summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/sha
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/sha')
-rw-r--r--src/lib/libcrypto/sha/asm/sha1-586.pl219
-rw-r--r--src/lib/libcrypto/sha/asm/sha1-ia64.pl306
-rwxr-xr-xsrc/lib/libcrypto/sha/asm/sha1-x86_64.pl242
-rwxr-xr-xsrc/lib/libcrypto/sha/asm/sha512-ia64.pl672
-rwxr-xr-xsrc/lib/libcrypto/sha/asm/sha512-x86_64.pl344
-rw-r--r--src/lib/libcrypto/sha/sha.h203
-rw-r--r--src/lib/libcrypto/sha/sha1_one.c78
-rw-r--r--src/lib/libcrypto/sha/sha1dgst.c78
-rw-r--r--src/lib/libcrypto/sha/sha256.c292
-rw-r--r--src/lib/libcrypto/sha/sha512.c547
-rw-r--r--src/lib/libcrypto/sha/sha_locl.h446
11 files changed, 0 insertions, 3427 deletions
diff --git a/src/lib/libcrypto/sha/asm/sha1-586.pl b/src/lib/libcrypto/sha/asm/sha1-586.pl
deleted file mode 100644
index a787dd37da..0000000000
--- a/src/lib/libcrypto/sha/asm/sha1-586.pl
+++ /dev/null
@@ -1,219 +0,0 @@
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# It was noted that Intel IA-32 C compiler generates code which
16# performs ~30% *faster* on P4 CPU than original *hand-coded*
17# SHA1 assembler implementation. To address this problem (and
18# prove that humans are still better than machines:-), the
19# original code was overhauled, which resulted in following
20# performance changes:
21#
22# compared with original compared with Intel cc
23# assembler impl. generated code
24# Pentium -16% +48%
25# PIII/AMD +8% +16%
26# P4 +85%(!) +45%
27#
28# As you can see Pentium came out as looser:-( Yet I reckoned that
29# improvement on P4 outweights the loss and incorporate this
30# re-tuned code to 0.9.7 and later.
31# ----------------------------------------------------------------
32# <appro@fy.chalmers.se>
33
34$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
35push(@INC,"${dir}","${dir}../../perlasm");
36require "x86asm.pl";
37
38&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
39
40$A="eax";
41$B="ebx";
42$C="ecx";
43$D="edx";
44$E="edi";
45$T="esi";
46$tmp1="ebp";
47
48@V=($A,$B,$C,$D,$E,$T);
49
50sub BODY_00_15
51 {
52 local($n,$a,$b,$c,$d,$e,$f)=@_;
53
54 &comment("00_15 $n");
55
56 &mov($f,$c); # f to hold F_00_19(b,c,d)
57 if ($n==0) { &mov($tmp1,$a); }
58 else { &mov($a,$tmp1); }
59 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
60 &xor($f,$d);
61 &add($tmp1,$e); # tmp1+=e;
62 &and($f,$b);
63 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
64 # with xi, also note that e becomes
65 # f in next round...
66 &xor($f,$d); # f holds F_00_19(b,c,d)
67 &rotr($b,2); # b=ROTATE(b,30)
68 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
69
70 if ($n==15) { &add($f,$tmp1); } # f+=tmp1
71 else { &add($tmp1,$f); } # f becomes a in next round
72 }
73
74sub BODY_16_19
75 {
76 local($n,$a,$b,$c,$d,$e,$f)=@_;
77
78 &comment("16_19 $n");
79
80 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
81 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
82 &xor($f,&swtmp(($n+2)%16));
83 &xor($tmp1,$d);
84 &xor($f,&swtmp(($n+8)%16));
85 &and($tmp1,$b); # tmp1 holds F_00_19(b,c,d)
86 &rotr($b,2); # b=ROTATE(b,30)
87 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
88 &rotl($f,1); # f=ROTATE(f,1)
89 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
90 &mov(&swtmp($n%16),$f); # xi=f
91 &lea($f,&DWP(0x5a827999,$f,$e));# f+=K_00_19+e
92 &mov($e,$a); # e becomes volatile
93 &rotl($e,5); # e=ROTATE(a,5)
94 &add($f,$tmp1); # f+=F_00_19(b,c,d)
95 &add($f,$e); # f+=ROTATE(a,5)
96 }
97
98sub BODY_20_39
99 {
100 local($n,$a,$b,$c,$d,$e,$f)=@_;
101 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
102
103 &comment("20_39 $n");
104
105 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
106 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
107 &rotr($b,2); # b=ROTATE(b,30)
108 &xor($f,&swtmp(($n+2)%16));
109 &xor($tmp1,$c);
110 &xor($f,&swtmp(($n+8)%16));
111 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
112 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
113 &rotl($f,1); # f=ROTATE(f,1)
114 &add($tmp1,$e);
115 &mov(&swtmp($n%16),$f); # xi=f
116 &mov($e,$a); # e becomes volatile
117 &rotl($e,5); # e=ROTATE(a,5)
118 &lea($f,&DWP($K,$f,$tmp1)); # f+=K_20_39+e
119 &add($f,$e); # f+=ROTATE(a,5)
120 }
121
122sub BODY_40_59
123 {
124 local($n,$a,$b,$c,$d,$e,$f)=@_;
125
126 &comment("40_59 $n");
127
128 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
129 &mov($tmp1,&swtmp(($n+2)%16));
130 &xor($f,$tmp1);
131 &mov($tmp1,&swtmp(($n+8)%16));
132 &xor($f,$tmp1);
133 &mov($tmp1,&swtmp(($n+13)%16));
134 &xor($f,$tmp1); # f holds xa^xb^xc^xd
135 &mov($tmp1,$b); # tmp1 to hold F_40_59(b,c,d)
136 &rotl($f,1); # f=ROTATE(f,1)
137 &or($tmp1,$c);
138 &mov(&swtmp($n%16),$f); # xi=f
139 &and($tmp1,$d);
140 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e
141 &mov($e,$b); # e becomes volatile and is used
142 # to calculate F_40_59(b,c,d)
143 &rotr($b,2); # b=ROTATE(b,30)
144 &and($e,$c);
145 &or($tmp1,$e); # tmp1 holds F_40_59(b,c,d)
146 &mov($e,$a);
147 &rotl($e,5); # e=ROTATE(a,5)
148 &add($f,$tmp1); # f+=tmp1;
149 &add($f,$e); # f+=ROTATE(a,5)
150 }
151
152&function_begin("sha1_block_data_order");
153 &mov($tmp1,&wparam(0)); # SHA_CTX *c
154 &mov($T,&wparam(1)); # const void *input
155 &mov($A,&wparam(2)); # size_t num
156 &stack_push(16); # allocate X[16]
157 &shl($A,6);
158 &add($A,$T);
159 &mov(&wparam(2),$A); # pointer beyond the end of input
160 &mov($E,&DWP(16,$tmp1));# pre-load E
161
162 &set_label("loop",16);
163
164 # copy input chunk to X, but reversing byte order!
165 for ($i=0; $i<16; $i+=4)
166 {
167 &mov($A,&DWP(4*($i+0),$T));
168 &mov($B,&DWP(4*($i+1),$T));
169 &mov($C,&DWP(4*($i+2),$T));
170 &mov($D,&DWP(4*($i+3),$T));
171 &bswap($A);
172 &bswap($B);
173 &bswap($C);
174 &bswap($D);
175 &mov(&swtmp($i+0),$A);
176 &mov(&swtmp($i+1),$B);
177 &mov(&swtmp($i+2),$C);
178 &mov(&swtmp($i+3),$D);
179 }
180 &mov(&wparam(1),$T); # redundant in 1st spin
181
182 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
183 &mov($B,&DWP(4,$tmp1));
184 &mov($C,&DWP(8,$tmp1));
185 &mov($D,&DWP(12,$tmp1));
186 # E is pre-loaded
187
188 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
189 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
190 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
191 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
192 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
193
194 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
195
196 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
197 &mov($D,&wparam(1)); # D is last "T" and is discarded
198
199 &add($E,&DWP(0,$tmp1)); # E is last "A"...
200 &add($T,&DWP(4,$tmp1));
201 &add($A,&DWP(8,$tmp1));
202 &add($B,&DWP(12,$tmp1));
203 &add($C,&DWP(16,$tmp1));
204
205 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
206 &add($D,64); # advance input pointer
207 &mov(&DWP(4,$tmp1),$T);
208 &cmp($D,&wparam(2)); # have we reached the end yet?
209 &mov(&DWP(8,$tmp1),$A);
210 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
211 &mov(&DWP(12,$tmp1),$B);
212 &mov($T,$D); # input pointer
213 &mov(&DWP(16,$tmp1),$C);
214 &jb(&label("loop"));
215
216 &stack_pop(16);
217&function_end("sha1_block_data_order");
218
219&asm_finish();
diff --git a/src/lib/libcrypto/sha/asm/sha1-ia64.pl b/src/lib/libcrypto/sha/asm/sha1-ia64.pl
deleted file mode 100644
index 51c4f47ecb..0000000000
--- a/src/lib/libcrypto/sha/asm/sha1-ia64.pl
+++ /dev/null
@@ -1,306 +0,0 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# Eternal question is what's wrong with compiler generated code? The
11# trick is that it's possible to reduce the number of shifts required
12# to perform rotations by maintaining copy of 32-bit value in upper
13# bits of 64-bit register. Just follow mux2 and shrp instructions...
14# Performance under big-endian OS such as HP-UX is 179MBps*1GHz, which
15# is >50% better than HP C and >2x better than gcc.
16
17$code=<<___;
18.ident \"sha1-ia64.s, version 1.2\"
19.ident \"IA-64 ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>\"
20.explicit
21
22___
23
24
25if ($^O eq "hpux") {
26 $ADDP="addp4";
27 for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); }
28} else { $ADDP="add"; }
29for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/);
30 $big_endian=0 if (/\-DL_ENDIAN/); }
31if (!defined($big_endian))
32 { $big_endian=(unpack('L',pack('N',1))==1); }
33
34#$human=1;
35if ($human) { # useful for visual code auditing...
36 ($A,$B,$C,$D,$E,$T) = ("A","B","C","D","E","T");
37 ($h0,$h1,$h2,$h3,$h4) = ("h0","h1","h2","h3","h4");
38 ($K_00_19, $K_20_39, $K_40_59, $K_60_79) =
39 ( "K_00_19","K_20_39","K_40_59","K_60_79" );
40 @X= ( "X0", "X1", "X2", "X3", "X4", "X5", "X6", "X7",
41 "X8", "X9","X10","X11","X12","X13","X14","X15" );
42}
43else {
44 ($A,$B,$C,$D,$E,$T) = ("loc0","loc1","loc2","loc3","loc4","loc5");
45 ($h0,$h1,$h2,$h3,$h4) = ("loc6","loc7","loc8","loc9","loc10");
46 ($K_00_19, $K_20_39, $K_40_59, $K_60_79) =
47 ( "r14", "r15", "loc11", "loc12" );
48 @X= ( "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
49 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" );
50}
51
52sub BODY_00_15 {
53local *code=shift;
54local ($i,$a,$b,$c,$d,$e,$f)=@_;
55
56$code.=<<___ if ($i==0);
57{ .mmi; ld1 $X[$i&0xf]=[inp],2 // MSB
58 ld1 tmp2=[tmp3],2 };;
59{ .mmi; ld1 tmp0=[inp],2
60 ld1 tmp4=[tmp3],2 // LSB
61 dep $X[$i&0xf]=$X[$i&0xf],tmp2,8,8 };;
62___
63if ($i<15) {
64 $code.=<<___;
65{ .mmi; ld1 $X[($i+1)&0xf]=[inp],2 // +1
66 dep tmp1=tmp0,tmp4,8,8 };;
67{ .mmi; ld1 tmp2=[tmp3],2 // +1
68 and tmp4=$c,$b
69 dep $X[$i&0xf]=$X[$i&0xf],tmp1,16,16 } //;;
70{ .mmi; andcm tmp1=$d,$b
71 add tmp0=$e,$K_00_19
72 dep.z tmp5=$a,5,27 };; // a<<5
73{ .mmi; or tmp4=tmp4,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d)
74 add $f=tmp0,$X[$i&0xf] // f=xi+e+K_00_19
75 extr.u tmp1=$a,27,5 };; // a>>27
76{ .mmi; ld1 tmp0=[inp],2 // +1
77 add $f=$f,tmp4 // f+=F_00_19(b,c,d)
78 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30)
79{ .mmi; ld1 tmp4=[tmp3],2 // +1
80 or tmp5=tmp1,tmp5 // ROTATE(a,5)
81 mux2 tmp6=$a,0x44 };; // see b in next iteration
82{ .mii; add $f=$f,tmp5 // f+=ROTATE(a,5)
83 dep $X[($i+1)&0xf]=$X[($i+1)&0xf],tmp2,8,8 // +1
84 mux2 $X[$i&0xf]=$X[$i&0xf],0x44 } //;;
85
86___
87 }
88else {
89 $code.=<<___;
90{ .mii; and tmp3=$c,$b
91 dep tmp1=tmp0,tmp4,8,8;;
92 dep $X[$i&0xf]=$X[$i&0xf],tmp1,16,16 } //;;
93{ .mmi; andcm tmp1=$d,$b
94 add tmp0=$e,$K_00_19
95 dep.z tmp5=$a,5,27 };; // a<<5
96{ .mmi; or tmp4=tmp3,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d)
97 add $f=tmp0,$X[$i&0xf] // f=xi+e+K_00_19
98 extr.u tmp1=$a,27,5 } // a>>27
99{ .mmi; xor tmp2=$X[($i+0+1)&0xf],$X[($i+2+1)&0xf] // +1
100 xor tmp3=$X[($i+8+1)&0xf],$X[($i+13+1)&0xf] // +1
101 nop.i 0 };;
102{ .mmi; add $f=$f,tmp4 // f+=F_00_19(b,c,d)
103 xor tmp2=tmp2,tmp3 // +1
104 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30)
105{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5)
106 mux2 tmp6=$a,0x44 };; // see b in next iteration
107{ .mii; add $f=$f,tmp1 // f+=ROTATE(a,5)
108 shrp $e=tmp2,tmp2,31 // f+1=ROTATE(x[0]^x[2]^x[8]^x[13],1)
109 mux2 $X[$i&0xf]=$X[$i&0xf],0x44 };;
110
111___
112 }
113}
114
115sub BODY_16_19 {
116local *code=shift;
117local ($i,$a,$b,$c,$d,$e,$f)=@_;
118
119$code.=<<___;
120{ .mmi; mov $X[$i&0xf]=$f // Xupdate
121 and tmp0=$c,$b
122 dep.z tmp5=$a,5,27 } // a<<5
123{ .mmi; andcm tmp1=$d,$b
124 add tmp4=$e,$K_00_19 };;
125{ .mmi; or tmp0=tmp0,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d)
126 add $f=$f,tmp4 // f+=e+K_00_19
127 extr.u tmp1=$a,27,5 } // a>>27
128{ .mmi; xor tmp2=$X[($i+0+1)&0xf],$X[($i+2+1)&0xf] // +1
129 xor tmp3=$X[($i+8+1)&0xf],$X[($i+13+1)&0xf] // +1
130 nop.i 0 };;
131{ .mmi; add $f=$f,tmp0 // f+=F_00_19(b,c,d)
132 xor tmp2=tmp2,tmp3 // +1
133 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30)
134{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5)
135 mux2 tmp6=$a,0x44 };; // see b in next iteration
136{ .mii; add $f=$f,tmp1 // f+=ROTATE(a,5)
137 shrp $e=tmp2,tmp2,31 // f+1=ROTATE(x[0]^x[2]^x[8]^x[13],1)
138 nop.i 0 };;
139
140___
141}
142
143sub BODY_20_39 {
144local *code=shift;
145local ($i,$a,$b,$c,$d,$e,$f,$Konst)=@_;
146 $Konst = $K_20_39 if (!defined($Konst));
147
148if ($i<79) {
149$code.=<<___;
150{ .mib; mov $X[$i&0xf]=$f // Xupdate
151 dep.z tmp5=$a,5,27 } // a<<5
152{ .mib; xor tmp0=$c,$b
153 add tmp4=$e,$Konst };;
154{ .mmi; xor tmp0=tmp0,$d // F_20_39(b,c,d)=b^c^d
155 add $f=$f,tmp4 // f+=e+K_20_39
156 extr.u tmp1=$a,27,5 } // a>>27
157{ .mmi; xor tmp2=$X[($i+0+1)&0xf],$X[($i+2+1)&0xf] // +1
158 xor tmp3=$X[($i+8+1)&0xf],$X[($i+13+1)&0xf] // +1
159 nop.i 0 };;
160{ .mmi; add $f=$f,tmp0 // f+=F_20_39(b,c,d)
161 xor tmp2=tmp2,tmp3 // +1
162 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30)
163{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5)
164 mux2 tmp6=$a,0x44 };; // see b in next iteration
165{ .mii; add $f=$f,tmp1 // f+=ROTATE(a,5)
166 shrp $e=tmp2,tmp2,31 // f+1=ROTATE(x[0]^x[2]^x[8]^x[13],1)
167 nop.i 0 };;
168
169___
170}
171else {
172$code.=<<___;
173{ .mib; mov $X[$i&0xf]=$f // Xupdate
174 dep.z tmp5=$a,5,27 } // a<<5
175{ .mib; xor tmp0=$c,$b
176 add tmp4=$e,$Konst };;
177{ .mib; xor tmp0=tmp0,$d // F_20_39(b,c,d)=b^c^d
178 extr.u tmp1=$a,27,5 } // a>>27
179{ .mib; add $f=$f,tmp4 // f+=e+K_20_39
180 add $h1=$h1,$a };; // wrap up
181{ .mmi; add $f=$f,tmp0 // f+=F_20_39(b,c,d)
182 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) ;;?
