | ||
323 | lea 1($inp),$inp | ||
324 | dec $len | ||
325 | jnz .Lloop1 | ||
326 | jmp .Lexit | ||
327 | |||
328 | .align 16 | ||
329 | .LRC4_CHAR: | ||
330 | add \$1,$XX[0]#b | ||
331 | movzb ($dat,$XX[0]),$TX[0]#d | ||
332 | test \$-8,$len | ||
333 | jz .Lcloop1 | ||
334 | jmp .Lcloop8 | ||
335 | .align 16 | ||
336 | .Lcloop8: | ||
337 | mov ($inp),%r8d | ||
338 | mov 4($inp),%r9d | ||
339 | ___ | ||
340 | # unroll 2x4-wise, because 64-bit rotates kill Intel P4... | ||
341 | for ($i=0;$i<4;$i++) { | ||
342 | $code.=<<___; | ||
343 | add $TX[0]#b,$YY#b | ||
344 | lea 1($XX[0]),$XX[1] | ||
345 | movzb ($dat,$YY),$TY#d | ||
346 | movzb $XX[1]#b,$XX[1]#d | ||
347 | movzb ($dat,$XX[1]),$TX[1]#d | ||
348 | movb $TX[0]#b,($dat,$YY) | ||
349 | cmp $XX[1],$YY | ||
350 | movb $TY#b,($dat,$XX[0]) | ||
351 | jne .Lcmov$i # Intel cmov is sloooow... | ||
352 | mov $TX[0],$TX[1] | ||
353 | .Lcmov$i: | ||
354 | add $TX[0]#b,$TY#b | ||
355 | xor ($dat,$TY),%r8b | ||
356 | ror \$8,%r8d | ||
357 | ___ | ||
358 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
359 | } | ||
360 | for ($i=4;$i<8;$i++) { | ||
361 | $code.=<<___; | ||
362 | add $TX[0]#b,$YY#b | ||
363 | lea 1($XX[0]),$XX[1] | ||
364 | movzb ($dat,$YY),$TY#d | ||
365 | movzb $XX[1]#b,$XX[1]#d | ||
366 | movzb ($dat,$XX[1]),$TX[1]#d | ||
367 | movb $TX[0]#b,($dat,$YY) | ||
368 | cmp $XX[1],$YY | ||
369 | movb $TY#b,($dat,$XX[0]) | ||
370 | jne .Lcmov$i # Intel cmov is sloooow... | ||
371 | mov $TX[0],$TX[1] | ||
372 | .Lcmov$i: | ||
373 | add $TX[0]#b,$TY#b | ||
374 | xor ($dat,$TY),%r9b | ||
375 | ror \$8,%r9d | ||
376 | ___ | ||
377 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
378 | } | ||
379 | $code.=<<___; | ||
380 | lea -8($len),$len | ||
381 | mov %r8d,($out) | ||
382 | lea 8($inp),$inp | ||
383 | mov %r9d,4($out) | ||
384 | lea 8($out),$out | ||
385 | |||
386 | test \$-8,$len | ||
387 | jnz .Lcloop8 | ||
388 | cmp \$0,$len | ||
389 | jne .Lcloop1 | ||
390 | jmp .Lexit | ||
391 | ___ | ||
392 | $code.=<<___; | ||
393 | .align 16 | ||
394 | .Lcloop1: | ||
395 | add $TX[0]#b,$YY#b | ||
396 | movzb $YY#b,$YY#d | ||
397 | movzb ($dat,$YY),$TY#d | ||
398 | movb $TX[0]#b,($dat,$YY) | ||
399 | movb $TY#b,($dat,$XX[0]) | ||
400 | add $TX[0]#b,$TY#b | ||
401 | add \$1,$XX[0]#b | ||
402 | movzb $TY#b,$TY#d | ||
403 | movzb $XX[0]#b,$XX[0]#d | ||
404 | movzb ($dat,$TY),$TY#d | ||
405 | movzb ($dat,$XX[0]),$TX[0]#d | ||
406 | xorb ($inp),$TY#b | ||
407 | lea 1($inp),$inp | ||
408 | movb $TY#b,($out) | ||
409 | lea 1($out),$out | ||
410 | sub \$1,$len | ||
411 | jnz .Lcloop1 | ||
412 | jmp .Lexit | ||
413 | |||
414 | .align 16 | ||
415 | .Lexit: | ||
416 | sub \$1,$XX[0]#b | ||
417 | movl $XX[0]#d,-8($dat) | ||
418 | movl $YY#d,-4($dat) | ||
419 | |||
420 | mov (%rsp),%r13 | ||
421 | mov 8(%rsp),%r12 | ||
422 | mov 16(%rsp),%rbx | ||
423 | add \$24,%rsp | ||
424 | .Lepilogue: | ||
425 | ret | ||
426 | .size rc4_internal,.-rc4_internal | ||
427 | ___ | ||
428 | } | ||
429 | |||
430 | $idx="%r8"; | ||
431 | $ido="%r9"; | ||
432 | |||
433 | $code.=<<___; | ||
434 | .globl rc4_set_key_internal | ||
