diff options
Diffstat (limited to 'src/lib/libcrypto/rsa/rsa_oaep.c')
-rw-r--r-- | src/lib/libcrypto/rsa/rsa_oaep.c | 206 |
1 files changed, 0 insertions, 206 deletions
diff --git a/src/lib/libcrypto/rsa/rsa_oaep.c b/src/lib/libcrypto/rsa/rsa_oaep.c deleted file mode 100644 index e3f7c608ec..0000000000 --- a/src/lib/libcrypto/rsa/rsa_oaep.c +++ /dev/null | |||
@@ -1,206 +0,0 @@ | |||
1 | /* crypto/rsa/rsa_oaep.c */ | ||
2 | /* Written by Ulf Moeller. This software is distributed on an "AS IS" | ||
3 | basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. */ | ||
4 | |||
5 | /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ | ||
6 | |||
7 | /* See Victor Shoup, "OAEP reconsidered," Nov. 2000, | ||
8 | * <URL: http://www.shoup.net/papers/oaep.ps.Z> | ||
9 | * for problems with the security proof for the | ||
10 | * original OAEP scheme, which EME-OAEP is based on. | ||
11 | * | ||
12 | * A new proof can be found in E. Fujisaki, T. Okamoto, | ||
13 | * D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!", | ||
14 | * Dec. 2000, <URL: http://eprint.iacr.org/2000/061/>. | ||
15 | * The new proof has stronger requirements for the | ||
16 | * underlying permutation: "partial-one-wayness" instead | ||
17 | * of one-wayness. For the RSA function, this is | ||
18 | * an equivalent notion. | ||
19 | */ | ||
20 | |||
21 | |||
22 | #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1) | ||
23 | #include <stdio.h> | ||
24 | #include "cryptlib.h" | ||
25 | #include <openssl/bn.h> | ||
26 | #include <openssl/rsa.h> | ||
27 | #include <openssl/evp.h> | ||
28 | #include <openssl/rand.h> | ||
29 | #include <openssl/sha.h> | ||
30 | |||
31 | int MGF1(unsigned char *mask, long len, | ||
32 | const unsigned char *seed, long seedlen); | ||
33 | |||
34 | int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, | ||
35 | const unsigned char *from, int flen, | ||
36 | const unsigned char *param, int plen) | ||
37 | { | ||
38 | int i, emlen = tlen - 1; | ||
39 | unsigned char *db, *seed; | ||
40 | unsigned char *dbmask, seedmask[SHA_DIGEST_LENGTH]; | ||
41 | |||
42 | if (flen > emlen - 2 * SHA_DIGEST_LENGTH - 1) | ||
43 | { | ||
44 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, | ||
45 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); | ||
46 | return 0; | ||
47 | } | ||
48 | |||
49 | if (emlen < 2 * SHA_DIGEST_LENGTH + 1) | ||
50 | { | ||
51 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, RSA_R_KEY_SIZE_TOO_SMALL); | ||
52 | return 0; | ||
53 | } | ||
54 | |||
55 | dbmask = OPENSSL_malloc(emlen - SHA_DIGEST_LENGTH); | ||
56 | if (dbmask == NULL) | ||
57 | { | ||
58 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE); | ||
59 | return 0; | ||
60 | } | ||
61 | |||
62 | to[0] = 0; | ||
63 | seed = to + 1; | ||
64 | db = to + SHA_DIGEST_LENGTH + 1; | ||
65 | |||
66 | EVP_Digest((void *)param, plen, db, NULL, EVP_sha1(), NULL); | ||
67 | memset(db + SHA_DIGEST_LENGTH, 0, | ||
68 | emlen - flen - 2 * SHA_DIGEST_LENGTH - 1); | ||
69 | db[emlen - flen - SHA_DIGEST_LENGTH - 1] = 0x01; | ||
70 | memcpy(db + emlen - flen - SHA_DIGEST_LENGTH, from, (unsigned int) flen); | ||
71 | if (RAND_bytes(seed, SHA_DIGEST_LENGTH) <= 0) | ||
72 | return 0; | ||
73 | #ifdef PKCS_TESTVECT | ||
74 | memcpy(seed, | ||
75 | "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f", | ||
76 | 20); | ||
77 | #endif | ||
78 | |||
79 | MGF1(dbmask, emlen - SHA_DIGEST_LENGTH, seed, SHA_DIGEST_LENGTH); | ||
80 | for (i = 0; i < emlen - SHA_DIGEST_LENGTH; i++) | ||
81 | db[i] ^= dbmask[i]; | ||
82 | |||
83 | MGF1(seedmask, SHA_DIGEST_LENGTH, db, emlen - SHA_DIGEST_LENGTH); | ||
84 | for (i = 0; i < SHA_DIGEST_LENGTH; i++) | ||
85 | seed[i] ^= seedmask[i]; | ||
86 | |||
87 | OPENSSL_free(dbmask); | ||
88 | return 1; | ||
89 | } | ||
90 | |||
91 | int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, | ||