183{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5)
184 add $h3=$h3,$c };; // wrap up
185{ .mib; add tmp3=1,inp // used in unaligned codepath
186 add $f=$f,tmp1 } // f+=ROTATE(a,5)
187{ .mib; add $h2=$h2,$b // wrap up
188 add $h4=$h4,$d };; // wrap up
189
190___
191}
192}
193
194sub BODY_40_59 {
195local *code=shift;
196local ($i,$a,$b,$c,$d,$e,$f)=@_;
197
198$code.=<<___;
199{ .mmi; mov $X[$i&0xf]=$f // Xupdate
200 and tmp0=$c,$b
201 dep.z tmp5=$a,5,27 } // a<<5
202{ .mmi; and tmp1=$d,$b
203 add tmp4=$e,$K_40_59 };;
204{ .mmi; or tmp0=tmp0,tmp1 // (b&c)|(b&d)
205 add $f=$f,tmp4 // f+=e+K_40_59
206 extr.u tmp1=$a,27,5 } // a>>27
207{ .mmi; and tmp4=$c,$d
208 xor tmp2=$X[($i+0+1)&0xf],$X[($i+2+1)&0xf] // +1
209 xor tmp3=$X[($i+8+1)&0xf],$X[($i+13+1)&0xf] // +1
210 };;
211{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5)
212 xor tmp2=tmp2,tmp3 // +1
213 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30)
214{ .mmi; or tmp0=tmp0,tmp4 // F_40_59(b,c,d)=(b&c)|(b&d)|(c&d)
215 mux2 tmp6=$a,0x44 };; // see b in next iteration
216{ .mii; add $f=$f,tmp0 // f+=F_40_59(b,c,d)
217 shrp $e=tmp2,tmp2,31;; // f+1=ROTATE(x[0]^x[2]^x[8]^x[13],1)
218 add $f=$f,tmp1 };; // f+=ROTATE(a,5)
219
220___
221}
222sub BODY_60_79 { &BODY_20_39(@_,$K_60_79); }
223
224$code.=<<___;
225.text
226
227tmp0=r8;
228tmp1=r9;
229tmp2=r10;
230tmp3=r11;
231ctx=r32; // in0
232inp=r33; // in1
233
234// void sha1_block_data_order(SHA_CTX *c,const void *p,size_t num);
235.global sha1_block_data_order#
236.proc sha1_block_data_order#
237.align 32
238sha1_block_data_order:
239 .prologue
240{ .mmi; alloc tmp1=ar.pfs,3,15,0,0
241 $ADDP tmp0=4,ctx
242 .save ar.lc,r3
243 mov r3=ar.lc }
244{ .mmi; $ADDP ctx=0,ctx
245 $ADDP inp=0,inp
246 mov r2=pr };;
247tmp4=in2;
248tmp5=loc13;
249tmp6=loc14;
250 .body
251{ .mlx; ld4 $h0=[ctx],8
252 movl $K_00_19=0x5a827999 }
253{ .mlx; ld4 $h1=[tmp0],8
254 movl $K_20_39=0x6ed9eba1 };;
255{ .mlx; ld4 $h2=[ctx],8
256 movl $K_40_59=0x8f1bbcdc }
257{ .mlx; ld4 $h3=[tmp0]
258 movl $K_60_79=0xca62c1d6 };;
259{ .mmi; ld4 $h4=[ctx],-16
260 add in2=-1,in2 // adjust num for ar.lc
261 mov ar.ec=1 };;
262{ .mmi; nop.m 0
263 add tmp3=1,inp
264 mov ar.lc=in2 };; // brp.loop.imp: too far
265
266.Ldtop:
267{ .mmi; mov $A=$h0
268 mov $B=$h1
269 mux2 tmp6=$h1,0x44 }
270{ .mmi; mov $C=$h2
271 mov $D=$h3
272 mov $E=$h4 };;
273
274___
275
276{ my $i,@V=($A,$B,$C,$D,$E,$T);
277
278 for($i=0;$i<16;$i++) { &BODY_00_15(\$code,$i,@V); unshift(@V,pop(@V)); }
279 for(;$i<20;$i++) { &BODY_16_19(\$code,$i,@V); unshift(@V,pop(@V)); }
280 for(;$i<40;$i++) { &BODY_20_39(\$code,$i,@V); unshift(@V,pop(@V)); }
281 for(;$i<60;$i++) { &BODY_40_59(\$code,$i,@V); unshift(@V,pop(@V)); }
282 for(;$i<80;$i++) { &BODY_60_79(\$code,$i,@V); unshift(@V,pop(@V)); }
283
284 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
285}
286
287$code.=<<___;
288{ .mmb; add $h0=$h0,$E
289 nop.m 0
290 br.ctop.dptk.many .Ldtop };;
291.Ldend:
292{ .mmi; add tmp0=4,ctx
293 mov ar.lc=r3 };;
294{ .mmi; st4 [ctx]=$h0,8
295 st4 [tmp0]=$h1,8 };;
296{ .mmi; st4 [ctx]=$h2,8
297 st4 [tmp0]=$h3 };;
298{ .mib; st4 [ctx]=$h4,-16
299 mov pr=r2,0x1ffff
300 br.ret.sptk.many b0 };;
301.endp sha1_block_data_order#
302stringz "SHA1 block transform for IA64, CRYPTOGAMS by <appro\@openssl.org>"
303___
304
305$output=shift and open STDOUT,">$output";
306print $code;
diff --git a/src/lib/libcrypto/sha/asm/sha1-x86_64.pl b/src/lib/libcrypto/sha/asm/sha1-x86_64.pl
deleted file mode 100755
index f7ed67a726..0000000000
--- a/src/lib/libcrypto/sha/asm/sha1-x86_64.pl
+++ /dev/null
@@ -1,242 +0,0 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# sha1_block procedure for x86_64.
11#
12# It was brought to my attention that on EM64T compiler-generated code
13# was far behind 32-bit assembler implementation. This is unlike on
14# Opteron where compiler-generated code was only 15% behind 32-bit
15# assembler, which originally made it hard to motivate the effort.
16# There was suggestion to mechanically translate 32-bit code, but I
17# dismissed it, reasoning that x86_64 offers enough register bank
18# capacity to fully utilize SHA-1 parallelism. Therefore this fresh
19# implementation:-) However! While 64-bit code does performs better
20# on Opteron, I failed to beat 32-bit assembler on EM64T core. Well,
21# x86_64 does offer larger *addressable* bank, but out-of-order core
22# reaches for even more registers through dynamic aliasing, and EM64T
23# core must have managed to run-time optimize even 32-bit code just as
24# good as 64-bit one. Performance improvement is summarized in the
25# following table:
26#
27# gcc 3.4 32-bit asm cycles/byte
28# Opteron +45% +20% 6.8
29# Xeon P4 +65% +0% 9.9
30# Core2 +60% +10% 7.0
31
32$output=shift;
33
34$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
35( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
36( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
37die "can't locate x86_64-xlate.pl";
38
39open STDOUT,"| $^X $xlate $output";
40
41$ctx="%rdi"; # 1st arg
42$inp="%rsi"; # 2nd arg
43$num="%rdx"; # 3rd arg
44
45# reassign arguments in order to produce more compact code
46$ctx="%r8";
47$inp="%r9";
48$num="%r10";
49
50$xi="%eax";
51$t0="%ebx";
52$t1="%ecx";
53$A="%edx";
54$B="%esi";
55$C="%edi";
56$D="%ebp";
57$E="%r11d";
58$T="%r12d";
59
60@V=($A,$B,$C,$D,$E,$T);
61
62sub PROLOGUE {
63my $func=shift;
64$code.=<<___;
65.globl $func
66.type $func,\@function,3
67.align 16
68$func:
69 push %rbx
70 push %rbp
71 push %r12
72 mov %rsp,%rax
73 mov %rdi,$ctx # reassigned argument
74 sub \$`8+16*4`,%rsp
75 mov %rsi,$inp # reassigned argument
76 and \$-64,%rsp
77 mov %rdx,$num # reassigned argument
78 mov %rax,`16*4`(%rsp)
79
80 mov 0($ctx),$A
81 mov 4($ctx),$B
82 mov 8($ctx),$C
83 mov 12($ctx),$D
84 mov 16($ctx),$E
85___
86}
87
88sub EPILOGUE {
89my $func=shift;
90$code.=<<___;
91 mov `16*4`(%rsp),%rsp
92 pop %r12
93 pop %rbp
94 pop %rbx
95 ret
96.size $func,.-$func
97___
98}
99
100sub BODY_00_19 {
101my ($i,$a,$b,$c,$d,$e,$f,$host)=@_;
102my $j=$i+1;
103$code.=<<___ if ($i==0);
104 mov `4*$i`($inp),$xi
105 `"bswap $xi" if(!defined($host))`
106 mov $xi,`4*$i`(%rsp)
107___
108$code.=<<___ if ($i<15);
109 lea 0x5a827999($xi,$e),$f
110 mov $c,$t0
111 mov `4*$j`($inp),$xi
112 mov $a,$e
113 xor $d,$t0
114 `"bswap $xi" if(!defined($host))`
115 rol \$5,$e
116 and $b,$t0
117 mov $xi,`4*$j`(%rsp)
118 add $e,$f
119 xor $d,$t0
120 rol \$30,$b
121 add $t0,$f
122___
123$code.=<<___ if ($i>=15);
124 lea 0x5a827999($xi,$e),$f
125 mov `4*($j%16)`(%rsp),$xi
126 mov $c,$t0
127 mov $a,$e
128 xor `4*(($j+2)%16)`(%rsp),$xi
129 xor $d,$t0
130 rol \$5,$e
131 xor `4*(($j+8)%16)`(%rsp),$xi
132 and $b,$t0
133 add $e,$f
134 xor `4*(($j+13)%16)`(%rsp),$xi
135 xor $d,$t0
136 rol \$30,$b
137 add $t0,$f
138 rol \$1,$xi
139 mov $xi,`4*($j%16)`(%rsp)
140___
141}
142
143sub BODY_20_39 {
144my ($i,$a,$b,$c,$d,$e,$f)=@_;
145my $j=$i+1;
146my $K=($i<40)?0x6ed9eba1:0xca62c1d6;
147$code.=<<___ if ($i<79);
148 lea $K($xi,$e),$f
149 mov `4*($j%16)`(%rsp),$xi
150 mov $c,$t0
151 mov $a,$e
152 xor `4*(($j+2)%16)`(%rsp),$xi
153 xor $b,$t0
154 rol \$5,$e
155 xor `4*(($j+8)%16)`(%rsp),$xi
156 xor $d,$t0
157 add $e,$f
158 xor `4*(($j+13)%16)`(%rsp),$xi
159 rol \$30,$b
160 add $t0,$f
161 rol \$1,$xi
162___
163$code.=<<___ if ($i<76);
164 mov $xi,`4*($j%16)`(%rsp)
165___
166$code.=<<___ if ($i==79);
167 lea $K($xi,$e),$f
168 mov $c,$t0
169 mov $a,$e
170 xor $b,$t0
171 rol \$5,$e
172 xor $d,$t0
173 add $e,$f
174 rol \$30,$b
175 add $t0,$f
176___
177}
178
179sub BODY_40_59 {
180my ($i,$a,$b,$c,$d,$e,$f)=@_;
181my $j=$i+1;
182$code.=<<___;
183 lea 0x8f1bbcdc($xi,$e),$f
184 mov `4*($j%16)`(%rsp),$xi
185 mov $b,$t0
186 mov $b,$t1
187 xor `4*(($j+2)%16)`(%rsp),$xi
188 mov $a,$e
189 and $c,$t0
190 xor `4*(($j+8)%16)`(%rsp),$xi
191 or $c,$t1
192 rol \$5,$e
193 xor `4*(($j+13)%16)`(%rsp),$xi
194 and $d,$t1
195 add $e,$f
196 rol \$1,$xi
197 or $t1,$t0
198 rol \$30,$b
199 mov $xi,`4*($j%16)`(%rsp)
200 add $t0,$f
201___
202}
203
204$code=".text\n";
205
206&PROLOGUE("sha1_block_data_order");
207$code.=".align 4\n.Lloop:\n";
208for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
209for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
210for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
211for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
212$code.=<<___;
213 add 0($ctx),$E
214 add 4($ctx),$T
215 add 8($ctx),$A
216 add 12($ctx),$B
217 add 16($ctx),$C
218 mov $E,0($ctx)
219 mov $T,4($ctx)
220 mov $A,8($ctx)
221 mov $B,12($ctx)
222 mov $C,16($ctx)
223
224 xchg $E,$A # mov $E,$A
225 xchg $T,$B # mov $T,$B
226 xchg $E,$C # mov $A,$C
227 xchg $T,$D # mov $B,$D
228 # mov $C,$E
229 lea `16*4`($inp),$inp
230 sub \$1,$num
231 jnz .Lloop
232___
233&EPILOGUE("sha1_block_data_order");
234$code.=<<___;
235.asciz "SHA1 block transform for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
236___
237
238####################################################################
239
240$code =~ s/\`([^\`]*)\`/eval $1/gem;
241print $code;
242close STDOUT;
diff --git a/src/lib/libcrypto/sha/asm/sha512-ia64.pl b/src/lib/libcrypto/sha/asm/sha512-ia64.pl
deleted file mode 100755
index 1c6ce56522..0000000000
--- a/src/lib/libcrypto/sha/asm/sha512-ia64.pl
+++ /dev/null
@@ -1,672 +0,0 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# SHA256/512_Transform for Itanium.
11#
12# sha512_block runs in 1003 cycles on Itanium 2, which is almost 50%
13# faster than gcc and >60%(!) faster than code generated by HP-UX
14# compiler (yes, HP-UX is generating slower code, because unlike gcc,
15# it failed to deploy "shift right pair," 'shrp' instruction, which
16# substitutes for 64-bit rotate).
17#
18# 924 cycles long sha256_block outperforms gcc by over factor of 2(!)