435 | .type rc4_set_key_internal,\@function,3 | ||
436 | .align 16 | ||
437 | rc4_set_key_internal: | ||
438 | _CET_ENDBR | ||
439 | lea 8($dat),$dat | ||
440 | lea ($inp,$len),$inp | ||
441 | neg $len | ||
442 | mov $len,%rcx | ||
443 | xor %eax,%eax | ||
444 | xor $ido,$ido | ||
445 | xor %r10,%r10 | ||
446 | xor %r11,%r11 | ||
447 | |||
448 | mov OPENSSL_ia32cap_P(%rip),$idx#d | ||
449 | bt \$IA32CAP_BIT0_INTELP4,$idx#d # RC4_CHAR? | ||
450 | jc .Lc1stloop | ||
451 | jmp .Lw1stloop | ||
452 | |||
453 | .align 16 | ||
454 | .Lw1stloop: | ||
455 | mov %eax,($dat,%rax,4) | ||
456 | add \$1,%al | ||
457 | jnc .Lw1stloop | ||
458 | |||
459 | xor $ido,$ido | ||
460 | xor $idx,$idx | ||
461 | .align 16 | ||
462 | .Lw2ndloop: | ||
463 | mov ($dat,$ido,4),%r10d | ||
464 | add ($inp,$len,1),$idx#b | ||
465 | add %r10b,$idx#b | ||
466 | add \$1,$len | ||
467 | mov ($dat,$idx,4),%r11d | ||
468 | cmovz %rcx,$len | ||
469 | mov %r10d,($dat,$idx,4) | ||
470 | mov %r11d,($dat,$ido,4) | ||
471 | add \$1,$ido#b | ||
472 | jnc .Lw2ndloop | ||
473 | jmp .Lexit_key | ||
474 | |||
475 | .align 16 | ||
476 | .Lc1stloop: | ||
477 | mov %al,($dat,%rax) | ||
478 | add \$1,%al | ||
479 | jnc .Lc1stloop | ||
480 | |||
481 | xor $ido,$ido | ||
482 | xor $idx,$idx | ||
483 | .align 16 | ||
484 | .Lc2ndloop: | ||
485 | mov ($dat,$ido),%r10b | ||
486 | add ($inp,$len),$idx#b | ||
487 | add %r10b,$idx#b | ||
488 | add \$1,$len | ||
489 | mov ($dat,$idx),%r11b | ||
490 | jnz .Lcnowrap | ||
491 | mov %rcx,$len | ||
492 | .Lcnowrap: | ||
493 | mov %r10b,($dat,$idx) | ||
494 | mov %r11b,($dat,$ido) | ||
495 | add \$1,$ido#b | ||
496 | jnc .Lc2ndloop | ||
497 | movl \$-1,256($dat) | ||
498 | |||
499 | .align 16 | ||
500 | .Lexit_key: | ||
501 | xor %eax,%eax | ||
502 | mov %eax,-8($dat) | ||
503 | mov %eax,-4($dat) | ||
504 | ret | ||
505 | .size rc4_set_key_internal,.-rc4_set_key_internal | ||
506 | ___ | ||
507 | |||
508 | sub reg_part { | ||
509 | my ($reg,$conv)=@_; | ||
510 | if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } | ||
511 | elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } | ||
512 | elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } | ||
513 | elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } | ||
514 | return $reg; | ||
515 | } | ||
516 | |||
517 | $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; | ||
518 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
519 | |||
520 | print $code; | ||
521 | |||
522 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/rc4/rc4.c b/src/lib/libcrypto/rc4/rc4.c deleted file mode 100644 index 56ed43cba7..0000000000 --- a/src/lib/libcrypto/rc4/rc4.c +++ /dev/null | |||
@@ -1,305 +0,0 @@ | |||
1 | /* $OpenBSD: rc4.c,v 1.13 2025/01/27 14:02:32 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <endian.h> | ||
60 | |||
61 | #include <openssl/rc4.h> | ||
62 | |||
63 | #include "crypto_arch.h" | ||
64 | |||
65 | /* RC4 as implemented from a posting from | ||
66 | * Newsgroups: sci.crypt | ||
67 | * From: sterndark@netcom.com (David Sterndark) | ||
68 | * Subject: RC4 Algorithm revealed. | ||
