diff options
Diffstat (limited to 'src/lib/libssl/s3_cbc.c')
-rw-r--r-- | src/lib/libssl/s3_cbc.c | 656 |
1 files changed, 0 insertions, 656 deletions
diff --git a/src/lib/libssl/s3_cbc.c b/src/lib/libssl/s3_cbc.c deleted file mode 100644 index 414d493150..0000000000 --- a/src/lib/libssl/s3_cbc.c +++ /dev/null | |||
@@ -1,656 +0,0 @@ | |||
1 | /* $OpenBSD: s3_cbc.c,v 1.12 2016/03/20 16:50:29 krw Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 2012 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include "ssl_locl.h" | ||
57 | |||
58 | #include <openssl/md5.h> | ||
59 | #include <openssl/sha.h> | ||
60 | |||
61 | /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length | ||
62 | * field. (SHA-384/512 have 128-bit length.) */ | ||
63 | #define MAX_HASH_BIT_COUNT_BYTES 16 | ||
64 | |||
65 | /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. | ||
66 | * Currently SHA-384/512 has a 128-byte block size and that's the largest | ||
67 | * supported by TLS.) */ | ||
68 | #define MAX_HASH_BLOCK_SIZE 128 | ||
69 | |||
70 | /* Some utility functions are needed: | ||
71 | * | ||
72 | * These macros return the given value with the MSB copied to all the other | ||
73 | * bits. They use the fact that arithmetic shift shifts-in the sign bit. | ||
74 | * However, this is not ensured by the C standard so you may need to replace | ||
75 | * them with something else on odd CPUs. */ | ||
76 | #define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1))) | ||
77 | #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x))) | ||
78 | |||
79 | /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */ | ||
80 | static unsigned | ||
81 | constant_time_lt(unsigned a, unsigned b) | ||
82 | { | ||
83 | a -= b; | ||
84 | return DUPLICATE_MSB_TO_ALL(a); | ||
85 | } | ||
86 | |||
87 | /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */ | ||
88 | static unsigned | ||
89 | constant_time_ge(unsigned a, unsigned b) | ||
90 | { | ||
91 | a -= b; | ||
92 | return DUPLICATE_MSB_TO_ALL(~a); | ||
93 | } | ||
94 | |||
95 | /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */ | ||
96 | static unsigned char | ||
97 | constant_time_eq_8(unsigned a, unsigned b) | ||
98 | { | ||
99 | unsigned c = a ^ b; | ||
100 | c--; | ||
101 | return DUPLICATE_MSB_TO_ALL_8(c); | ||
102 | } | ||
103 | |||
104 | /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC | ||
105 | * record in |rec| in constant time and returns 1 if the padding is valid and | ||
106 | * -1 otherwise. It also removes any explicit IV from the start of the record | ||
107 | * without leaking any timing about whether there was enough space after the | ||
108 | * padding was removed. | ||
109 | * | ||
110 | * block_size: the block size of the cipher used to encrypt the record. | ||
111 | * returns: | ||
112 | * 0: (in non-constant time) if the record is publicly invalid. | ||
113 | * 1: if the padding was valid | ||
114 | * -1: otherwise. */ | ||
115 | int | ||
116 | tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size, | ||
117 | unsigned mac_size) | ||
118 | { | ||
119 | unsigned padding_length, good, to_check, i; | ||
120 | const unsigned overhead = 1 /* padding length byte */ + mac_size; | ||
121 | |||
122 | /* Check if version requires explicit IV */ | ||
123 | if (SSL_USE_EXPLICIT_IV(s)) { | ||
124 | /* These lengths are all public so we can test them in | ||
125 | * non-constant time. | ||
126 | */ | ||
127 | if (overhead + block_size > rec->length) | ||
128 | return 0; | ||
129 | /* We can now safely skip explicit IV */ | ||
130 | rec->data += block_size; | ||
131 | rec->input += block_size; | ||
132 | rec->length -= block_size; | ||
133 | } else if (overhead > rec->length) | ||
134 | return 0; | ||
135 | |||
136 | padding_length = rec->data[rec->length - 1]; | ||
137 | |||
138 | if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { | ||
139 | /* padding is already verified */ | ||
140 | rec->length -= padding_length + 1; | ||
141 | return 1; | ||
142 | } | ||
143 | |||
144 | good = constant_time_ge(rec->length, overhead + padding_length); | ||
145 | /* The padding consists of a length byte at the end of the record and | ||
146 | * then that many bytes of padding, all with the same value as the | ||
147 | * length byte. Thus, with the length byte included, there are i+1 | ||
148 | * bytes of padding. | ||
149 | * | ||