19# and HP-UX compiler - by >40% (yes, gcc won sha512_block, but lost
20# this one big time). Note that "formally" 924 is about 100 cycles
21# too much. I mean it's 64 32-bit rounds vs. 80 virtually identical
22# 64-bit ones and 1003*64/80 gives 802. Extra cycles, 2 per round,
23# are spent on extra work to provide for 32-bit rotations. 32-bit
24# rotations are still handled by 'shrp' instruction and for this
25# reason lower 32 bits are deposited to upper half of 64-bit register
26# prior 'shrp' issue. And in order to minimize the amount of such
27# operations, X[16] values are *maintained* with copies of lower
28# halves in upper halves, which is why you'll spot such instructions
29# as custom 'mux2', "parallel 32-bit add," 'padd4' and "parallel
30# 32-bit unsigned right shift," 'pshr4.u' instructions here.
31#
32# Rules of engagement.
33#
34# There is only one integer shifter meaning that if I have two rotate,
35# deposit or extract instructions in adjacent bundles, they shall
36# split [at run-time if they have to]. But note that variable and
37# parallel shifts are performed by multi-media ALU and *are* pairable
38# with rotates [and alike]. On the backside MMALU is rather slow: it
39# takes 2 extra cycles before the result of integer operation is
40# available *to* MMALU and 2(*) extra cycles before the result of MM
41# operation is available "back" *to* integer ALU, not to mention that
42# MMALU itself has 2 cycles latency. However! I explicitly scheduled
43# these MM instructions to avoid MM stalls, so that all these extra
44# latencies get "hidden" in instruction-level parallelism.
45#
46# (*) 2 cycles on Itanium 1 and 1 cycle on Itanium 2. But I schedule
47# for 2 in order to provide for best *overall* performance,
48# because on Itanium 1 stall on MM result is accompanied by
49# pipeline flush, which takes 6 cycles:-(
50#
51# Resulting performance numbers for 900MHz Itanium 2 system:
52#
53# The 'numbers' are in 1000s of bytes per second processed.
54# type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
55# sha1(*) 6210.14k 20376.30k 52447.83k 85870.05k 105478.12k
56# sha256 7476.45k 20572.05k 41538.34k 56062.29k 62093.18k
57# sha512 4996.56k 20026.28k 47597.20k 85278.79k 111501.31k
58#
59# (*) SHA1 numbers are for HP-UX compiler and are presented purely
60# for reference purposes. I bet it can improved too...
61#
62# To generate code, pass the file name with either 256 or 512 in its
63# name and compiler flags.
64
65$output=shift;
66
67if ($output =~ /512.*\.[s|asm]/) {
68 $SZ=8;
69 $BITS=8*$SZ;
70 $LDW="ld8";
71 $STW="st8";
72 $ADD="add";
73 $SHRU="shr.u";
74 $TABLE="K512";
75 $func="sha512_block_data_order";
76 @Sigma0=(28,34,39);
77 @Sigma1=(14,18,41);
78 @sigma0=(1, 8, 7);
79 @sigma1=(19,61, 6);
80 $rounds=80;
81} elsif ($output =~ /256.*\.[s|asm]/) {
82 $SZ=4;
83 $BITS=8*$SZ;
84 $LDW="ld4";
85 $STW="st4";
86 $ADD="padd4";
87 $SHRU="pshr4.u";
88 $TABLE="K256";
89 $func="sha256_block_data_order";
90 @Sigma0=( 2,13,22);
91 @Sigma1=( 6,11,25);
92 @sigma0=( 7,18, 3);
93 @sigma1=(17,19,10);
94 $rounds=64;
95} else { die "nonsense $output"; }
96
97open STDOUT,">$output" || die "can't open $output: $!";
98
99if ($^O eq "hpux") {
100 $ADDP="addp4";
101 for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); }
102} else { $ADDP="add"; }
103for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/);
104 $big_endian=0 if (/\-DL_ENDIAN/); }
105if (!defined($big_endian))
106 { $big_endian=(unpack('L',pack('N',1))==1); }
107
108$code=<<___;
109.ident \"$output, version 1.1\"
110.ident \"IA-64 ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>\"
111.explicit
112.text
113
114pfssave=r2;
115lcsave=r3;
116prsave=r14;
117K=r15;
118A=r16; B=r17; C=r18; D=r19;
119E=r20; F=r21; G=r22; H=r23;
120T1=r24; T2=r25;
121s0=r26; s1=r27; t0=r28; t1=r29;
122Ktbl=r30;
123ctx=r31; // 1st arg
124input=r48; // 2nd arg
125num=r49; // 3rd arg
126sgm0=r50; sgm1=r51; // small constants
127A_=r54; B_=r55; C_=r56; D_=r57;
128E_=r58; F_=r59; G_=r60; H_=r61;
129
130// void $func (SHA_CTX *ctx, const void *in,size_t num[,int host])
131.global $func#
132.proc $func#
133.align 32
134$func:
135 .prologue
136 .save ar.pfs,pfssave
137{ .mmi; alloc pfssave=ar.pfs,3,27,0,16
138 $ADDP ctx=0,r32 // 1st arg
139 .save ar.lc,lcsave
140 mov lcsave=ar.lc }
141{ .mmi; $ADDP input=0,r33 // 2nd arg
142 mov num=r34 // 3rd arg
143 .save pr,prsave
144 mov prsave=pr };;
145
146 .body
147{ .mib; add r8=0*$SZ,ctx
148 add r9=1*$SZ,ctx
149 brp.loop.imp .L_first16,.L_first16_end-16 }
150{ .mib; add r10=2*$SZ,ctx
151 add r11=3*$SZ,ctx
152 brp.loop.imp .L_rest,.L_rest_end-16 };;
153
154// load A-H
155.Lpic_point:
156{ .mmi; $LDW A_=[r8],4*$SZ
157 $LDW B_=[r9],4*$SZ
158 mov Ktbl=ip }
159{ .mmi; $LDW C_=[r10],4*$SZ
160 $LDW D_=[r11],4*$SZ
161 mov sgm0=$sigma0[2] };;
162{ .mmi; $LDW E_=[r8]
163 $LDW F_=[r9]
164 add Ktbl=($TABLE#-.Lpic_point),Ktbl }
165{ .mmi; $LDW G_=[r10]
166 $LDW H_=[r11]
167 cmp.ne p0,p16=0,r0 };; // used in sha256_block
168___
169$code.=<<___ if ($BITS==64);
170{ .mii; and r8=7,input
171 and input=~7,input;;
172 cmp.eq p9,p0=1,r8 }
173{ .mmi; cmp.eq p10,p0=2,r8
174 cmp.eq p11,p0=3,r8
175 cmp.eq p12,p0=4,r8 }
176{ .mmi; cmp.eq p13,p0=5,r8
177 cmp.eq p14,p0=6,r8
178 cmp.eq p15,p0=7,r8 };;
179___
180$code.=<<___;
181.L_outer:
182.rotr X[16]
183{ .mmi; mov A=A_
184 mov B=B_
185 mov ar.lc=14 }
186{ .mmi; mov C=C_
187 mov D=D_
188 mov E=E_ }
189{ .mmi; mov F=F_
190 mov G=G_
191 mov ar.ec=2 }
192{ .mmi; ld1 X[15]=[input],$SZ // eliminated in 64-bit
193 mov H=H_
194 mov sgm1=$sigma1[2] };;
195
196___
197$t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
198.align 32
199.L_first16:
200{ .mmi; add r9=1-$SZ,input
201 add r10=2-$SZ,input
202 add r11=3-$SZ,input };;
203{ .mmi; ld1 r9=[r9]
204 ld1 r10=[r10]
205 dep.z $t1=E,32,32 }
206{ .mmi; $LDW K=[Ktbl],$SZ
207 ld1 r11=[r11]
208 zxt4 E=E };;
209{ .mii; or $t1=$t1,E
210 dep X[15]=X[15],r9,8,8
211 dep r11=r10,r11,8,8 };;
212{ .mmi; and T1=F,E
213 and T2=A,B
214 dep X[15]=X[15],r11,16,16 }
215{ .mmi; andcm r8=G,E
216 and r9=A,C
217 mux2 $t0=A,0x44 };; // copy lower half to upper
218{ .mmi; (p16) ld1 X[15-1]=[input],$SZ // prefetch
219 xor T1=T1,r8 // T1=((e & f) ^ (~e & g))
220 _rotr r11=$t1,$Sigma1[0] } // ROTR(e,14)
221{ .mib; and r10=B,C
222 xor T2=T2,r9 };;
223___
224$t0="A", $t1="E", $code.=<<___ if ($BITS==64);
225// in 64-bit mode I load whole X[16] at once and take care of alignment...
226{ .mmi; add r8=1*$SZ,input
227 add r9=2*$SZ,input
228 add r10=3*$SZ,input };;
229{ .mmb; $LDW X[15]=[input],4*$SZ
230 $LDW X[14]=[r8],4*$SZ
231(p9) br.cond.dpnt.many .L1byte };;
232{ .mmb; $LDW X[13]=[r9],4*$SZ
233 $LDW X[12]=[r10],4*$SZ
234(p10) br.cond.dpnt.many .L2byte };;
235{ .mmb; $LDW X[11]=[input],4*$SZ
236 $LDW X[10]=[r8],4*$SZ
237(p11) br.cond.dpnt.many .L3byte };;
238{ .mmb; $LDW X[ 9]=[r9],4*$SZ
239 $LDW X[ 8]=[r10],4*$SZ
240(p12) br.cond.dpnt.many .L4byte };;
241{ .mmb; $LDW X[ 7]=[input],4*$SZ
242 $LDW X[ 6]=[r8],4*$SZ
243(p13) br.cond.dpnt.many .L5byte };;
244{ .mmb; $LDW X[ 5]=[r9],4*$SZ
245 $LDW X[ 4]=[r10],4*$SZ
246(p14) br.cond.dpnt.many .L6byte };;
247{ .mmb; $LDW X[ 3]=[input],4*$SZ
248 $LDW X[ 2]=[r8],4*$SZ
249(p15) br.cond.dpnt.many .L7byte };;
250{ .mmb; $LDW X[ 1]=[r9],4*$SZ
251 $LDW X[ 0]=[r10],4*$SZ
252 br.many .L_first16 };;
253.L1byte:
254{ .mmi; $LDW X[13]=[r9],4*$SZ
255 $LDW X[12]=[r10],4*$SZ
256 shrp X[15]=X[15],X[14],56 };;
257{ .mmi; $LDW X[11]=[input],4*$SZ
258 $LDW X[10]=[r8],4*$SZ
259 shrp X[14]=X[14],X[13],56 }
260{ .mmi; $LDW X[ 9]=[r9],4*$SZ
261 $LDW X[ 8]=[r10],4*$SZ
262 shrp X[13]=X[13],X[12],56 };;
263{ .mmi; $LDW X[ 7]=[input],4*$SZ
264 $LDW X[ 6]=[r8],4*$SZ
265 shrp X[12]=X[12],X[11],56 }
266{ .mmi; $LDW X[ 5]=[r9],4*$SZ
267 $LDW X[ 4]=[r10],4*$SZ
268 shrp X[11]=X[11],X[10],56 };;
269{ .mmi; $LDW X[ 3]=[input],4*$SZ
270 $LDW X[ 2]=[r8],4*$SZ
271 shrp X[10]=X[10],X[ 9],56 }
272{ .mmi; $LDW X[ 1]=[r9],4*$SZ
273 $LDW X[ 0]=[r10],4*$SZ
274 shrp X[ 9]=X[ 9],X[ 8],56 };;
275{ .mii; $LDW T1=[input]
276 shrp X[ 8]=X[ 8],X[ 7],56
277 shrp X[ 7]=X[ 7],X[ 6],56 }
278{ .mii; shrp X[ 6]=X[ 6],X[ 5],56
279 shrp X[ 5]=X[ 5],X[ 4],56 };;
280{ .mii; shrp X[ 4]=X[ 4],X[ 3],56
281 shrp X[ 3]=X[ 3],X[ 2],56 }
282{ .mii; shrp X[ 2]=X[ 2],X[ 1],56
283 shrp X[ 1]=X[ 1],X[ 0],56 }
284{ .mib; shrp X[ 0]=X[ 0],T1,56
285 br.many .L_first16 };;
286.L2byte:
287{ .mmi; $LDW X[11]=[input],4*$SZ
288 $LDW X[10]=[r8],4*$SZ
289 shrp X[15]=X[15],X[14],48 }
290{ .mmi; $LDW X[ 9]=[r9],4*$SZ
291 $LDW X[ 8]=[r10],4*$SZ
292 shrp X[14]=X[14],X[13],48 };;
293{ .mmi; $LDW X[ 7]=[input],4*$SZ
294 $LDW X[ 6]=[r8],4*$SZ
295 shrp X[13]=X[13],X[12],48 }
296{ .mmi; $LDW X[ 5]=[r9],4*$SZ
297 $LDW X[ 4]=[r10],4*$SZ
298 shrp X[12]=X[12],X[11],48 };;
299{ .mmi; $LDW X[ 3]=[input],4*$SZ
300 $LDW X[ 2]=[r8],4*$SZ
301 shrp X[11]=X[11],X[10],48 }
302{ .mmi; $LDW X[ 1]=[r9],4*$SZ
303 $LDW X[ 0]=[r10],4*$SZ
304 shrp X[10]=X[10],X[ 9],48 };;
305{ .mii; $LDW T1=[input]
306 shrp X[ 9]=X[ 9],X[ 8],48
307 shrp X[ 8]=X[ 8],X[ 7],48 }
308{ .mii; shrp X[ 7]=X[ 7],X[ 6],48
309 shrp X[ 6]=X[ 6],X[ 5],48 };;
310{ .mii; shrp X[ 5]=X[ 5],X[ 4],48
311 shrp X[ 4]=X[ 4],X[ 3],48 }
312{ .mii; shrp X[ 3]=X[ 3],X[ 2],48
313 shrp X[ 2]=X[ 2],X[ 1],48 }
314{ .mii; shrp X[ 1]=X[ 1],X[ 0],48
315 shrp X[ 0]=X[ 0],T1,48 }
316{ .mfb; br.many .L_first16 };;
317.L3byte:
318{ .mmi; $LDW X[ 9]=[r9],4*$SZ
319 $LDW X[ 8]=[r10],4*$SZ
320 shrp X[15]=X[15],X[14],40 };;
321{ .mmi; $LDW X[ 7]=[input],4*$SZ
322 $LDW X[ 6]=[r8],4*$SZ
323 shrp X[14]=X[14],X[13],40 }
324{ .mmi; $LDW X[ 5]=[r9],4*$SZ
325 $LDW X[ 4]=[r10],4*$SZ
326 shrp X[13]=X[13],X[12],40 };;
327{ .mmi; $LDW X[ 3]=[input],4*$SZ
328 $LDW X[ 2]=[r8],4*$SZ
329 shrp X[12]=X[12],X[11],40 }
330{ .mmi; $LDW X[ 1]=[r9],4*$SZ
331 $LDW X[ 0]=[r10],4*$SZ
332 shrp X[11]=X[11],X[10],40 };;
333{ .mii; $LDW T1=[input]
334 shrp X[10]=X[10],X[ 9],40
335 shrp X[ 9]=X[ 9],X[ 8],40 }
336{ .mii; shrp X[ 8]=X[ 8],X[ 7],40
337 shrp X[ 7]=X[ 7],X[ 6],40 };;
338{ .mii; shrp X[ 6]=X[ 6],X[ 5],40
339 shrp X[ 5]=X[ 5],X[ 4],40 }
340{ .mii; shrp X[ 4]=X[ 4],X[ 3],40
341 shrp X[ 3]=X[ 3],X[ 2],40 }
342{ .mii; shrp X[ 2]=X[ 2],X[ 1],40
343 shrp X[ 1]=X[ 1],X[ 0],40 }
344{ .mib; shrp X[ 0]=X[ 0],T1,40
345 br.many .L_first16 };;
346.L4byte:
347{ .mmi; $LDW X[ 7]=[input],4*$SZ
348 $LDW X[ 6]=[r8],4*$SZ
349 shrp X[15]=X[15],X[14],32 }
350{ .mmi; $LDW X[ 5]=[r9],4*$SZ
351 $LDW X[ 4]=[r10],4*$SZ
352 shrp X[14]=X[14],X[13],32 };;
353{ .mmi; $LDW X[ 3]=[input],4*$SZ
354 $LDW X[ 2]=[r8],4*$SZ
355 shrp X[13]=X[13],X[12],32 }
356{ .mmi; $LDW X[ 1]=[r9],4*$SZ
357 $LDW X[ 0]=[r10],4*$SZ
358 shrp X[12]=X[12],X[11],32 };;
359{ .mii; $LDW T1=[input]
360 shrp X[11]=X[11],X[10],32
361 shrp X[10]=X[10],X[ 9],32 }
362{ .mii; shrp X[ 9]=X[ 9],X[ 8],32
363 shrp X[ 8]=X[ 8],X[ 7],32 };;
364{ .mii; shrp X[ 7]=X[ 7],X[ 6],32
365 shrp X[ 6]=X[ 6],X[ 5],32 }
366{ .mii; shrp X[ 5]=X[ 5],X[ 4],32
367 shrp X[ 4]=X[ 4],X[ 3],32 }
368{ .mii; shrp X[ 3]=X[ 3],X[ 2],32
369 shrp X[ 2]=X[ 2],X[ 1],32 }
370{ .mii; shrp X[ 1]=X[ 1],X[ 0],32
371 shrp X[ 0]=X[ 0],T1,32 }
372{ .mfb; br.many .L_first16 };;