69 | * Message-ID: <sternCvKL4B.Hyy@netcom.com> | ||
70 | * Date: Wed, 14 Sep 1994 06:35:31 GMT | ||
71 | */ | ||
72 | |||
73 | #ifdef HAVE_RC4_INTERNAL | ||
74 | void rc4_internal(RC4_KEY *key, size_t len, const unsigned char *indata, | ||
75 | unsigned char *outdata); | ||
76 | |||
77 | #else | ||
78 | static void | ||
79 | rc4_internal(RC4_KEY *key, size_t len, const unsigned char *indata, | ||
80 | unsigned char *outdata) | ||
81 | { | ||
82 | RC4_INT *d; | ||
83 | RC4_INT x, y,tx, ty; | ||
84 | size_t i; | ||
85 | |||
86 | x = key->x; | ||
87 | y = key->y; | ||
88 | d = key->data; | ||
89 | |||
90 | #if defined(RC4_CHUNK) | ||
91 | /* | ||
92 | * The original reason for implementing this(*) was the fact that | ||
93 | * pre-21164a Alpha CPUs don't have byte load/store instructions | ||
94 | * and e.g. a byte store has to be done with 64-bit load, shift, | ||
95 | * and, or and finally 64-bit store. Peaking data and operating | ||
96 | * at natural word size made it possible to reduce amount of | ||
97 | * instructions as well as to perform early read-ahead without | ||
98 | * suffering from RAW (read-after-write) hazard. This resulted | ||
99 | * in ~40%(**) performance improvement on 21064 box with gcc. | ||
100 | * But it's not only Alpha users who win here:-) Thanks to the | ||
101 | * early-n-wide read-ahead this implementation also exhibits | ||
102 | * >40% speed-up on SPARC and 20-30% on 64-bit MIPS (depending | ||
103 | * on sizeof(RC4_INT)). | ||
104 | * | ||
105 | * (*) "this" means code which recognizes the case when input | ||
106 | * and output pointers appear to be aligned at natural CPU | ||
107 | * word boundary | ||
108 | * (**) i.e. according to 'apps/openssl speed rc4' benchmark, | ||
109 | * crypto/rc4/rc4speed.c exhibits almost 70% speed-up... | ||
110 | * | ||
111 | * Caveats. | ||
112 | * | ||
113 | * - RC4_CHUNK="unsigned long long" should be a #1 choice for | ||
114 | * UltraSPARC. Unfortunately gcc generates very slow code | ||
115 | * (2.5-3 times slower than one generated by Sun's WorkShop | ||
116 | * C) and therefore gcc (at least 2.95 and earlier) should | ||
117 | * always be told that RC4_CHUNK="unsigned long". | ||
118 | * | ||
119 | * <appro@fy.chalmers.se> | ||
120 | */ | ||
121 | |||
122 | # define RC4_STEP ( \ | ||
123 | x=(x+1) &0xff, \ | ||
124 | tx=d[x], \ | ||
125 | y=(tx+y)&0xff, \ | ||
126 | ty=d[y], \ | ||
127 | d[y]=tx, \ | ||
128 | d[x]=ty, \ | ||
129 | (RC4_CHUNK)d[(tx+ty)&0xff]\ | ||
130 | ) | ||
131 | |||
132 | if ((((size_t)indata & (sizeof(RC4_CHUNK) - 1)) | | ||
133 | ((size_t)outdata & (sizeof(RC4_CHUNK) - 1))) == 0 ) { | ||
134 | RC4_CHUNK ichunk, otp; | ||
135 | |||
136 | /* | ||
137 | * I reckon we can afford to implement both endian | ||
138 | * cases and to decide which way to take at run-time | ||
139 | * because the machine code appears to be very compact | ||
140 | * and redundant 1-2KB is perfectly tolerable (i.e. | ||
141 | * in case the compiler fails to eliminate it:-). By | ||
142 | * suggestion from Terrel Larson <terr@terralogic.net>. | ||
143 | * | ||