92 | const unsigned char *from, int flen, int num, | ||
93 | const unsigned char *param, int plen) | ||
94 | { | ||
95 | int i, dblen, mlen = -1; | ||
96 | const unsigned char *maskeddb; | ||
97 | int lzero; | ||
98 | unsigned char *db = NULL, seed[SHA_DIGEST_LENGTH], phash[SHA_DIGEST_LENGTH]; | ||
99 | int bad = 0; | ||
100 | |||
101 | if (--num < 2 * SHA_DIGEST_LENGTH + 1) | ||
102 | /* 'num' is the length of the modulus, i.e. does not depend on the | ||
103 | * particular ciphertext. */ | ||
104 | goto decoding_err; | ||
105 | |||
106 | lzero = num - flen; | ||
107 | if (lzero < 0) | ||
108 | { | ||
109 | /* lzero == -1 */ | ||
110 | |||
111 | /* signalling this error immediately after detection might allow | ||
112 | * for side-channel attacks (e.g. timing if 'plen' is huge | ||
113 | * -- cf. James H. Manger, "A Chosen Ciphertext Attack on RSA Optimal | ||
114 | * Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001), | ||
115 | * so we use a 'bad' flag */ | ||
116 | bad = 1; | ||
117 | lzero = 0; | ||
118 | } | ||
119 | maskeddb = from - lzero + SHA_DIGEST_LENGTH; | ||
120 | |||
121 | dblen = num - SHA_DIGEST_LENGTH; | ||
122 | db = OPENSSL_malloc(dblen); | ||
123 | if (db == NULL) | ||
124 | { | ||
125 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE); | ||
126 | return -1; | ||
127 | } | ||
128 | |||
129 | MGF1(seed, SHA_DIGEST_LENGTH, maskeddb, dblen); | ||
130 | for (i = lzero; i < SHA_DIGEST_LENGTH; i++) | ||
131 | seed[i] ^= from[i - lzero]; | ||
132 | |||
133 | MGF1(db, dblen, seed, SHA_DIGEST_LENGTH); | ||
134 | for (i = 0; i < dblen; i++) | ||
135 | db[i] ^= maskeddb[i]; | ||
136 | |||
137 | EVP_Digest((void *)param, plen, phash, NULL, EVP_sha1(), NULL); | ||
138 | |||
139 | if (memcmp(db, phash, SHA_DIGEST_LENGTH) != 0 || bad) | ||
140 | goto decoding_err; | ||
141 | else | ||
142 | { | ||
143 | for (i = SHA_DIGEST_LENGTH; i < dblen; i++) | ||
144 | if (db[i] != 0x00) | ||
145 | break; | ||
146 | if (db[i] != 0x01 || i++ >= dblen) | ||
147 | goto decoding_err; | ||
148 | else | ||
149 | { | ||
150 | /* everything looks OK */ | ||
151 | |||
152 | mlen = dblen - i; | ||
153 | if (tlen < mlen) | ||
154 | { | ||
155 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_DATA_TOO_LARGE); | ||
156 | mlen = -1; | ||
157 | } | ||
158 | else | ||
159 | memcpy(to, db + i, mlen); | ||
160 | } | ||
161 | } | ||
162 | OPENSSL_free(db); | ||
163 | return mlen; | ||
164 | |||
165 | decoding_err: | ||
166 | /* to avoid chosen ciphertext attacks, the error message should not reveal | ||
167 | * which kind of decoding error happened */ | ||
168 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR); | ||
169 | if (db != NULL) OPENSSL_free(db); | ||
170 | return -1; | ||
171 | } | ||
172 | |||
173 | int MGF1(unsigned char *mask, long len, | ||
174 | const unsigned char *seed, long seedlen) | ||
175 | { | ||
176 | long i, outlen = 0; | ||
177 | unsigned char cnt[4]; | ||
178 | EVP_MD_CTX c; | ||
179 | unsigned char md[SHA_DIGEST_LENGTH]; | ||
180 | |||
181 | EVP_MD_CTX_init(&c); | ||
182 | for (i = 0; outlen < len; i++) | ||
183 | { | ||
184 | cnt[0] = (unsigned char)((i >> 24) & 255); | ||
185 | cnt[1] = (unsigned char)((i >> 16) & 255); | ||
186 | cnt[2] = (unsigned char)((i >> 8)) & 255; | ||
187 | cnt[3] = (unsigned char)(i & 255); | ||
188 | EVP_DigestInit_ex(&c,EVP_sha1(), NULL); | ||
189 | EVP_DigestUpdate(&c, seed, seedlen); | ||
190 | EVP_DigestUpdate(&c, cnt, 4); | ||
191 | if (outlen + SHA_DIGEST_LENGTH <= len) | ||
192 | { | ||
193 | EVP_DigestFinal_ex(&c, mask + outlen, NULL); | ||
194 | outlen += SHA_DIGEST_LENGTH; | ||
195 | } | ||
196 | else | ||
197 | { | ||
198 | EVP_DigestFinal_ex(&c, md, NULL); | ||
199 | memcpy(mask + outlen, md, len - outlen); | ||
200 | outlen = len; | ||
201 | } | ||
202 | } | ||
203 | EVP_MD_CTX_cleanup(&c); | ||
204 | return 0; | ||
205 | } | ||
206 | #endif | ||