373.L5byte:
374{ .mmi; $LDW X[ 5]=[r9],4*$SZ
375 $LDW X[ 4]=[r10],4*$SZ
376 shrp X[15]=X[15],X[14],24 };;
377{ .mmi; $LDW X[ 3]=[input],4*$SZ
378 $LDW X[ 2]=[r8],4*$SZ
379 shrp X[14]=X[14],X[13],24 }
380{ .mmi; $LDW X[ 1]=[r9],4*$SZ
381 $LDW X[ 0]=[r10],4*$SZ
382 shrp X[13]=X[13],X[12],24 };;
383{ .mii; $LDW T1=[input]
384 shrp X[12]=X[12],X[11],24
385 shrp X[11]=X[11],X[10],24 }
386{ .mii; shrp X[10]=X[10],X[ 9],24
387 shrp X[ 9]=X[ 9],X[ 8],24 };;
388{ .mii; shrp X[ 8]=X[ 8],X[ 7],24
389 shrp X[ 7]=X[ 7],X[ 6],24 }
390{ .mii; shrp X[ 6]=X[ 6],X[ 5],24
391 shrp X[ 5]=X[ 5],X[ 4],24 }
392{ .mii; shrp X[ 4]=X[ 4],X[ 3],24
393 shrp X[ 3]=X[ 3],X[ 2],24 }
394{ .mii; shrp X[ 2]=X[ 2],X[ 1],24
395 shrp X[ 1]=X[ 1],X[ 0],24 }
396{ .mib; shrp X[ 0]=X[ 0],T1,24
397 br.many .L_first16 };;
398.L6byte:
399{ .mmi; $LDW X[ 3]=[input],4*$SZ
400 $LDW X[ 2]=[r8],4*$SZ
401 shrp X[15]=X[15],X[14],16 }
402{ .mmi; $LDW X[ 1]=[r9],4*$SZ
403 $LDW X[ 0]=[r10],4*$SZ
404 shrp X[14]=X[14],X[13],16 };;
405{ .mii; $LDW T1=[input]
406 shrp X[13]=X[13],X[12],16
407 shrp X[12]=X[12],X[11],16 }
408{ .mii; shrp X[11]=X[11],X[10],16
409 shrp X[10]=X[10],X[ 9],16 };;
410{ .mii; shrp X[ 9]=X[ 9],X[ 8],16
411 shrp X[ 8]=X[ 8],X[ 7],16 }
412{ .mii; shrp X[ 7]=X[ 7],X[ 6],16
413 shrp X[ 6]=X[ 6],X[ 5],16 }
414{ .mii; shrp X[ 5]=X[ 5],X[ 4],16
415 shrp X[ 4]=X[ 4],X[ 3],16 }
416{ .mii; shrp X[ 3]=X[ 3],X[ 2],16
417 shrp X[ 2]=X[ 2],X[ 1],16 }
418{ .mii; shrp X[ 1]=X[ 1],X[ 0],16
419 shrp X[ 0]=X[ 0],T1,16 }
420{ .mfb; br.many .L_first16 };;
421.L7byte:
422{ .mmi; $LDW X[ 1]=[r9],4*$SZ
423 $LDW X[ 0]=[r10],4*$SZ
424 shrp X[15]=X[15],X[14],8 };;
425{ .mii; $LDW T1=[input]
426 shrp X[14]=X[14],X[13],8
427 shrp X[13]=X[13],X[12],8 }
428{ .mii; shrp X[12]=X[12],X[11],8
429 shrp X[11]=X[11],X[10],8 };;
430{ .mii; shrp X[10]=X[10],X[ 9],8
431 shrp X[ 9]=X[ 9],X[ 8],8 }
432{ .mii; shrp X[ 8]=X[ 8],X[ 7],8
433 shrp X[ 7]=X[ 7],X[ 6],8 }
434{ .mii; shrp X[ 6]=X[ 6],X[ 5],8
435 shrp X[ 5]=X[ 5],X[ 4],8 }
436{ .mii; shrp X[ 4]=X[ 4],X[ 3],8
437 shrp X[ 3]=X[ 3],X[ 2],8 }
438{ .mii; shrp X[ 2]=X[ 2],X[ 1],8
439 shrp X[ 1]=X[ 1],X[ 0],8 }
440{ .mib; shrp X[ 0]=X[ 0],T1,8
441 br.many .L_first16 };;
442
443.align 32
444.L_first16:
445{ .mmi; $LDW K=[Ktbl],$SZ
446 and T1=F,E
447 and T2=A,B }
448{ .mmi; //$LDW X[15]=[input],$SZ // X[i]=*input++
449 andcm r8=G,E
450 and r9=A,C };;
451{ .mmi; xor T1=T1,r8 //T1=((e & f) ^ (~e & g))
452 and r10=B,C
453 _rotr r11=$t1,$Sigma1[0] } // ROTR(e,14)
454{ .mmi; xor T2=T2,r9
455 mux1 X[15]=X[15],\@rev };; // eliminated in big-endian
456___
457$code.=<<___;
458{ .mib; add T1=T1,H // T1=Ch(e,f,g)+h
459 _rotr r8=$t1,$Sigma1[1] } // ROTR(e,18)
460{ .mib; xor T2=T2,r10 // T2=((a & b) ^ (a & c) ^ (b & c))
461 mov H=G };;
462{ .mib; xor r11=r8,r11
463 _rotr r9=$t1,$Sigma1[2] } // ROTR(e,41)
464{ .mib; mov G=F
465 mov F=E };;
466{ .mib; xor r9=r9,r11 // r9=Sigma1(e)
467 _rotr r10=$t0,$Sigma0[0] } // ROTR(a,28)
468{ .mib; add T1=T1,K // T1=Ch(e,f,g)+h+K512[i]
469 mov E=D };;
470{ .mib; add T1=T1,r9 // T1+=Sigma1(e)
471 _rotr r11=$t0,$Sigma0[1] } // ROTR(a,34)
472{ .mib; mov D=C
473 mov C=B };;
474{ .mib; add T1=T1,X[15] // T1+=X[i]
475 _rotr r8=$t0,$Sigma0[2] } // ROTR(a,39)
476{ .mib; xor r10=r10,r11
477 mux2 X[15]=X[15],0x44 };; // eliminated in 64-bit
478{ .mmi; xor r10=r8,r10 // r10=Sigma0(a)
479 mov B=A
480 add A=T1,T2 };;
481{ .mib; add E=E,T1
482 add A=A,r10 // T2=Maj(a,b,c)+Sigma0(a)
483 br.ctop.sptk .L_first16 };;
484.L_first16_end:
485
486{ .mii; mov ar.lc=$rounds-17
487 mov ar.ec=1 };;
488
489.align 32
490.L_rest:
491.rotr X[16]
492{ .mib; $LDW K=[Ktbl],$SZ
493 _rotr r8=X[15-1],$sigma0[0] } // ROTR(s0,1)
494{ .mib; $ADD X[15]=X[15],X[15-9] // X[i&0xF]+=X[(i+9)&0xF]
495 $SHRU s0=X[15-1],sgm0 };; // s0=X[(i+1)&0xF]>>7
496{ .mib; and T1=F,E
497 _rotr r9=X[15-1],$sigma0[1] } // ROTR(s0,8)
498{ .mib; andcm r10=G,E
499 $SHRU s1=X[15-14],sgm1 };; // s1=X[(i+14)&0xF]>>6
500{ .mmi; xor T1=T1,r10 // T1=((e & f) ^ (~e & g))
501 xor r9=r8,r9
502 _rotr r10=X[15-14],$sigma1[0] };;// ROTR(s1,19)
503{ .mib; and T2=A,B
504 _rotr r11=X[15-14],$sigma1[1] }// ROTR(s1,61)
505{ .mib; and r8=A,C };;
506___
507$t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
508// I adhere to mmi; in order to hold Itanium 1 back and avoid 6 cycle
509// pipeline flush in last bundle. Note that even on Itanium2 the
510// latter stalls for one clock cycle...
511{ .mmi; xor s0=s0,r9 // s0=sigma0(X[(i+1)&0xF])
512 dep.z $t1=E,32,32 }
513{ .mmi; xor r10=r11,r10
514 zxt4 E=E };;
515{ .mmi; or $t1=$t1,E
516 xor s1=s1,r10 // s1=sigma1(X[(i+14)&0xF])
517 mux2 $t0=A,0x44 };; // copy lower half to upper
518{ .mmi; xor T2=T2,r8
519 _rotr r9=$t1,$Sigma1[0] } // ROTR(e,14)
520{ .mmi; and r10=B,C
521 add T1=T1,H // T1=Ch(e,f,g)+h
522 $ADD X[15]=X[15],s0 };; // X[i&0xF]+=sigma0(X[(i+1)&0xF])
523___
524$t0="A", $t1="E", $code.=<<___ if ($BITS==64);
525{ .mib; xor s0=s0,r9 // s0=sigma0(X[(i+1)&0xF])
526 _rotr r9=$t1,$Sigma1[0] } // ROTR(e,14)
527{ .mib; xor r10=r11,r10
528 xor T2=T2,r8 };;
529{ .mib; xor s1=s1,r10 // s1=sigma1(X[(i+14)&0xF])
530 add T1=T1,H }
531{ .mib; and r10=B,C
532 $ADD X[15]=X[15],s0 };; // X[i&0xF]+=sigma0(X[(i+1)&0xF])
533___
534$code.=<<___;
535{ .mmi; xor T2=T2,r10 // T2=((a & b) ^ (a & c) ^ (b & c))
536 mov H=G
537 _rotr r8=$t1,$Sigma1[1] };; // ROTR(e,18)
538{ .mmi; xor r11=r8,r9
539 $ADD X[15]=X[15],s1 // X[i&0xF]+=sigma1(X[(i+14)&0xF])
540 _rotr r9=$t1,$Sigma1[2] } // ROTR(e,41)
541{ .mmi; mov G=F
542 mov F=E };;
543{ .mib; xor r9=r9,r11 // r9=Sigma1(e)
544 _rotr r10=$t0,$Sigma0[0] } // ROTR(a,28)
545{ .mib; add T1=T1,K // T1=Ch(e,f,g)+h+K512[i]
546 mov E=D };;
547{ .mib; add T1=T1,r9 // T1+=Sigma1(e)
548 _rotr r11=$t0,$Sigma0[1] } // ROTR(a,34)
549{ .mib; mov D=C
550 mov C=B };;
551{ .mmi; add T1=T1,X[15] // T1+=X[i]
552 xor r10=r10,r11
553 _rotr r8=$t0,$Sigma0[2] };; // ROTR(a,39)
554{ .mmi; xor r10=r8,r10 // r10=Sigma0(a)
555 mov B=A
556 add A=T1,T2 };;
557{ .mib; add E=E,T1
558 add A=A,r10 // T2=Maj(a,b,c)+Sigma0(a)
559 br.ctop.sptk .L_rest };;
560.L_rest_end:
561
562{ .mmi; add A_=A_,A
563 add B_=B_,B
564 add C_=C_,C }
565{ .mmi; add D_=D_,D
566 add E_=E_,E
567 cmp.ltu p16,p0=1,num };;
568{ .mmi; add F_=F_,F
569 add G_=G_,G
570 add H_=H_,H }
571{ .mmb; add Ktbl=-$SZ*$rounds,Ktbl
572(p16) add num=-1,num
573(p16) br.dptk.many .L_outer };;
574
575{ .mib; add r8=0*$SZ,ctx
576 add r9=1*$SZ,ctx }
577{ .mib; add r10=2*$SZ,ctx
578 add r11=3*$SZ,ctx };;
579{ .mmi; $STW [r8]=A_,4*$SZ
580 $STW [r9]=B_,4*$SZ
581 mov ar.lc=lcsave }
582{ .mmi; $STW [r10]=C_,4*$SZ
583 $STW [r11]=D_,4*$SZ
584 mov pr=prsave,0x1ffff };;
585{ .mmb; $STW [r8]=E_
586 $STW [r9]=F_ }
587{ .mmb; $STW [r10]=G_
588 $STW [r11]=H_
589 br.ret.sptk.many b0 };;
590.endp $func#
591___
592
593$code =~ s/\`([^\`]*)\`/eval $1/gem;
594$code =~ s/_rotr(\s+)([^=]+)=([^,]+),([0-9]+)/shrp$1$2=$3,$3,$4/gm;
595if ($BITS==64) {
596 $code =~ s/mux2(\s+)\S+/nop.i$1 0x0/gm;
597 $code =~ s/mux1(\s+)\S+/nop.i$1 0x0/gm if ($big_endian);
598 $code =~ s/(shrp\s+X\[[^=]+)=([^,]+),([^,]+),([1-9]+)/$1=$3,$2,64-$4/gm
599 if (!$big_endian);
600 $code =~ s/ld1(\s+)X\[\S+/nop.m$1 0x0/gm;
601}
602
603print $code;
604
605print<<___ if ($BITS==32);
606.align 64
607.type K256#,\@object
608K256: data4 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
609 data4 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
610 data4 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
611 data4 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
612 data4 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
613 data4 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
614 data4 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
615 data4 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
616 data4 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
617 data4 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
618 data4 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
619 data4 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
620 data4 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
621 data4 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
622 data4 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
623 data4 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
624.size K256#,$SZ*$rounds
625stringz "SHA256 block transform for IA64, CRYPTOGAMS by <appro\@openssl.org>"
626___
627print<<___ if ($BITS==64);
628.align 64
629.type K512#,\@object
630K512: data8 0x428a2f98d728ae22,0x7137449123ef65cd
631 data8 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
632 data8 0x3956c25bf348b538,0x59f111f1b605d019
633 data8 0x923f82a4af194f9b,0xab1c5ed5da6d8118
634 data8 0xd807aa98a3030242,0x12835b0145706fbe
635 data8 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
636 data8 0x72be5d74f27b896f,0x80deb1fe3b1696b1
637 data8 0x9bdc06a725c71235,0xc19bf174cf692694
638 data8 0xe49b69c19ef14ad2,0xefbe4786384f25e3
639 data8 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
640 data8 0x2de92c6f592b0275,0x4a7484aa6ea6e483
641 data8 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
642 data8 0x983e5152ee66dfab,0xa831c66d2db43210
643 data8 0xb00327c898fb213f,0xbf597fc7beef0ee4
644 data8 0xc6e00bf33da88fc2,0xd5a79147930aa725
645 data8 0x06ca6351e003826f,0x142929670a0e6e70
646 data8 0x27b70a8546d22ffc,0x2e1b21385c26c926
647 data8 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
648 data8 0x650a73548baf63de,0x766a0abb3c77b2a8
649 data8 0x81c2c92e47edaee6,0x92722c851482353b
650 data8 0xa2bfe8a14cf10364,0xa81a664bbc423001
651 data8 0xc24b8b70d0f89791,0xc76c51a30654be30
652 data8 0xd192e819d6ef5218,0xd69906245565a910
653 data8 0xf40e35855771202a,0x106aa07032bbd1b8
654 data8 0x19a4c116b8d2d0c8,0x1e376c085141ab53
655 data8 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
656 data8 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
657 data8 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
658 data8 0x748f82ee5defb2fc,0x78a5636f43172f60
659 data8 0x84c87814a1f0ab72,0x8cc702081a6439ec
660 data8 0x90befffa23631e28,0xa4506cebde82bde9
661 data8 0xbef9a3f7b2c67915,0xc67178f2e372532b
662 data8 0xca273eceea26619c,0xd186b8c721c0c207
663 data8 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
664 data8 0x06f067aa72176fba,0x0a637dc5a2c898a6
665 data8 0x113f9804bef90dae,0x1b710b35131c471b
666 data8 0x28db77f523047d84,0x32caab7b40c72493
667 data8 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
668 data8 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
669 data8 0x5fcb6fab3ad6faec,0x6c44198c4a475817
670.size K512#,$SZ*$rounds
671stringz "SHA512 block transform for IA64, CRYPTOGAMS by <appro\@openssl.org>"
672___
diff --git a/src/lib/libcrypto/sha/asm/sha512-x86_64.pl b/src/lib/libcrypto/sha/asm/sha512-x86_64.pl
deleted file mode 100755
index b6252d31ec..0000000000
--- a/src/lib/libcrypto/sha/asm/sha512-x86_64.pl
+++ /dev/null
@@ -1,344 +0,0 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. Rights for redistribution and usage in source and binary
6# forms are granted according to the OpenSSL license.