144 | * Special notes. | ||
145 | * | ||
146 | * - compilers (those I've tried) don't seem to have | ||
147 | * problems eliminating either the operators guarded | ||
148 | * by "if (sizeof(RC4_CHUNK)==8)" or the condition | ||
149 | * expressions themselves so I've got 'em to replace | ||
150 | * corresponding #ifdefs from the previous version; | ||
151 | * - I chose to let the redundant switch cases when | ||
152 | * sizeof(RC4_CHUNK)!=8 be (were also #ifdefed | ||
153 | * before); | ||
154 | * - in case you wonder "&(sizeof(RC4_CHUNK)*8-1)" in | ||
155 | * [LB]ESHFT guards against "shift is out of range" | ||
156 | * warnings when sizeof(RC4_CHUNK)!=8 | ||
157 | * | ||
158 | * <appro@fy.chalmers.se> | ||
159 | */ | ||
160 | #if BYTE_ORDER == BIG_ENDIAN | ||
161 | # define BESHFT(c) (((sizeof(RC4_CHUNK)-(c)-1)*8)&(sizeof(RC4_CHUNK)*8-1)) | ||
162 | for (; len & (0 - sizeof(RC4_CHUNK)); len -= sizeof(RC4_CHUNK)) { | ||
163 | ichunk = *(RC4_CHUNK *)indata; | ||
164 | otp = RC4_STEP << BESHFT(0); | ||
165 | otp |= RC4_STEP << BESHFT(1); | ||
166 | otp |= RC4_STEP << BESHFT(2); | ||
167 | otp |= RC4_STEP << BESHFT(3); | ||
168 | if (sizeof(RC4_CHUNK) == 8) { | ||
169 | otp |= RC4_STEP << BESHFT(4); | ||
170 | otp |= RC4_STEP << BESHFT(5); | ||
171 | otp |= RC4_STEP << BESHFT(6); | ||
172 | otp |= RC4_STEP << BESHFT(7); | ||
173 | } | ||
174 | *(RC4_CHUNK *)outdata = otp^ichunk; | ||
175 | indata += sizeof(RC4_CHUNK); | ||
176 | outdata += sizeof(RC4_CHUNK); | ||
177 | } | ||
178 | #else | ||
179 | # define LESHFT(c) (((c)*8)&(sizeof(RC4_CHUNK)*8-1)) | ||
180 | for (; len & (0 - sizeof(RC4_CHUNK)); len -= sizeof(RC4_CHUNK)) { | ||
181 | ichunk = *(RC4_CHUNK *)indata; | ||
182 | otp = RC4_STEP; | ||
183 | otp |= RC4_STEP << 8; | ||
184 | otp |= RC4_STEP << 16; | ||
185 | otp |= RC4_STEP << 24; | ||
186 | if (sizeof(RC4_CHUNK) == 8) { | ||
187 | otp |= RC4_STEP << LESHFT(4); | ||
188 | otp |= RC4_STEP << LESHFT(5); | ||
189 | otp |= RC4_STEP << LESHFT(6); | ||
190 | otp |= RC4_STEP << LESHFT(7); | ||
191 | } | ||
192 | *(RC4_CHUNK *)outdata = otp ^ ichunk; | ||
193 | indata += sizeof(RC4_CHUNK); | ||
194 | outdata += sizeof(RC4_CHUNK); | ||
195 | } | ||
196 | #endif | ||
197 | } | ||
198 | #endif | ||
199 | #define RC4_LOOP(in,out) \ | ||
200 | x=((x+1)&0xff); \ | ||
201 | tx=d[x]; \ | ||
202 | y=(tx+y)&0xff; \ | ||
203 | d[x]=ty=d[y]; \ | ||
204 | d[y]=tx; \ | ||
205 | (out) = d[(tx+ty)&0xff]^ (in); | ||
206 | |||
207 | i = len >> 3; | ||
208 | if (i) { | ||
209 | for (;;) { | ||
210 | RC4_LOOP(indata[0], outdata[0]); | ||
211 | RC4_LOOP(indata[1], outdata[1]); | ||
212 | RC4_LOOP(indata[2], outdata[2]); | ||
213 | RC4_LOOP(indata[3], outdata[3]); | ||
214 | RC4_LOOP(indata[4], outdata[4]); | ||
215 | RC4_LOOP(indata[5], outdata[5]); | ||
216 | RC4_LOOP(indata[6], outdata[6]); | ||
217 | RC4_LOOP(indata[7], outdata[7]); | ||
218 | |||
219 | indata += 8; | ||
220 | outdata += 8; | ||
221 | |||
222 | if (--i == 0) | ||
223 | break; | ||
224 | } | ||
225 | } | ||
226 | i = len&0x07; | ||
227 | if (i) { | ||
228 | for (;;) { | ||
229 | RC4_LOOP(indata[0], outdata[0]); | ||
