diff options
Diffstat (limited to 'src/lib/libcrypto/rsa/rsa_oaep.c')
-rw-r--r-- | src/lib/libcrypto/rsa/rsa_oaep.c | 212 |
1 files changed, 0 insertions, 212 deletions
diff --git a/src/lib/libcrypto/rsa/rsa_oaep.c b/src/lib/libcrypto/rsa/rsa_oaep.c deleted file mode 100644 index d43ecaca63..0000000000 --- a/src/lib/libcrypto/rsa/rsa_oaep.c +++ /dev/null | |||
@@ -1,212 +0,0 @@ | |||
1 | /* crypto/rsa/rsa_oaep.c */ | ||
2 | /* Written by Ulf Moeller. This software is distributed on an "AS IS" | ||
3 | basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. */ | ||
4 | |||
5 | /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ | ||
6 | |||
7 | /* See Victor Shoup, "OAEP reconsidered," Nov. 2000, | ||
8 | * <URL: http://www.shoup.net/papers/oaep.ps.Z> | ||
9 | * for problems with the security proof for the | ||
10 | * original OAEP scheme, which EME-OAEP is based on. | ||
11 | * | ||
12 | * A new proof can be found in E. Fujisaki, T. Okamoto, | ||
13 | * D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!", | ||
14 | * Dec. 2000, <URL: http://eprint.iacr.org/2000/061/>. | ||
15 | * The new proof has stronger requirements for the | ||
16 | * underlying permutation: "partial-one-wayness" instead | ||
17 | * of one-wayness. For the RSA function, this is | ||
18 | * an equivalent notion. | ||
19 | */ | ||
20 | |||
21 | |||
22 | #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1) | ||
23 | #include <stdio.h> | ||
24 | #include "cryptlib.h" | ||
25 | #include <openssl/bn.h> | ||
26 | #include <openssl/rsa.h> | ||
27 | #include <openssl/evp.h> | ||
28 | #include <openssl/rand.h> | ||
29 | #include <openssl/sha.h> | ||
30 | |||
31 | int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, | ||
32 | const unsigned char *from, int flen, | ||
33 | const unsigned char *param, int plen) | ||
34 | { | ||
35 | int i, emlen = tlen - 1; | ||
36 | unsigned char *db, *seed; | ||
37 | unsigned char *dbmask, seedmask[SHA_DIGEST_LENGTH]; | ||
38 | |||
39 | if (flen > emlen - 2 * SHA_DIGEST_LENGTH - 1) | ||
40 | { | ||
41 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, | ||
42 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); | ||
43 | return 0; | ||
44 | } | ||
45 | |||
46 | if (emlen < 2 * SHA_DIGEST_LENGTH + 1) | ||
47 | { | ||
48 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, RSA_R_KEY_SIZE_TOO_SMALL); | ||
49 | return 0; | ||
50 | } | ||
51 | |||
52 | dbmask = OPENSSL_malloc(emlen - SHA_DIGEST_LENGTH); | ||
53 | if (dbmask == NULL) | ||
54 | { | ||
55 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE); | ||
56 | return 0; | ||
57 | } | ||
58 | |||
59 | to[0] = 0; | ||
60 | seed = to + 1; | ||
61 | db = to + SHA_DIGEST_LENGTH + 1; | ||
62 | |||
63 | EVP_Digest((void *)param, plen, db, NULL, EVP_sha1(), NULL); | ||
64 | memset(db + SHA_DIGEST_LENGTH, 0, | ||
65 | emlen - flen - 2 * SHA_DIGEST_LENGTH - 1); | ||
66 | db[emlen - flen - SHA_DIGEST_LENGTH - 1] = 0x01; | ||
67 | memcpy(db + emlen - flen - SHA_DIGEST_LENGTH, from, (unsigned int) flen); | ||
68 | if (RAND_bytes(seed, SHA_DIGEST_LENGTH) <= 0) | ||
69 | return 0; | ||
70 | #ifdef PKCS_TESTVECT | ||
71 | memcpy(seed, | ||
72 | "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f", | ||
73 | 20); | ||
74 | #endif | ||
75 | |||
76 | PKCS1_MGF1(dbmask, emlen - SHA_DIGEST_LENGTH, seed, SHA_DIGEST_LENGTH, | ||
77 | EVP_sha1()); | ||
78 | for (i = 0; i < emlen - SHA_DIGEST_LENGTH; i++) | ||
79 | db[i] ^= dbmask[i]; | ||
80 | |||
81 | PKCS1_MGF1(seedmask, SHA_DIGEST_LENGTH, db, emlen - SHA_DIGEST_LENGTH, | ||
82 | EVP_sha1()); | ||
83 | for (i = 0; i < SHA_DIGEST_LENGTH; i++) | ||
84 | seed[i] ^= seedmask[i]; | ||
85 | |||
86 | OPENSSL_free(dbmask); | ||
87 | return 1; | ||
88 | } | ||
89 | |||
90 | int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, | ||
91 | const unsigned char *from, int flen, int num, | ||
92 | const unsigned char *param, int plen) | ||
93 | { | ||
94 | int i, dblen, mlen = -1; | ||
95 | const unsigned char *maskeddb; | ||