7# ====================================================================
8#
9# sha256/512_block procedure for x86_64.
10#
11# 40% improvement over compiler-generated code on Opteron. On EM64T
12# sha256 was observed to run >80% faster and sha512 - >40%. No magical
13# tricks, just straight implementation... I really wonder why gcc
14# [being armed with inline assembler] fails to generate as fast code.
15# The only thing which is cool about this module is that it's very
16# same instruction sequence used for both SHA-256 and SHA-512. In
17# former case the instructions operate on 32-bit operands, while in
18# latter - on 64-bit ones. All I had to do is to get one flavor right,
19# the other one passed the test right away:-)
20#
21# sha256_block runs in ~1005 cycles on Opteron, which gives you
22# asymptotic performance of 64*1000/1005=63.7MBps times CPU clock
23# frequency in GHz. sha512_block runs in ~1275 cycles, which results
24# in 128*1000/1275=100MBps per GHz. Is there room for improvement?
25# Well, if you compare it to IA-64 implementation, which maintains
26# X[16] in register bank[!], tends to 4 instructions per CPU clock
27# cycle and runs in 1003 cycles, 1275 is very good result for 3-way
28# issue Opteron pipeline and X[16] maintained in memory. So that *if*
29# there is a way to improve it, *then* the only way would be to try to
30# offload X[16] updates to SSE unit, but that would require "deeper"
31# loop unroll, which in turn would naturally cause size blow-up, not
32# to mention increased complexity! And once again, only *if* it's
33# actually possible to noticeably improve overall ILP, instruction
34# level parallelism, on a given CPU implementation in this case.
35#
36# Special note on Intel EM64T. While Opteron CPU exhibits perfect
37# perfromance ratio of 1.5 between 64- and 32-bit flavors [see above],
38# [currently available] EM64T CPUs apparently are far from it. On the
39# contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit
40# sha256_block:-( This is presumably because 64-bit shifts/rotates
41# apparently are not atomic instructions, but implemented in microcode.
42
43$output=shift;
44
45$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
46( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
47( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
48die "can't locate x86_64-xlate.pl";
49
50open STDOUT,"| $^X $xlate $output";
51
52if ($output =~ /512/) {
53 $func="sha512_block_data_order";
54 $TABLE="K512";
55 $SZ=8;
56 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx",
57 "%r8", "%r9", "%r10","%r11");
58 ($T1,$a0,$a1,$a2)=("%r12","%r13","%r14","%r15");
59 @Sigma0=(28,34,39);
60 @Sigma1=(14,18,41);
61 @sigma0=(1, 8, 7);
62 @sigma1=(19,61, 6);
63 $rounds=80;
64} else {
65 $func="sha256_block_data_order";
66 $TABLE="K256";
67 $SZ=4;
68 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx",
69 "%r8d","%r9d","%r10d","%r11d");
70 ($T1,$a0,$a1,$a2)=("%r12d","%r13d","%r14d","%r15d");
71 @Sigma0=( 2,13,22);
72 @Sigma1=( 6,11,25);
73 @sigma0=( 7,18, 3);
74 @sigma1=(17,19,10);
75 $rounds=64;
76}
77
78$ctx="%rdi"; # 1st arg
79$round="%rdi"; # zaps $ctx
80$inp="%rsi"; # 2nd arg
81$Tbl="%rbp";
82
83$_ctx="16*$SZ+0*8(%rsp)";
84$_inp="16*$SZ+1*8(%rsp)";
85$_end="16*$SZ+2*8(%rsp)";
86$_rsp="16*$SZ+3*8(%rsp)";
87$framesz="16*$SZ+4*8";
88
89
90sub ROUND_00_15()
91{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
92
93$code.=<<___;
94 mov $e,$a0
95 mov $e,$a1
96 mov $f,$a2
97
98 ror \$$Sigma1[0],$a0
99 ror \$$Sigma1[1],$a1
100 xor $g,$a2 # f^g
101
102 xor $a1,$a0
103 ror \$`$Sigma1[2]-$Sigma1[1]`,$a1
104 and $e,$a2 # (f^g)&e
105 mov $T1,`$SZ*($i&0xf)`(%rsp)
106
107 xor $a1,$a0 # Sigma1(e)
108 xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g
109 add $h,$T1 # T1+=h
110
111 mov $a,$h
112 add $a0,$T1 # T1+=Sigma1(e)
113
114 add $a2,$T1 # T1+=Ch(e,f,g)
115 mov $a,$a0
116 mov $a,$a1
117
118 ror \$$Sigma0[0],$h
119 ror \$$Sigma0[1],$a0
120 mov $a,$a2
121 add ($Tbl,$round,$SZ),$T1 # T1+=K[round]
122
123 xor $a0,$h
124 ror \$`$Sigma0[2]-$Sigma0[1]`,$a0
125 or $c,$a1 # a|c
126
127 xor $a0,$h # h=Sigma0(a)
128 and $c,$a2 # a&c
129 add $T1,$d # d+=T1
130
131 and $b,$a1 # (a|c)&b
132 add $T1,$h # h+=T1
133
134 or $a2,$a1 # Maj(a,b,c)=((a|c)&b)|(a&c)
135 lea 1($round),$round # round++
136
137 add $a1,$h # h+=Maj(a,b,c)
138___
139}
140
141sub ROUND_16_XX()
142{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
143
144$code.=<<___;
145 mov `$SZ*(($i+1)&0xf)`(%rsp),$a0
146 mov `$SZ*(($i+14)&0xf)`(%rsp),$T1
147
148 mov $a0,$a2
149
150 shr \$$sigma0[2],$a0
151 ror \$$sigma0[0],$a2
152
153 xor $a2,$a0
154 ror \$`$sigma0[1]-$sigma0[0]`,$a2
155
156 xor $a2,$a0 # sigma0(X[(i+1)&0xf])
157 mov $T1,$a1
158
159 shr \$$sigma1[2],$T1
160 ror \$$sigma1[0],$a1
161
162 xor $a1,$T1
163 ror \$`$sigma1[1]-$sigma1[0]`,$a1
164
165 xor $a1,$T1 # sigma1(X[(i+14)&0xf])
166
167 add $a0,$T1
168
169 add `$SZ*(($i+9)&0xf)`(%rsp),$T1
170
171 add `$SZ*($i&0xf)`(%rsp),$T1
172___
173 &ROUND_00_15(@_);
174}
175
176$code=<<___;
177.text
178
179.globl $func
180.type $func,\@function,4
181.align 16
182$func:
183 push %rbx
184 push %rbp
185 push %r12
186 push %r13
187 push %r14
188 push %r15
189 mov %rsp,%rbp # copy %rsp
190 shl \$4,%rdx # num*16
191 sub \$$framesz,%rsp
192 lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
193 and \$-64,%rsp # align stack frame
194 mov $ctx,$_ctx # save ctx, 1st arg
195 mov $inp,$_inp # save inp, 2nd arh
196 mov %rdx,$_end # save end pointer, "3rd" arg
197 mov %rbp,$_rsp # save copy of %rsp
198
199 .picmeup $Tbl
200 lea $TABLE-.($Tbl),$Tbl
201
202 mov $SZ*0($ctx),$A
203 mov $SZ*1($ctx),$B
204 mov $SZ*2($ctx),$C
205 mov $SZ*3($ctx),$D
206 mov $SZ*4($ctx),$E
207 mov $SZ*5($ctx),$F
208 mov $SZ*6($ctx),$G
209 mov $SZ*7($ctx),$H
210 jmp .Lloop
211
212.align 16
213.Lloop:
214 xor $round,$round
215___
216 for($i=0;$i<16;$i++) {
217 $code.=" mov $SZ*$i($inp),$T1\n";
218 $code.=" bswap $T1\n";
219 &ROUND_00_15($i,@ROT);
220 unshift(@ROT,pop(@ROT));
221 }
222$code.=<<___;
223 jmp .Lrounds_16_xx
224.align 16
225.Lrounds_16_xx:
226___
227 for(;$i<32;$i++) {
228 &ROUND_16_XX($i,@ROT);
229 unshift(@ROT,pop(@ROT));
230 }
231
232$code.=<<___;
233 cmp \$$rounds,$round
234 jb .Lrounds_16_xx
235
236 mov $_ctx,$ctx
237 lea 16*$SZ($inp),$inp
238
239 add $SZ*0($ctx),$A
240 add $SZ*1($ctx),$B
241 add $SZ*2($ctx),$C
242 add $SZ*3($ctx),$D
243 add $SZ*4($ctx),$E
244 add $SZ*5($ctx),$F
245 add $SZ*6($ctx),$G
246 add $SZ*7($ctx),$H
247
248 cmp $_end,$inp
249
250 mov $A,$SZ*0($ctx)
251 mov $B,$SZ*1($ctx)
252 mov $C,$SZ*2($ctx)
253 mov $D,$SZ*3($ctx)
254 mov $E,$SZ*4($ctx)
255 mov $F,$SZ*5($ctx)
256 mov $G,$SZ*6($ctx)
257 mov $H,$SZ*7($ctx)
258 jb .Lloop
259
260 mov $_rsp,%rsp
261 pop %r15
262 pop %r14
263 pop %r13
264 pop %r12
265 pop %rbp
266 pop %rbx
267
268 ret
269.size $func,.-$func
270___
271
272if ($SZ==4) {
273$code.=<<___;
274.align 64
275.type $TABLE,\@object
276$TABLE:
277 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
278 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
279 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
280 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
281 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
282 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
283 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
284 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
285 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
286 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
287 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
288 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
289 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
290 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
291 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
292 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
293___
294} else {
295$code.=<<___;
296.align 64
297.type $TABLE,\@object
298$TABLE:
299 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
300 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
301 .quad 0x3956c25bf348b538,0x59f111f1b605d019
302 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
303 .quad 0xd807aa98a3030242,0x12835b0145706fbe
304 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
305 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
306 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
307 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
308 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
309 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
310 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
311 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
312 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
313 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
314 .quad 0x06ca6351e003826f,0x142929670a0e6e70
315 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
316 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
317 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
318 .quad 0x81c2c92e47edaee6,0x92722c851482353b
319 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
320 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
321 .quad 0xd192e819d6ef5218,0xd69906245565a910
322 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
323 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
324 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
325 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
326 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
327 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
328 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
329 .quad 0x90befffa23631e28,0xa4506cebde82bde9
330 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
331 .quad 0xca273eceea26619c,0xd186b8c721c0c207
332 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
333 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
334 .quad 0x113f9804bef90dae,0x1b710b35131c471b
335 .quad 0x28db77f523047d84,0x32caab7b40c72493
336 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
337 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
338 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
339___
340}
341
342$code =~ s/\`([^\`]*)\`/eval $1/gem;
343print $code;
344close STDOUT;
diff --git a/src/lib/libcrypto/sha/sha.h b/src/lib/libcrypto/sha/sha.h
deleted file mode 100644
index 47a2c29f66..0000000000
--- a/src/lib/libcrypto/sha/sha.h
+++ /dev/null
@@ -1,203 +0,0 @@
1/* crypto/sha/sha.h */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#ifndef HEADER_SHA_H
60#define HEADER_SHA_H
61
62#include <openssl/e_os2.h>
63#include <stddef.h>
64
65#ifdef __cplusplus
66extern "C" {
67#endif
68
69#if defined(OPENSSL_NO_SHA) || (defined(OPENSSL_NO_SHA0) && defined(OPENSSL_NO_SHA1))
70#error SHA is disabled.
71#endif
72
73#if defined(OPENSSL_FIPS)
74#define FIPS_SHA_SIZE_T size_t
75#endif
76
77/*
78 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
79 * ! SHA_LONG has to be at least 32 bits wide. If it's wider, then !
80 * ! SHA_LONG_LOG2 has to be defined along. !
81 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
82 */
83
84#if defined(OPENSSL_SYS_WIN16) || defined(__LP32__)
85#define SHA_LONG unsigned long
86#elif defined(OPENSSL_SYS_CRAY) || defined(__ILP64__)
87#define SHA_LONG unsigned long
88#define SHA_LONG_LOG2 3
89#else
90#define SHA_LONG unsigned int
91#endif
92
93#define SHA_LBLOCK 16
94#define SHA_CBLOCK (SHA_LBLOCK*4) /* SHA treats input data as a
95 * contiguous array of 32 bit
96 * wide big-endian values. */
97#define SHA_LAST_BLOCK (SHA_CBLOCK-8)
98#define SHA_DIGEST_LENGTH 20
99
100typedef struct SHAstate_st
101 {
102 SHA_LONG h0,h1,h2,h3,h4;
103 SHA_LONG Nl,Nh;
104 SHA_LONG data[SHA_LBLOCK];
105 unsigned int num;
106 } SHA_CTX;
107
108#ifndef OPENSSL_NO_SHA0
109#ifdef OPENSSL_FIPS
110int private_SHA_Init(SHA_CTX *c);
111#endif
112int SHA_Init(SHA_CTX *c);
113int SHA_Update(SHA_CTX *c, const void *data, size_t len);
114int SHA_Final(unsigned char *md, SHA_CTX *c);
115unsigned char *SHA(const unsigned char *d, size_t n, unsigned char *md);
116void SHA_Transform(SHA_CTX *c, const unsigned char *data);
117#endif
118#ifndef OPENSSL_NO_SHA1
119int SHA1_Init(SHA_CTX *c);
120int SHA1_Update(SHA_CTX *c, const void *data, size_t len);
121int SHA1_Final(unsigned char *md, SHA_CTX *c);
122unsigned char *SHA1(const unsigned char *d, size_t n, unsigned char *md);
123void SHA1_Transform(SHA_CTX *c, const unsigned char *data);
124#endif
125
126#define SHA256_CBLOCK (SHA_LBLOCK*4) /* SHA-256 treats input data as a
127 * contiguous array of 32 bit
128 * wide big-endian values. */
129#define SHA224_DIGEST_LENGTH 28
130#define SHA256_DIGEST_LENGTH 32
131
132typedef struct SHA256state_st
133 {
134 SHA_LONG h[8];
135 SHA_LONG Nl,Nh;
136 SHA_LONG data[SHA_LBLOCK];
137 unsigned int num,md_len;
138 } SHA256_CTX;
139
140#ifndef OPENSSL_NO_SHA256
141int SHA224_Init(SHA256_CTX *c);
142int SHA224_Update(SHA256_CTX *c, const void *data, size_t len);
143int SHA224_Final(unsigned char *md, SHA256_CTX *c);
144unsigned char *SHA224(const unsigned char *d, size_t n,unsigned char *md);
145int SHA256_Init(SHA256_CTX *c);
146int SHA256_Update(SHA256_CTX *c, const void *data, size_t len);
147int SHA256_Final(unsigned char *md, SHA256_CTX *c);
148unsigned char *SHA256(const unsigned char *d, size_t n,unsigned char *md);
149void SHA256_Transform(SHA256_CTX *c, const unsigned char *data);
150#endif
151
152#define SHA384_DIGEST_LENGTH 48
153#define SHA512_DIGEST_LENGTH 64
154
155#ifndef OPENSSL_NO_SHA512
156/*
157 * Unlike 32-bit digest algorithms, SHA-512 *relies* on SHA_LONG64
158 * being exactly 64-bit wide. See Implementation Notes in sha512.c
159 * for further details.