230 | if (--i == 0) | ||
231 | break; | ||
232 | RC4_LOOP(indata[1], outdata[1]); | ||
233 | if (--i == 0) | ||
234 | break; | ||
235 | RC4_LOOP(indata[2], outdata[2]); | ||
236 | if (--i == 0) | ||
237 | break; | ||
238 | RC4_LOOP(indata[3], outdata[3]); | ||
239 | if (--i == 0) | ||
240 | break; | ||
241 | RC4_LOOP(indata[4], outdata[4]); | ||
242 | if (--i == 0) | ||
243 | break; | ||
244 | RC4_LOOP(indata[5], outdata[5]); | ||
245 | if (--i == 0) | ||
246 | break; | ||
247 | RC4_LOOP(indata[6], outdata[6]); | ||
248 | if (--i == 0) | ||
249 | break; | ||
250 | } | ||
251 | } | ||
252 | key->x = x; | ||
253 | key->y = y; | ||
254 | } | ||
255 | #endif | ||
256 | |||
257 | #ifdef HAVE_RC4_SET_KEY_INTERNAL | ||
258 | void rc4_set_key_internal(RC4_KEY *key, int len, const unsigned char *data); | ||
259 | |||
260 | #else | ||
261 | static inline void | ||
262 | rc4_set_key_internal(RC4_KEY *key, int len, const unsigned char *data) | ||
263 | { | ||
264 | RC4_INT tmp; | ||
265 | int id1, id2; | ||
266 | RC4_INT *d; | ||
267 | unsigned int i; | ||
268 | |||
269 | d = &(key->data[0]); | ||
270 | key->x = 0; | ||
271 | key->y = 0; | ||
272 | id1 = id2 = 0; | ||
273 | |||
274 | #define SK_LOOP(d,n) { \ | ||
275 | tmp=d[(n)]; \ | ||
276 | id2 = (data[id1] + tmp + id2) & 0xff; \ | ||
277 | if (++id1 == len) id1=0; \ | ||
278 | d[(n)]=d[id2]; \ | ||
279 | d[id2]=tmp; } | ||
280 | |||
281 | for (i = 0; i < 256; i++) | ||
282 | d[i] = i; | ||
283 | for (i = 0; i < 256; i += 4) { | ||
284 | SK_LOOP(d, i + 0); | ||
285 | SK_LOOP(d, i + 1); | ||
286 | SK_LOOP(d, i + 2); | ||
287 | SK_LOOP(d, i + 3); | ||
288 | } | ||
289 | } | ||
290 | #endif | ||
291 | |||
292 | void | ||
293 | RC4(RC4_KEY *key, size_t len, const unsigned char *indata, | ||
294 | unsigned char *outdata) | ||
295 | { | ||
296 | rc4_internal(key, len, indata, outdata); | ||
297 | } | ||
298 | LCRYPTO_ALIAS(RC4); | ||
299 | |||
300 | void | ||
301 | RC4_set_key(RC4_KEY *key, int len, const unsigned char *data) | ||
302 | { | ||
303 | rc4_set_key_internal(key, len, data); | ||
304 | } | ||
305 | LCRYPTO_ALIAS(RC4_set_key); | ||
diff --git a/src/lib/libcrypto/rc4/rc4.h b/src/lib/libcrypto/rc4/rc4.h deleted file mode 100644 index a20472372b..0000000000 --- a/src/lib/libcrypto/rc4/rc4.h +++ /dev/null | |||
@@ -1,83 +0,0 @@ | |||
1 | /* $OpenBSD: rc4.h,v 1.16 2025/01/25 17:59:44 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef HEADER_RC4_H | ||
60 | #define HEADER_RC4_H | ||
61 | |||
62 | #include <openssl/opensslconf.h> /* OPENSSL_NO_RC4, RC4_INT */ | ||
63 | |||
64 | #include <stddef.h> | ||
65 | |||
66 | #ifdef __cplusplus | ||
67 | extern "C" { | ||
68 | #endif | ||
69 | |||
70 | typedef struct rc4_key_st { | ||
71 | RC4_INT x, y; | ||
72 | RC4_INT data[256]; | ||
73 | } RC4_KEY; | ||
74 | |||
75 | void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data); | ||
76 | void RC4(RC4_KEY *key, size_t len, const unsigned char *indata, | ||
77 | unsigned char *outdata); | ||
78 | |||
79 | #ifdef __cplusplus | ||
80 | } | ||
81 | #endif | ||
82 | |||
83 | #endif | ||