96 | int lzero; | ||
97 | unsigned char *db = NULL, seed[SHA_DIGEST_LENGTH], phash[SHA_DIGEST_LENGTH]; | ||
98 | int bad = 0; | ||
99 | |||
100 | if (--num < 2 * SHA_DIGEST_LENGTH + 1) | ||
101 | /* 'num' is the length of the modulus, i.e. does not depend on the | ||
102 | * particular ciphertext. */ | ||
103 | goto decoding_err; | ||
104 | |||
105 | lzero = num - flen; | ||
106 | if (lzero < 0) | ||
107 | { | ||
108 | /* lzero == -1 */ | ||
109 | |||
110 | /* signalling this error immediately after detection might allow | ||
111 | * for side-channel attacks (e.g. timing if 'plen' is huge | ||
112 | * -- cf. James H. Manger, "A Chosen Ciphertext Attack on RSA Optimal | ||
113 | * Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001), | ||
114 | * so we use a 'bad' flag */ | ||
115 | bad = 1; | ||
116 | lzero = 0; | ||
117 | } | ||
118 | maskeddb = from - lzero + SHA_DIGEST_LENGTH; | ||
119 | |||
120 | dblen = num - SHA_DIGEST_LENGTH; | ||
121 | db = OPENSSL_malloc(dblen); | ||
122 | if (db == NULL) | ||
123 | { | ||
124 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE); | ||
125 | return -1; | ||
126 | } | ||
127 | |||
128 | PKCS1_MGF1(seed, SHA_DIGEST_LENGTH, maskeddb, dblen, EVP_sha1()); | ||
129 | for (i = lzero; i < SHA_DIGEST_LENGTH; i++) | ||
130 | seed[i] ^= from[i - lzero]; | ||
131 | |||
132 | PKCS1_MGF1(db, dblen, seed, SHA_DIGEST_LENGTH, EVP_sha1()); | ||
133 | for (i = 0; i < dblen; i++) | ||
134 | db[i] ^= maskeddb[i]; | ||
135 | |||
136 | EVP_Digest((void *)param, plen, phash, NULL, EVP_sha1(), NULL); | ||
137 | |||
138 | if (memcmp(db, phash, SHA_DIGEST_LENGTH) != 0 || bad) | ||
139 | goto decoding_err; | ||
140 | else | ||
141 | { | ||
142 | for (i = SHA_DIGEST_LENGTH; i < dblen; i++) | ||
143 | if (db[i] != 0x00) | ||
144 | break; | ||
145 | if (db[i] != 0x01 || i++ >= dblen) | ||
146 | goto decoding_err; | ||
147 | else | ||
148 | { | ||
149 | /* everything looks OK */ | ||
150 | |||
151 | mlen = dblen - i; | ||
152 | if (tlen < mlen) | ||
153 | { | ||
154 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_DATA_TOO_LARGE); | ||
155 | mlen = -1; | ||
156 | } | ||
157 | else | ||
158 | memcpy(to, db + i, mlen); | ||
159 | } | ||
160 | } | ||
161 | OPENSSL_free(db); | ||
162 | return mlen; | ||
163 | |||
164 | decoding_err: | ||
165 | /* to avoid chosen ciphertext attacks, the error message should not reveal | ||
166 | * which kind of decoding error happened */ | ||
167 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR); | ||
168 | if (db != NULL) OPENSSL_free(db); | ||
169 | return -1; | ||
170 | } | ||
171 | |||
172 | int PKCS1_MGF1(unsigned char *mask, long len, | ||
173 | const unsigned char *seed, long seedlen, const EVP_MD *dgst) | ||
174 | { | ||
175 | long i, outlen = 0; | ||
176 | unsigned char cnt[4]; | ||
177 | EVP_MD_CTX c; | ||
178 | unsigned char md[EVP_MAX_MD_SIZE]; | ||
179 | int mdlen; | ||
180 | |||
181 | EVP_MD_CTX_init(&c); | ||
182 | mdlen = EVP_MD_size(dgst); | ||
183 | for (i = 0; outlen < len; i++) | ||
184 | { | ||
185 | cnt[0] = (unsigned char)((i >> 24) & 255); | ||
186 | cnt[1] = (unsigned char)((i >> 16) & 255); | ||
187 | cnt[2] = (unsigned char)((i >> 8)) & 255; | ||
188 | cnt[3] = (unsigned char)(i & 255); | ||
189 | EVP_DigestInit_ex(&c,dgst, NULL); | ||
190 | EVP_DigestUpdate(&c, seed, seedlen); | ||
191 | EVP_DigestUpdate(&c, cnt, 4); | ||
192 | if (outlen + mdlen <= len) | ||
193 | { | ||
194 | EVP_DigestFinal_ex(&c, mask + outlen, NULL); | ||
195 | outlen += mdlen; | ||
196 | } | ||
197 | else | ||
198 | { | ||
199 | EVP_DigestFinal_ex(&c, md, NULL); | ||
200 | memcpy(mask + outlen, md, len - outlen); | ||
201 | outlen = len; | ||
202 | } | ||
203 | } | ||
204 | EVP_MD_CTX_cleanup(&c); | ||
205 | return 0; | ||
206 | } | ||
207 | |||
208 | int MGF1(unsigned char *mask, long len, const unsigned char *seed, long seedlen) | ||
209 | { | ||
210 | return PKCS1_MGF1(mask, len, seed, seedlen, EVP_sha1()); | ||
211 | } | ||
212 | #endif | ||