150 | * We can't check just |padding_length+1| bytes because that leaks | ||
151 | * decrypted information. Therefore we always have to check the maximum | ||
152 | * amount of padding possible. (Again, the length of the record is | ||
153 | * public information so we can use it.) */ | ||
154 | to_check = 255; /* maximum amount of padding. */ | ||
155 | if (to_check > rec->length - 1) | ||
156 | to_check = rec->length - 1; | ||
157 | |||
158 | for (i = 0; i < to_check; i++) { | ||
159 | unsigned char mask = constant_time_ge(padding_length, i); | ||
160 | unsigned char b = rec->data[rec->length - 1 - i]; | ||
161 | /* The final |padding_length+1| bytes should all have the value | ||
162 | * |padding_length|. Therefore the XOR should be zero. */ | ||
163 | good &= ~(mask&(padding_length ^ b)); | ||
164 | } | ||
165 | |||
166 | /* If any of the final |padding_length+1| bytes had the wrong value, | ||
167 | * one or more of the lower eight bits of |good| will be cleared. We | ||
168 | * AND the bottom 8 bits together and duplicate the result to all the | ||
169 | * bits. */ | ||
170 | good &= good >> 4; | ||
171 | good &= good >> 2; | ||
172 | good &= good >> 1; | ||
173 | good <<= sizeof(good)*8 - 1; | ||
174 | good = DUPLICATE_MSB_TO_ALL(good); | ||
175 | |||
176 | padding_length = good & (padding_length + 1); | ||
177 | rec->length -= padding_length; | ||
178 | rec->type |= padding_length<<8; /* kludge: pass padding length */ | ||
179 | |||
180 | return (int)((good & 1) | (~good & -1)); | ||
181 | } | ||
182 | |||
183 | /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in | ||
184 | * constant time (independent of the concrete value of rec->length, which may | ||
185 | * vary within a 256-byte window). | ||
186 | * | ||
187 | * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to | ||
188 | * this function. | ||
189 | * | ||
190 | * On entry: | ||
191 | * rec->orig_len >= md_size | ||
192 | * md_size <= EVP_MAX_MD_SIZE | ||
193 | * | ||
194 | * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with | ||
195 | * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into | ||
196 | * a single or pair of cache-lines, then the variable memory accesses don't | ||
197 | * actually affect the timing. CPUs with smaller cache-lines [if any] are | ||
198 | * not multi-core and are not considered vulnerable to cache-timing attacks. | ||
199 | */ | ||
200 | #define CBC_MAC_ROTATE_IN_PLACE | ||
201 | |||
202 | void | ||
203 | ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec, | ||
204 | unsigned md_size, unsigned orig_len) | ||
205 | { | ||
206 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
207 | unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE]; | ||
208 | unsigned char *rotated_mac; | ||
209 | #else | ||
210 | unsigned char rotated_mac[EVP_MAX_MD_SIZE]; | ||
211 | #endif | ||
212 | |||
213 | /* mac_end is the index of |rec->data| just after the end of the MAC. */ | ||
214 | unsigned mac_end = rec->length; | ||
215 | unsigned mac_start = mac_end - md_size; | ||
216 | /* scan_start contains the number of bytes that we can ignore because | ||
217 | * the MAC's position can only vary by 255 bytes. */ | ||
218 | unsigned scan_start = 0; | ||
219 | unsigned i, j; | ||
220 | unsigned div_spoiler; | ||
221 | unsigned rotate_offset; | ||
222 | |||
223 | OPENSSL_assert(orig_len >= md_size); | ||
224 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); | ||
225 | |||
226 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
227 | rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63); | ||
228 | #endif | ||
229 | |||
230 | /* This information is public so it's safe to branch based on it. */ | ||
231 | if (orig_len > md_size + 255 + 1) | ||
232 | scan_start = orig_len - (md_size + 255 + 1); | ||
233 | /* div_spoiler contains a multiple of md_size that is used to cause the | ||
234 | * modulo operation to be constant time. Without this, the time varies | ||
235 | * based on the amount of padding when running on Intel chips at least. | ||
236 | * | ||
237 | * The aim of right-shifting md_size is so that the compiler doesn't | ||
238 | * figure out that it can remove div_spoiler as that would require it | ||
239 | * to prove that md_size is always even, which I hope is beyond it. */ | ||
240 | div_spoiler = md_size >> 1; | ||
241 | div_spoiler <<= (sizeof(div_spoiler) - 1) * 8; | ||