160 */
161#define SHA512_CBLOCK (SHA_LBLOCK*8) /* SHA-512 treats input data as a
162 * contiguous array of 64 bit
163 * wide big-endian values. */
164#if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
165#define SHA_LONG64 unsigned __int64
166#define U64(C) C##UI64
167#elif defined(__arch64__)
168#define SHA_LONG64 unsigned long
169#define U64(C) C##UL
170#else
171#define SHA_LONG64 unsigned long long
172#define U64(C) C##ULL
173#endif
174
175typedef struct SHA512state_st
176 {
177 SHA_LONG64 h[8];
178 SHA_LONG64 Nl,Nh;
179 union {
180 SHA_LONG64 d[SHA_LBLOCK];
181 unsigned char p[SHA512_CBLOCK];
182 } u;
183 unsigned int num,md_len;
184 } SHA512_CTX;
185#endif
186
187#ifndef OPENSSL_NO_SHA512
188int SHA384_Init(SHA512_CTX *c);
189int SHA384_Update(SHA512_CTX *c, const void *data, size_t len);
190int SHA384_Final(unsigned char *md, SHA512_CTX *c);
191unsigned char *SHA384(const unsigned char *d, size_t n,unsigned char *md);
192int SHA512_Init(SHA512_CTX *c);
193int SHA512_Update(SHA512_CTX *c, const void *data, size_t len);
194int SHA512_Final(unsigned char *md, SHA512_CTX *c);
195unsigned char *SHA512(const unsigned char *d, size_t n,unsigned char *md);
196void SHA512_Transform(SHA512_CTX *c, const unsigned char *data);
197#endif
198
199#ifdef __cplusplus
200}
201#endif
202
203#endif
diff --git a/src/lib/libcrypto/sha/sha1_one.c b/src/lib/libcrypto/sha/sha1_one.c
deleted file mode 100644
index 4831174198..0000000000
--- a/src/lib/libcrypto/sha/sha1_one.c
+++ /dev/null
@@ -1,78 +0,0 @@
1/* crypto/sha/sha1_one.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#include <stdio.h>
60#include <string.h>
61#include <openssl/sha.h>
62#include <openssl/crypto.h>
63
64#if !defined(OPENSSL_NO_SHA1)
65unsigned char *SHA1(const unsigned char *d, size_t n, unsigned char *md)
66 {
67 SHA_CTX c;
68 static unsigned char m[SHA_DIGEST_LENGTH];
69
70 if (md == NULL) md=m;
71 if (!SHA1_Init(&c))
72 return NULL;
73 SHA1_Update(&c,d,n);
74 SHA1_Final(md,&c);
75 OPENSSL_cleanse(&c,sizeof(c));
76 return(md);
77 }
78#endif
diff --git a/src/lib/libcrypto/sha/sha1dgst.c b/src/lib/libcrypto/sha/sha1dgst.c
deleted file mode 100644
index d31f0781a0..0000000000
--- a/src/lib/libcrypto/sha/sha1dgst.c
+++ /dev/null
@@ -1,78 +0,0 @@
1/* crypto/sha/sha1dgst.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#include <openssl/opensslconf.h>
60#if !defined(OPENSSL_NO_SHA1) && !defined(OPENSSL_NO_SHA)
61
62#undef SHA_0
63#define SHA_1
64
65#include <openssl/opensslv.h>
66#ifdef OPENSSL_FIPS
67#include <openssl/fips.h>
68#endif
69
70
71const char SHA1_version[]="SHA1" OPENSSL_VERSION_PTEXT;
72
73/* The implementation is in ../md32_common.h */
74
75#include "sha_locl.h"
76
77#endif
78
diff --git a/src/lib/libcrypto/sha/sha256.c b/src/lib/libcrypto/sha/sha256.c
deleted file mode 100644
index 3256a83e98..0000000000
--- a/src/lib/libcrypto/sha/sha256.c
+++ /dev/null
@@ -1,292 +0,0 @@
1/* crypto/sha/sha256.c */
2/* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
6 */
7#include <openssl/opensslconf.h>
8#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
9
10#include <stdlib.h>
11#include <string.h>
12
13#include <openssl/crypto.h>
14#include <openssl/sha.h>
15#ifdef OPENSSL_FIPS
16#include <openssl/fips.h>
17#endif
18
19#include <openssl/opensslv.h>
20
21const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
22
23int SHA224_Init (SHA256_CTX *c)
24 {
25#ifdef OPENSSL_FIPS
26 FIPS_selftest_check();
27#endif
28 c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
29 c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
30 c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
31 c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
32 c->Nl=0; c->Nh=0;
33 c->num=0; c->md_len=SHA224_DIGEST_LENGTH;
34 return 1;
35 }
36
37int SHA256_Init (SHA256_CTX *c)
38 {
39#ifdef OPENSSL_FIPS
40 FIPS_selftest_check();
41#endif
42 c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
43 c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
44 c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
45 c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
46 c->Nl=0; c->Nh=0;
47 c->num=0; c->md_len=SHA256_DIGEST_LENGTH;
48 return 1;
49 }
50
51unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
52 {
53 SHA256_CTX c;
54 static unsigned char m[SHA224_DIGEST_LENGTH];
55
56 if (md == NULL) md=m;
57 SHA224_Init(&c);
58 SHA256_Update(&c,d,n);
59 SHA256_Final(md,&c);
60 OPENSSL_cleanse(&c,sizeof(c));
61 return(md);
62 }
63
64unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
65 {
66 SHA256_CTX c;
67 static unsigned char m[SHA256_DIGEST_LENGTH];
68
69 if (md == NULL) md=m;
70 SHA256_Init(&c);
71 SHA256_Update(&c,d,n);
72 SHA256_Final(md,&c);
73 OPENSSL_cleanse(&c,sizeof(c));
74 return(md);
75 }
76
77int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
78{ return SHA256_Update (c,data,len); }
79int SHA224_Final (unsigned char *md, SHA256_CTX *c)
80{ return SHA256_Final (md,c); }
81
82#define DATA_ORDER_IS_BIG_ENDIAN
83
84#define HASH_LONG SHA_LONG
85#define HASH_CTX SHA256_CTX
86#define HASH_CBLOCK SHA_CBLOCK
87/*
88 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
89 * default: case below covers for it. It's not clear however if it's
90 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
91 * but if it is, then default: case shall be extended. For reference.
92 * Idea behind separate cases for pre-defined lenghts is to let the
93 * compiler decide if it's appropriate to unroll small loops.
94 */
95#define HASH_MAKE_STRING(c,s) do { \
96 unsigned long ll; \
97 unsigned int xn; \
98 switch ((c)->md_len) \
99 { case SHA224_DIGEST_LENGTH: \
100 for (xn=0;xn<SHA224_DIGEST_LENGTH/4;xn++) \
101 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
102 break; \
103 case SHA256_DIGEST_LENGTH: \
104 for (xn=0;xn<SHA256_DIGEST_LENGTH/4;xn++) \
105 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
106 break; \
107 default: \
108 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
109 return 0; \
110 for (xn=0;xn<(c)->md_len/4;xn++) \
111 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
112 break; \
113 } \
114 } while (0)
115
116#define HASH_UPDATE SHA256_Update
117#define HASH_TRANSFORM SHA256_Transform
118#define HASH_FINAL SHA256_Final
119#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
120#ifndef SHA256_ASM
121static
122#endif
123void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
124
125#include "md32_common.h"
126
127#ifndef SHA256_ASM
128static const SHA_LONG K256[64] = {
129 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
130 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
131 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
132 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
133 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
134 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
135 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
136 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
137 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
138 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
139 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
140 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
141 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
142 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
143 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
144 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
145
146/*
147 * FIPS specification refers to right rotations, while our ROTATE macro
148 * is left one. This is why you might notice that rotation coefficients
149 * differ from those observed in FIPS document by 32-N...
150 */
151#define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
152#define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
153#define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
154#define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
155
156#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
157#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
158
159#ifdef OPENSSL_SMALL_FOOTPRINT
160
161static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
162 {
163 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
164 SHA_LONG X[16],l;
165 int i;
166 const unsigned char *data=in;
167
168 while (num--) {
169
170 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
171 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
172
173 for (i=0;i<16;i++)
174 {
175 HOST_c2l(data,l); T1 = X[i] = l;
176 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
177 T2 = Sigma0(a) + Maj(a,b,c);
178 h = g; g = f; f = e; e = d + T1;
179 d = c; c = b; b = a; a = T1 + T2;
180 }
181
182 for (;i<64;i++)
183 {
184 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
185 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
186
187 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
188 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
189 T2 = Sigma0(a) + Maj(a,b,c);
190 h = g; g = f; f = e; e = d + T1;
191 d = c; c = b; b = a; a = T1 + T2;
192 }
193
194 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
195 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
196
197 }
198}
199
200#else
201
202#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
203 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
204 h = Sigma0(a) + Maj(a,b,c); \
205 d += T1; h += T1; } while (0)
206
207#define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
208 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
209 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
210 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
211 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
212
213static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
214 {
215 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
216 SHA_LONG X[16];
217 int i;
218 const unsigned char *data=in;
219 const union { long one; char little; } is_endian = {1};
220
221 while (num--) {
222
223 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
224 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
225
226 if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
227 {
228 const SHA_LONG *W=(const SHA_LONG *)data;
229
230 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
231 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
232 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
233 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
234 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
235 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
236 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
237 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
238 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
239 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
240 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
241 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
242 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
243 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
244 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
245 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
246
247 data += SHA256_CBLOCK;
248 }
249 else
250 {
251 SHA_LONG l;
252
253 HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
254 HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
255 HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
256 HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
257 HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
258 HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
259 HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
260 HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
261 HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
262 HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
263 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
264 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
265 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
266 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
267 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
268 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
269 }
270
271 for (i=16;i<64;i+=8)
272 {
273 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
274 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
275 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
276 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
277 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
278 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
279 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
280 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
281 }
282
283 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
284 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
285
286 }
287 }
288
289#endif
290#endif /* SHA256_ASM */
291
292#endif /* OPENSSL_NO_SHA256 */
diff --git a/src/lib/libcrypto/sha/sha512.c b/src/lib/libcrypto/sha/sha512.c
deleted file mode 100644
index f5ed468b85..0000000000
--- a/src/lib/libcrypto/sha/sha512.c
+++ /dev/null
@@ -1,547 +0,0 @@
1/* crypto/sha/sha512.c */
2/* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
6 */
7#include <openssl/opensslconf.h>
8#ifdef OPENSSL_FIPS
9#include <openssl/fips.h>
10#endif
11
12#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
13/*
14 * IMPLEMENTATION NOTES.
15 *
16 * As you might have noticed 32-bit hash algorithms:
17 *
18 * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
19 * - optimized versions implement two transform functions: one operating
20 * on [aligned] data in host byte order and one - on data in input
21 * stream byte order;
22 * - share common byte-order neutral collector and padding function
23 * implementations, ../md32_common.h;
24 *
25 * Neither of the above applies to this SHA-512 implementations. Reasons
26 * [in reverse order] are:
27 *
28 * - it's the only 64-bit hash algorithm for the moment of this writing,
29 * there is no need for common collector/padding implementation [yet];
30 * - by supporting only one transform function [which operates on
31 * *aligned* data in input stream byte order, big-endian in this case]
32 * we minimize burden of maintenance in two ways: a) collector/padding
33 * function is simpler; b) only one transform function to stare at;
34 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
35 * apply a number of optimizations to mitigate potential performance
36 * penalties caused by previous design decision;
37 *
38 * Caveat lector.
39 *
40 * Implementation relies on the fact that "long long" is 64-bit on
41 * both 32- and 64-bit platforms. If some compiler vendor comes up
42 * with 128-bit long long, adjustment to sha.h would be required.
43 * As this implementation relies on 64-bit integer type, it's totally
44 * inappropriate for platforms which don't support it, most notably
45 * 16-bit platforms.
46 * <appro@fy.chalmers.se>
47 */
48#include <stdlib.h>
49#include <string.h>
50
51#include <openssl/crypto.h>
52#include <openssl/sha.h>
53#include <openssl/opensslv.h>
54
55#include "cryptlib.h"
56
57const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT;
58
59#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
60 defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
61 defined(__s390__) || defined(__s390x__) || \
62 defined(SHA512_ASM)
63#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
64#endif
65
66int SHA384_Init (SHA512_CTX *c)
67 {
68#ifdef OPENSSL_FIPS
69 FIPS_selftest_check();
70#endif
71 c->h[0]=U64(0xcbbb9d5dc1059ed8);
72 c->h[1]=U64(0x629a292a367cd507);
73 c->h[2]=U64(0x9159015a3070dd17);
74 c->h[3]=U64(0x152fecd8f70e5939);
75 c->h[4]=U64(0x67332667ffc00b31);
76 c->h[5]=U64(0x8eb44a8768581511);
77 c->h[6]=U64(0xdb0c2e0d64f98fa7);
78 c->h[7]=U64(0x47b5481dbefa4fa4);
79 c->Nl=0; c->Nh=0;
80 c->num=0; c->md_len=SHA384_DIGEST_LENGTH;
81 return 1;
82 }
83
84int SHA512_Init (SHA512_CTX *c)
85 {
86#ifdef OPENSSL_FIPS
87 FIPS_selftest_check();
88#endif
89 c->h[0]=U64(0x6a09e667f3bcc908);
90 c->h[1]=U64(0xbb67ae8584caa73b);
91 c->h[2]=U64(0x3c6ef372fe94f82b);
92 c->h[3]=U64(0xa54ff53a5f1d36f1);
93 c->h[4]=U64(0x510e527fade682d1);
94 c->h[5]=U64(0x9b05688c2b3e6c1f);
95 c->h[6]=U64(0x1f83d9abfb41bd6b);
96 c->h[7]=U64(0x5be0cd19137e2179);
97 c->Nl=0; c->Nh=0;
98 c->num=0; c->md_len=SHA512_DIGEST_LENGTH;
99 return 1;
100 }
101
102#ifndef SHA512_ASM
103static
104#endif
105void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
106
107int SHA512_Final (unsigned char *md, SHA512_CTX *c)
108 {
109 unsigned char *p=(unsigned char *)c->u.p;
110 size_t n=c->num;
111
112 p[n]=0x80; /* There always is a room for one */
113 n++;
114 if (n > (sizeof(c->u)-16))
115 memset (p+n,0,sizeof(c->u)-n), n=0,
116 sha512_block_data_order (c,p,1);
117
118 memset (p+n,0,sizeof(c->u)-16-n);
119#ifdef B_ENDIAN
120 c->u.d[SHA_LBLOCK-2] = c->Nh;
121 c->u.d[SHA_LBLOCK-1] = c->Nl;
122#else
123 p[sizeof(c->u)-1] = (unsigned char)(c->Nl);
124 p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8);
125 p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16);
126 p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24);
127 p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32);
128 p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40);
129 p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48);
130 p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56);
131 p[sizeof(c->u)-9] = (unsigned char)(c->Nh);
132 p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
133 p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
134 p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
135 p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
136 p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
137 p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
138 p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
139#endif
140
141 sha512_block_data_order (c,p,1);
142
143 if (md==0) return 0;
144
145 switch (c->md_len)
146 {
147 /* Let compiler decide if it's appropriate to unroll... */
148 case SHA384_DIGEST_LENGTH:
149 for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
150 {
151 SHA_LONG64 t = c->h[n];
152
153 *(md++) = (unsigned char)(t>>56);
154 *(md++) = (unsigned char)(t>>48);
155 *(md++) = (unsigned char)(t>>40);
156 *(md++) = (unsigned char)(t>>32);
157 *(md++) = (unsigned char)(t>>24);
158 *(md++) = (unsigned char)(t>>16);
159 *(md++) = (unsigned char)(t>>8);
160 *(md++) = (unsigned char)(t);
161 }
162 break;
163 case SHA512_DIGEST_LENGTH:
164 for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
165 {
166 SHA_LONG64 t = c->h[n];
167
168 *(md++) = (unsigned char)(t>>56);
169 *(md++) = (unsigned char)(t>>48);
170 *(md++) = (unsigned char)(t>>40);
171 *(md++) = (unsigned char)(t>>32);
172 *(md++) = (unsigned char)(t>>24);
173 *(md++) = (unsigned char)(t>>16);
174 *(md++) = (unsigned char)(t>>8);
175 *(md++) = (unsigned char)(t);
176 }
177 break;
178 /* ... as well as make sure md_len is not abused. */
179 default: return 0;
180 }
181
182 return 1;
183 }
184
185int SHA384_Final (unsigned char *md,SHA512_CTX *c)
186{ return SHA512_Final (md,c); }
187
188int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
189 {
190 SHA_LONG64 l;
191 unsigned char *p=c->u.p;
192 const unsigned char *data=(const unsigned char *)_data;
193
194 if (len==0) return 1;
195
196 l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
197 if (l < c->Nl) c->Nh++;
198 if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
199 c->Nl=l;
200
201 if (c->num != 0)
202 {
203 size_t n = sizeof(c->u) - c->num;
204
205 if (len < n)
206 {
207 memcpy (p+c->num,data,len), c->num += len;
208 return 1;
209 }
210 else {
211 memcpy (p+c->num,data,n), c->num = 0;
212 len-=n, data+=n;
213 sha512_block_data_order (c,p,1);
214 }
215 }
216
217 if (len >= sizeof(c->u))
218 {
219#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
220 if ((size_t)data%sizeof(c->u.d[0]) != 0)
221 while (len >= sizeof(c->u))
222 memcpy (p,data,sizeof(c->u)),
223 sha512_block_data_order (c,p,1),
224 len -= sizeof(c->u),
225 data += sizeof(c->u);
226 else
227#endif
228 sha512_block_data_order (c,data,len/sizeof(c->u)),
229 data += len,
230 len %= sizeof(c->u),
231 data -= len;
232 }
233
234 if (len != 0) memcpy (p,data,len), c->num = (int)len;
235
236 return 1;
237 }
238
239int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
240{ return SHA512_Update (c,data,len); }
241
242void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
243{ sha512_block_data_order (c,data,1); }
244
245unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
246 {
247 SHA512_CTX c;
248 static unsigned char m[SHA384_DIGEST_LENGTH];
249
250 if (md == NULL) md=m;
251 SHA384_Init(&c);
252 SHA512_Update(&c,d,n);
253 SHA512_Final(md,&c);
254 OPENSSL_cleanse(&c,sizeof(c));
255 return(md);
256 }
257
258unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
259 {
260 SHA512_CTX c;
261 static unsigned char m[SHA512_DIGEST_LENGTH];
262
263 if (md == NULL) md=m;
264 SHA512_Init(&c);
265 SHA512_Update(&c,d,n);
266 SHA512_Final(md,&c);
267 OPENSSL_cleanse(&c,sizeof(c));
268 return(md);
269 }
270
271#ifndef SHA512_ASM
272static const SHA_LONG64 K512[80] = {
273 U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
274 U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
275 U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
276 U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
277 U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
278 U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
279 U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
280 U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
281 U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
282 U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
283 U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
284 U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
285 U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
286 U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
287 U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
288 U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
289 U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
290 U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
291 U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
292 U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
293 U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
294 U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
295 U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
296 U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
297 U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
298 U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
299 U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
300 U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
301 U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
302 U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
303 U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
304 U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
305 U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
306 U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
307 U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
308 U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
309 U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
310 U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
311 U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
312 U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
313
314#ifndef PEDANTIC
315# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
316# if defined(__x86_64) || defined(__x86_64__)
317# define ROTR(a,n) ({ unsigned long ret; \
318 asm ("rorq %1,%0" \
319 : "=r"(ret) \
320 : "J"(n),"0"(a) \
321 : "cc"); ret; })
322# if !defined(B_ENDIAN)
323# define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
324 asm ("bswapq %0" \
325 : "=r"(ret) \
326 : "0"(ret)); ret; })
327# endif
328# elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
329# if defined(I386_ONLY)
330# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
331 unsigned int hi=p[0],lo=p[1]; \
332 asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
333 "roll $16,%%eax; roll $16,%%edx; "\
334 "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
335 : "=a"(lo),"=d"(hi) \
336 : "0"(lo),"1"(hi) : "cc"); \
337 ((SHA_LONG64)hi)<<32|lo; })
338# else
339# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
340 unsigned int hi=p[0],lo=p[1]; \
341 asm ("bswapl %0; bswapl %1;" \
342 : "=r"(lo),"=r"(hi) \
343 : "0"(lo),"1"(hi)); \
344 ((SHA_LONG64)hi)<<32|lo; })
345# endif
346# elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
347# define ROTR(a,n) ({ unsigned long ret; \
348 asm ("rotrdi %0,%1,%2" \
349 : "=r"(ret) \
350 : "r"(a),"K"(n)); ret; })
351# endif
352# elif defined(_MSC_VER)
353# if defined(_WIN64) /* applies to both IA-64 and AMD64 */
354# define ROTR(a,n) _rotr64((a),n)
355# endif
356# if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
357# if defined(I386_ONLY)
358 static SHA_LONG64 __fastcall __pull64be(const void *x)
359 { _asm mov edx, [ecx + 0]
360 _asm mov eax, [ecx + 4]
361 _asm xchg dh,dl
362 _asm xchg ah,al
363 _asm rol edx,16
364 _asm rol eax,16
365 _asm xchg dh,dl
366 _asm xchg ah,al
367 }
368# else
369 static SHA_LONG64 __fastcall __pull64be(const void *x)
370 { _asm mov edx, [ecx + 0]
371 _asm mov eax, [ecx + 4]
372 _asm bswap edx
373 _asm bswap eax
374 }
375# endif
376# define PULL64(x) __pull64be(&(x))
377# if _MSC_VER<=1200
378# pragma inline_depth(0)
379# endif
380# endif
381# endif
382#endif
383
384#ifndef PULL64
385#define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
386#define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
387#endif
388
389#ifndef ROTR
390#define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
391#endif
392
393#define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
394#define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
395#define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
396#define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
397
398#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
399#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
400
401#if defined(OPENSSL_IA32_SSE2) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY)
402#define GO_FOR_SSE2(ctx,in,num) do { \
403 void sha512_block_sse2(void *,const void *,size_t); \
404 if (!(OPENSSL_ia32cap_P & (1<<26))) break; \
405 sha512_block_sse2(ctx->h,in,num); return; \
406 } while (0)
407#endif
408
409#ifdef OPENSSL_SMALL_FOOTPRINT
410
411static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
412 {
413 const SHA_LONG64 *W=in;
414 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
415 SHA_LONG64 X[16];
416 int i;
417
418#ifdef GO_FOR_SSE2
419 GO_FOR_SSE2(ctx,in,num);
420#endif
421
422 while (num--) {
423
424 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
425 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
426
427 for (i=0;i<16;i++)
428 {
429#ifdef B_ENDIAN
430 T1 = X[i] = W[i];
431#else
432 T1 = X[i] = PULL64(W[i]);
433#endif
434 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
435 T2 = Sigma0(a) + Maj(a,b,c);
436 h = g; g = f; f = e; e = d + T1;
437 d = c; c = b; b = a; a = T1 + T2;
438 }
439
440 for (;i<80;i++)
441 {
442 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
443 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
444
445 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
446 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
447 T2 = Sigma0(a) + Maj(a,b,c);
448 h = g; g = f; f = e; e = d + T1;
449 d = c; c = b; b = a; a = T1 + T2;
450 }
451
452 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
453 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
454
455 W+=SHA_LBLOCK;
456 }
457 }
458
459#else
460
461#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
462 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
463 h = Sigma0(a) + Maj(a,b,c); \
464 d += T1; h += T1; } while (0)
465
466#define ROUND_16_80(i,a,b,c,d,e,f,g,h,X) do { \
467 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
468 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
469 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
470 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
471
472static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
473 {
474 const SHA_LONG64 *W=in;
475 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
476 SHA_LONG64 X[16];
477 int i;
478
479#ifdef GO_FOR_SSE2
480 GO_FOR_SSE2(ctx,in,num);
481#endif
482
483 while (num--) {
484
485 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
486 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
487
488#ifdef B_ENDIAN
489 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
490 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
491 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
492 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
493 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
494 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
495 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
496 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
497 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
498 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
499 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
500 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
501 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
502 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
503 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
504 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
505#else
506 T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
507 T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
508 T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
509 T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
510 T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
511 T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
512 T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
513 T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
514 T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
515 T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
516 T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
517 T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
518 T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
519 T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
520 T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
521 T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
522#endif
523
524 for (i=16;i<80;i+=8)
525 {
526 ROUND_16_80(i+0,a,b,c,d,e,f,g,h,X);
527 ROUND_16_80(i+1,h,a,b,c,d,e,f,g,X);
528 ROUND_16_80(i+2,g,h,a,b,c,d,e,f,X);
529 ROUND_16_80(i+3,f,g,h,a,b,c,d,e,X);
530 ROUND_16_80(i+4,e,f,g,h,a,b,c,d,X);
531 ROUND_16_80(i+5,d,e,f,g,h,a,b,c,X);
532 ROUND_16_80(i+6,c,d,e,f,g,h,a,b,X);
533 ROUND_16_80(i+7,b,c,d,e,f,g,h,a,X);
534 }
535
536 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
537 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
538
539 W+=SHA_LBLOCK;
540 }
541 }
542
543#endif
544
545#endif /* SHA512_ASM */
546
547#endif /* OPENSSL_NO_SHA512 */
diff --git a/src/lib/libcrypto/sha/sha_locl.h b/src/lib/libcrypto/sha/sha_locl.h
deleted file mode 100644
index da46ddfe79..0000000000
--- a/src/lib/libcrypto/sha/sha_locl.h
+++ /dev/null
@@ -1,446 +0,0 @@
1/* crypto/sha/sha_locl.h */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#include <stdlib.h>
60#include <string.h>
61
62#include <openssl/opensslconf.h>
63#include <openssl/sha.h>
64
65#define DATA_ORDER_IS_BIG_ENDIAN
66
67#define HASH_LONG SHA_LONG
68#define HASH_CTX SHA_CTX
69#define HASH_CBLOCK SHA_CBLOCK
70#define HASH_MAKE_STRING(c,s) do { \
71 unsigned long ll; \
72 ll=(c)->h0; HOST_l2c(ll,(s)); \
73 ll=(c)->h1; HOST_l2c(ll,(s)); \
74 ll=(c)->h2; HOST_l2c(ll,(s)); \
75 ll=(c)->h3; HOST_l2c(ll,(s)); \
76 ll=(c)->h4; HOST_l2c(ll,(s)); \
77 } while (0)
78
79#if defined(SHA_0)
80
81# define HASH_UPDATE SHA_Update
82# define HASH_TRANSFORM SHA_Transform
83# define HASH_FINAL SHA_Final
84# define HASH_INIT SHA_Init
85# define HASH_BLOCK_DATA_ORDER sha_block_data_order
86# define Xupdate(a,ix,ia,ib,ic,id) (ix=(a)=(ia^ib^ic^id))
87
88static void sha_block_data_order (SHA_CTX *c, const void *p,size_t num);
89
90#elif defined(SHA_1)
91
92# define HASH_UPDATE SHA1_Update
93# define HASH_TRANSFORM SHA1_Transform
94# define HASH_FINAL SHA1_Final
95# define HASH_INIT SHA1_Init
96# define HASH_BLOCK_DATA_ORDER sha1_block_data_order
97# if defined(__MWERKS__) && defined(__MC68K__)
98 /* Metrowerks for Motorola fails otherwise:-( <appro@fy.chalmers.se> */
99# define Xupdate(a,ix,ia,ib,ic,id) do { (a)=(ia^ib^ic^id); \
100 ix=(a)=ROTATE((a),1); \
101 } while (0)
102# else
103# define Xupdate(a,ix,ia,ib,ic,id) ( (a)=(ia^ib^ic^id), \
104 ix=(a)=ROTATE((a),1) \
105 )
106# endif
107
108#ifndef SHA1_ASM
109static
110#endif
111void sha1_block_data_order (SHA_CTX *c, const void *p,size_t num);
112
113#else
114# error "Either SHA_0 or SHA_1 must be defined."
115#endif
116
117#include "md32_common.h"
118
119#define INIT_DATA_h0 0x67452301UL
120#define INIT_DATA_h1 0xefcdab89UL
121#define INIT_DATA_h2 0x98badcfeUL
122#define INIT_DATA_h3 0x10325476UL
123#define INIT_DATA_h4 0xc3d2e1f0UL
124
125#if defined(SHA_0) && defined(OPENSSL_FIPS)
126FIPS_NON_FIPS_MD_Init(SHA)
127#else
128int HASH_INIT (SHA_CTX *c)
129#endif
130 {
131#if defined(SHA_1) && defined(OPENSSL_FIPS)
132 FIPS_selftest_check();
133#endif
134 c->h0=INIT_DATA_h0;
135 c->h1=INIT_DATA_h1;
136 c->h2=INIT_DATA_h2;
137 c->h3=INIT_DATA_h3;
138 c->h4=INIT_DATA_h4;
139 c->Nl=0;
140 c->Nh=0;
141 c->num=0;
142 return 1;
143 }
144
145#define K_00_19 0x5a827999UL
146#define K_20_39 0x6ed9eba1UL
147#define K_40_59 0x8f1bbcdcUL
148#define K_60_79 0xca62c1d6UL
149
150/* As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be
151 * simplified to the code in F_00_19. Wei attributes these optimisations
152 * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
153 * #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
154 * I've just become aware of another tweak to be made, again from Wei Dai,
155 * in F_40_59, (x&a)|(y&a) -> (x|y)&a
156 */
157#define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
158#define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
159#define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d)))
160#define F_60_79(b,c,d) F_20_39(b,c,d)
161
162#ifndef OPENSSL_SMALL_FOOTPRINT
163
164#define BODY_00_15(i,a,b,c,d,e,f,xi) \
165 (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
166 (b)=ROTATE((b),30);
167
168#define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
169 Xupdate(f,xi,xa,xb,xc,xd); \
170 (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
171 (b)=ROTATE((b),30);
172
173#define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
174 Xupdate(f,xi,xa,xb,xc,xd); \
175 (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
176 (b)=ROTATE((b),30);
177
178#define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
179 Xupdate(f,xa,xa,xb,xc,xd); \
180 (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
181 (b)=ROTATE((b),30);
182
183#define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
184 Xupdate(f,xa,xa,xb,xc,xd); \
185 (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
186 (b)=ROTATE((b),30);
187
188#define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
189 Xupdate(f,xa,xa,xb,xc,xd); \
190 (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
191 (b)=ROTATE((b),30);
192
193#ifdef X
194#undef X
195#endif
196#ifndef MD32_XARRAY
197 /*
198 * Originally X was an array. As it's automatic it's natural
199 * to expect RISC compiler to accomodate at least part of it in
200 * the register bank, isn't it? Unfortunately not all compilers
201 * "find" this expectation reasonable:-( On order to make such
202 * compilers generate better code I replace X[] with a bunch of
203 * X0, X1, etc. See the function body below...
204 * <appro@fy.chalmers.se>
205 */
206# define X(i) XX##i
207#else
208 /*
209 * However! Some compilers (most notably HP C) get overwhelmed by
210 * that many local variables so that we have to have the way to
211 * fall down to the original behavior.
212 */
213# define X(i) XX[i]
214#endif
215
216#if !defined(SHA_1) || !defined(SHA1_ASM)
217static void HASH_BLOCK_DATA_ORDER (SHA_CTX *c, const void *p, size_t num)
218 {
219 const unsigned char *data=p;
220 register unsigned MD32_REG_T A,B,C,D,E,T,l;
221#ifndef MD32_XARRAY
222 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
223 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
224#else
225 SHA_LONG XX[16];
226#endif
227
228 A=c->h0;
229 B=c->h1;
230 C=c->h2;
231 D=c->h3;
232 E=c->h4;
233
234 for (;;)
235 {
236 const union { long one; char little; } is_endian = {1};
237
238 if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)p%4)==0)
239 {
240 const SHA_LONG *W=(const SHA_LONG *)data;
241
242 X( 0) = W[0]; X( 1) = W[ 1];
243 BODY_00_15( 0,A,B,C,D,E,T,X( 0)); X( 2) = W[ 2];
244 BODY_00_15( 1,T,A,B,C,D,E,X( 1)); X( 3) = W[ 3];
245 BODY_00_15( 2,E,T,A,B,C,D,X( 2)); X( 4) = W[ 4];
246 BODY_00_15( 3,D,E,T,A,B,C,X( 3)); X( 5) = W[ 5];
247 BODY_00_15( 4,C,D,E,T,A,B,X( 4)); X( 6) = W[ 6];
248 BODY_00_15( 5,B,C,D,E,T,A,X( 5)); X( 7) = W[ 7];
249 BODY_00_15( 6,A,B,C,D,E,T,X( 6)); X( 8) = W[ 8];
250 BODY_00_15( 7,T,A,B,C,D,E,X( 7)); X( 9) = W[ 9];
251 BODY_00_15( 8,E,T,A,B,C,D,X( 8)); X(10) = W[10];
252 BODY_00_15( 9,D,E,T,A,B,C,X( 9)); X(11) = W[11];
253 BODY_00_15(10,C,D,E,T,A,B,X(10)); X(12) = W[12];
254 BODY_00_15(11,B,C,D,E,T,A,X(11)); X(13) = W[13];
255 BODY_00_15(12,A,B,C,D,E,T,X(12)); X(14) = W[14];
256 BODY_00_15(13,T,A,B,C,D,E,X(13)); X(15) = W[15];
257 BODY_00_15(14,E,T,A,B,C,D,X(14));
258 BODY_00_15(15,D,E,T,A,B,C,X(15));
259
260 data += SHA_CBLOCK;
261 }
262 else
263 {
264 HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l;
265 BODY_00_15( 0,A,B,C,D,E,T,X( 0)); HOST_c2l(data,l); X( 2)=l;
266 BODY_00_15( 1,T,A,B,C,D,E,X( 1)); HOST_c2l(data,l); X( 3)=l;
267 BODY_00_15( 2,E,T,A,B,C,D,X( 2)); HOST_c2l(data,l); X( 4)=l;
268 BODY_00_15( 3,D,E,T,A,B,C,X( 3)); HOST_c2l(data,l); X( 5)=l;
269 BODY_00_15( 4,C,D,E,T,A,B,X( 4)); HOST_c2l(data,l); X( 6)=l;
270 BODY_00_15( 5,B,C,D,E,T,A,X( 5)); HOST_c2l(data,l); X( 7)=l;
271 BODY_00_15( 6,A,B,C,D,E,T,X( 6)); HOST_c2l(data,l); X( 8)=l;
272 BODY_00_15( 7,T,A,B,C,D,E,X( 7)); HOST_c2l(data,l); X( 9)=l;
273 BODY_00_15( 8,E,T,A,B,C,D,X( 8)); HOST_c2l(data,l); X(10)=l;
274 BODY_00_15( 9,D,E,T,A,B,C,X( 9)); HOST_c2l(data,l); X(11)=l;
275 BODY_00_15(10,C,D,E,T,A,B,X(10)); HOST_c2l(data,l); X(12)=l;
276 BODY_00_15(11,B,C,D,E,T,A,X(11)); HOST_c2l(data,l); X(13)=l;
277 BODY_00_15(12,A,B,C,D,E,T,X(12)); HOST_c2l(data,l); X(14)=l;
278 BODY_00_15(13,T,A,B,C,D,E,X(13)); HOST_c2l(data,l); X(15)=l;
279 BODY_00_15(14,E,T,A,B,C,D,X(14));
280 BODY_00_15(15,D,E,T,A,B,C,X(15));
281 }
282
283 BODY_16_19(16,C,D,E,T,A,B,X( 0),X( 0),X( 2),X( 8),X(13));
284 BODY_16_19(17,B,C,D,E,T,A,X( 1),X( 1),X( 3),X( 9),X(14));
285 BODY_16_19(18,A,B,C,D,E,T,X( 2),X( 2),X( 4),X(10),X(15));
286 BODY_16_19(19,T,A,B,C,D,E,X( 3),X( 3),X( 5),X(11),X( 0));
287
288 BODY_20_31(20,E,T,A,B,C,D,X( 4),X( 4),X( 6),X(12),X( 1));
289 BODY_20_31(21,D,E,T,A,B,C,X( 5),X( 5),X( 7),X(13),X( 2));
290 BODY_20_31(22,C,D,E,T,A,B,X( 6),X( 6),X( 8),X(14),X( 3));
291 BODY_20_31(23,B,C,D,E,T,A,X( 7),X( 7),X( 9),X(15),X( 4));
292 BODY_20_31(24,A,B,C,D,E,T,X( 8),X( 8),X(10),X( 0),X( 5));
293 BODY_20_31(25,T,A,B,C,D,E,X( 9),X( 9),X(11),X( 1),X( 6));
294 BODY_20_31(26,E,T,A,B,C,D,X(10),X(10),X(12),X( 2),X( 7));
295 BODY_20_31(27,D,E,T,A,B,C,X(11),X(11),X(13),X( 3),X( 8));
296 BODY_20_31(28,C,D,E,T,A,B,X(12),X(12),X(14),X( 4),X( 9));
297 BODY_20_31(29,B,C,D,E,T,A,X(13),X(13),X(15),X( 5),X(10));
298 BODY_20_31(30,A,B,C,D,E,T,X(14),X(14),X( 0),X( 6),X(11));
299 BODY_20_31(31,T,A,B,C,D,E,X(15),X(15),X( 1),X( 7),X(12));
300
301 BODY_32_39(32,E,T,A,B,C,D,X( 0),X( 2),X( 8),X(13));
302 BODY_32_39(33,D,E,T,A,B,C,X( 1),X( 3),X( 9),X(14));
303 BODY_32_39(34,C,D,E,T,A,B,X( 2),X( 4),X(10),X(15));
304 BODY_32_39(35,B,C,D,E,T,A,X( 3),X( 5),X(11),X( 0));
305 BODY_32_39(36,A,B,C,D,E,T,X( 4),X( 6),X(12),X( 1));
306 BODY_32_39(37,T,A,B,C,D,E,X( 5),X( 7),X(13),X( 2));
307 BODY_32_39(38,E,T,A,B,C,D,X( 6),X( 8),X(14),X( 3));
308 BODY_32_39(39,D,E,T,A,B,C,X( 7),X( 9),X(15),X( 4));
309
310 BODY_40_59(40,C,D,E,T,A,B,X( 8),X(10),X( 0),X( 5));
311 BODY_40_59(41,B,C,D,E,T,A,X( 9),X(11),X( 1),X( 6));
312 BODY_40_59(42,A,B,C,D,E,T,X(10),X(12),X( 2),X( 7));
313 BODY_40_59(43,T,A,B,C,D,E,X(11),X(13),X( 3),X( 8));
314 BODY_40_59(44,E,T,A,B,C,D,X(12),X(14),X( 4),X( 9));
315 BODY_40_59(45,D,E,T,A,B,C,X(13),X(15),X( 5),X(10));
316 BODY_40_59(46,C,D,E,T,A,B,X(14),X( 0),X( 6),X(11));
317 BODY_40_59(47,B,C,D,E,T,A,X(15),X( 1),X( 7),X(12));
318 BODY_40_59(48,A,B,C,D,E,T,X( 0),X( 2),X( 8),X(13));
319 BODY_40_59(49,T,A,B,C,D,E,X( 1),X( 3),X( 9),X(14));
320 BODY_40_59(50,E,T,A,B,C,D,X( 2),X( 4),X(10),X(15));
321 BODY_40_59(51,D,E,T,A,B,C,X( 3),X( 5),X(11),X( 0));
322 BODY_40_59(52,C,D,E,T,A,B,X( 4),X( 6),X(12),X( 1));
323 BODY_40_59(53,B,C,D,E,T,A,X( 5),X( 7),X(13),X( 2));
324 BODY_40_59(54,A,B,C,D,E,T,X( 6),X( 8),X(14),X( 3));
325 BODY_40_59(55,T,A,B,C,D,E,X( 7),X( 9),X(15),X( 4));
326 BODY_40_59(56,E,T,A,B,C,D,X( 8),X(10),X( 0),X( 5));
327 BODY_40_59(57,D,E,T,A,B,C,X( 9),X(11),X( 1),X( 6));
328 BODY_40_59(58,C,D,E,T,A,B,X(10),X(12),X( 2),X( 7));
329 BODY_40_59(59,B,C,D,E,T,A,X(11),X(13),X( 3),X( 8));
330
331 BODY_60_79(60,A,B,C,D,E,T,X(12),X(14),X( 4),X( 9));
332 BODY_60_79(61,T,A,B,C,D,E,X(13),X(15),X( 5),X(10));
333 BODY_60_79(62,E,T,A,B,C,D,X(14),X( 0),X( 6),X(11));
334 BODY_60_79(63,D,E,T,A,B,C,X(15),X( 1),X( 7),X(12));
335 BODY_60_79(64,C,D,E,T,A,B,X( 0),X( 2),X( 8),X(13));
336 BODY_60_79(65,B,C,D,E,T,A,X( 1),X( 3),X( 9),X(14));
337 BODY_60_79(66,A,B,C,D,E,T,X( 2),X( 4),X(10),X(15));
338 BODY_60_79(67,T,A,B,C,D,E,X( 3),X( 5),X(11),X( 0));
339 BODY_60_79(68,E,T,A,B,C,D,X( 4),X( 6),X(12),X( 1));
340 BODY_60_79(69,D,E,T,A,B,C,X( 5),X( 7),X(13),X( 2));
341 BODY_60_79(70,C,D,E,T,A,B,X( 6),X( 8),X(14),X( 3));
342 BODY_60_79(71,B,C,D,E,T,A,X( 7),X( 9),X(15),X( 4));
343 BODY_60_79(72,A,B,C,D,E,T,X( 8),X(10),X( 0),X( 5));
344 BODY_60_79(73,T,A,B,C,D,E,X( 9),X(11),X( 1),X( 6));
345 BODY_60_79(74,E,T,A,B,C,D,X(10),X(12),X( 2),X( 7));
346 BODY_60_79(75,D,E,T,A,B,C,X(11),X(13),X( 3),X( 8));
347 BODY_60_79(76,C,D,E,T,A,B,X(12),X(14),X( 4),X( 9));
348 BODY_60_79(77,B,C,D,E,T,A,X(13),X(15),X( 5),X(10));
349 BODY_60_79(78,A,B,C,D,E,T,X(14),X( 0),X( 6),X(11));
350 BODY_60_79(79,T,A,B,C,D,E,X(15),X( 1),X( 7),X(12));
351
352 c->h0=(c->h0+E)&0xffffffffL;
353 c->h1=(c->h1+T)&0xffffffffL;
354 c->h2=(c->h2+A)&0xffffffffL;
355 c->h3=(c->h3+B)&0xffffffffL;
356 c->h4=(c->h4+C)&0xffffffffL;
357
358 if (--num == 0) break;
359
360 A=c->h0;
361 B=c->h1;
362 C=c->h2;
363 D=c->h3;
364 E=c->h4;
365
366 }
367 }
368#endif
369
370#else /* OPENSSL_SMALL_FOOTPRINT */
371
372#define BODY_00_15(xi) do { \
373 T=E+K_00_19+F_00_19(B,C,D); \
374 E=D, D=C, C=ROTATE(B,30), B=A; \
375 A=ROTATE(A,5)+T+xi; } while(0)
376
377#define BODY_16_19(xa,xb,xc,xd) do { \
378 Xupdate(T,xa,xa,xb,xc,xd); \
379 T+=E+K_00_19+F_00_19(B,C,D); \
380 E=D, D=C, C=ROTATE(B,30), B=A; \
381 A=ROTATE(A,5)+T; } while(0)
382
383#define BODY_20_39(xa,xb,xc,xd) do { \
384 Xupdate(T,xa,xa,xb,xc,xd); \
385 T+=E+K_20_39+F_20_39(B,C,D); \
386 E=D, D=C, C=ROTATE(B,30), B=A; \
387 A=ROTATE(A,5)+T; } while(0)
388
389#define BODY_40_59(xa,xb,xc,xd) do { \
390 Xupdate(T,xa,xa,xb,xc,xd); \
391 T+=E+K_40_59+F_40_59(B,C,D); \
392 E=D, D=C, C=ROTATE(B,30), B=A; \
393 A=ROTATE(A,5)+T; } while(0)
394
395#define BODY_60_79(xa,xb,xc,xd) do { \
396 Xupdate(T,xa,xa,xb,xc,xd); \
397 T=E+K_60_79+F_60_79(B,C,D); \
398 E=D, D=C, C=ROTATE(B,30), B=A; \
399 A=ROTATE(A,5)+T+xa; } while(0)
400
401#if !defined(SHA_1) || !defined(SHA1_ASM)
402static void HASH_BLOCK_DATA_ORDER (SHA_CTX *c, const void *p, size_t num)
403 {
404 const unsigned char *data=p;
405 register unsigned MD32_REG_T A,B,C,D,E,T,l;
406 int i;
407 SHA_LONG X[16];
408
409 A=c->h0;
410 B=c->h1;
411 C=c->h2;
412 D=c->h3;
413 E=c->h4;
414
415 for (;;)
416 {
417 for (i=0;i<16;i++)
418 { HOST_c2l(data,l); X[i]=l; BODY_00_15(X[i]); }
419 for (i=0;i<4;i++)
420 { BODY_16_19(X[i], X[i+2], X[i+8], X[(i+13)&15]); }
421 for (;i<24;i++)
422 { BODY_20_39(X[i&15], X[(i+2)&15], X[(i+8)&15],X[(i+13)&15]); }
423 for (i=0;i<20;i++)
424 { BODY_40_59(X[(i+8)&15],X[(i+10)&15],X[i&15], X[(i+5)&15]); }
425 for (i=4;i<24;i++)
426 { BODY_60_79(X[(i+8)&15],X[(i+10)&15],X[i&15], X[(i+5)&15]); }
427
428 c->h0=(c->h0+A)&0xffffffffL;
429 c->h1=(c->h1+B)&0xffffffffL;
430 c->h2=(c->h2+C)&0xffffffffL;
431 c->h3=(c->h3+D)&0xffffffffL;
432 c->h4=(c->h4+E)&0xffffffffL;
433
434 if (--num == 0) break;
435
436 A=c->h0;
437 B=c->h1;
438 C=c->h2;
439 D=c->h3;
440 E=c->h4;
441
442 }
443 }
444#endif
445
446#endif