242 | rotate_offset = (div_spoiler + mac_start - scan_start) % md_size; | ||
243 | |||
244 | memset(rotated_mac, 0, md_size); | ||
245 | for (i = scan_start, j = 0; i < orig_len; i++) { | ||
246 | unsigned char mac_started = constant_time_ge(i, mac_start); | ||
247 | unsigned char mac_ended = constant_time_ge(i, mac_end); | ||
248 | unsigned char b = rec->data[i]; | ||
249 | rotated_mac[j++] |= b & mac_started & ~mac_ended; | ||
250 | j &= constant_time_lt(j, md_size); | ||
251 | } | ||
252 | |||
253 | /* Now rotate the MAC */ | ||
254 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
255 | j = 0; | ||
256 | for (i = 0; i < md_size; i++) { | ||
257 | /* in case cache-line is 32 bytes, touch second line */ | ||
258 | ((volatile unsigned char *)rotated_mac)[rotate_offset^32]; | ||
259 | out[j++] = rotated_mac[rotate_offset++]; | ||
260 | rotate_offset &= constant_time_lt(rotate_offset, md_size); | ||
261 | } | ||
262 | #else | ||
263 | memset(out, 0, md_size); | ||
264 | rotate_offset = md_size - rotate_offset; | ||
265 | rotate_offset &= constant_time_lt(rotate_offset, md_size); | ||
266 | for (i = 0; i < md_size; i++) { | ||
267 | for (j = 0; j < md_size; j++) | ||
268 | out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset); | ||
269 | rotate_offset++; | ||
270 | rotate_offset &= constant_time_lt(rotate_offset, md_size); | ||
271 | } | ||
272 | #endif | ||
273 | } | ||
274 | |||
275 | /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in | ||
276 | * little-endian order. The value of p is advanced by four. */ | ||
277 | #define u32toLE(n, p) \ | ||
278 | (*((p)++)=(unsigned char)(n), \ | ||
279 | *((p)++)=(unsigned char)(n>>8), \ | ||
280 | *((p)++)=(unsigned char)(n>>16), \ | ||
281 | *((p)++)=(unsigned char)(n>>24)) | ||
282 | |||
283 | /* These functions serialize the state of a hash and thus perform the standard | ||
284 | * "final" operation without adding the padding and length that such a function | ||
285 | * typically does. */ | ||
286 | static void | ||
287 | tls1_md5_final_raw(void* ctx, unsigned char *md_out) | ||
288 | { | ||
289 | MD5_CTX *md5 = ctx; | ||
290 | u32toLE(md5->A, md_out); | ||
291 | u32toLE(md5->B, md_out); | ||
292 | u32toLE(md5->C, md_out); | ||
293 | u32toLE(md5->D, md_out); | ||
294 | } | ||
295 | |||
296 | static void | ||
297 | tls1_sha1_final_raw(void* ctx, unsigned char *md_out) | ||
298 | { | ||
299 | SHA_CTX *sha1 = ctx; | ||
300 | l2n(sha1->h0, md_out); | ||
301 | l2n(sha1->h1, md_out); | ||
302 | l2n(sha1->h2, md_out); | ||
303 | l2n(sha1->h3, md_out); | ||
304 | l2n(sha1->h4, md_out); | ||
305 | } | ||
306 | #define LARGEST_DIGEST_CTX SHA_CTX | ||
307 | |||
308 | static void | ||
309 | tls1_sha256_final_raw(void* ctx, unsigned char *md_out) | ||
310 | { | ||
311 | SHA256_CTX *sha256 = ctx; | ||
312 | unsigned i; | ||
313 | |||
314 | for (i = 0; i < 8; i++) { | ||
315 | l2n(sha256->h[i], md_out); | ||
316 | } | ||
317 | } | ||
318 | #undef LARGEST_DIGEST_CTX | ||
319 | #define LARGEST_DIGEST_CTX SHA256_CTX | ||
320 | |||
321 | static void | ||
322 | tls1_sha512_final_raw(void* ctx, unsigned char *md_out) | ||
323 | { | ||
324 | SHA512_CTX *sha512 = ctx; | ||
325 | unsigned i; | ||
326 | |||
327 | for (i = 0; i < 8; i++) { | ||
328 | l2n8(sha512->h[i], md_out); | ||
329 | } | ||
330 | } | ||
331 | #undef LARGEST_DIGEST_CTX | ||
332 | #define LARGEST_DIGEST_CTX SHA512_CTX | ||
333 | |||
334 | /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function | ||
335 | * which ssl3_cbc_digest_record supports. */ | ||
336 | char | ||
337 | ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) | ||
338 | { | ||
339 | switch (EVP_MD_CTX_type(ctx)) { | ||
340 | case NID_md5: | ||
341 | case NID_sha1: | ||
342 | case NID_sha224: | ||
343 | case NID_sha256: | ||
344 | case NID_sha384: | ||
345 | case NID_sha512: | ||
346 | return 1; | ||
347 | default: | ||
348 | return 0; | ||
349 | } | ||
350 | } | ||
351 | |||
352 | /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS | ||
353 | * record. | ||
354 | * | ||
355 | * ctx: the EVP_MD_CTX from which we take the hash function. | ||
356 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. | ||
357 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. | ||
358 | * md_out_size: if non-NULL, the number of output bytes is written here. | ||
359 | * header: the 13-byte, TLS record header. | ||
360 | * data: the record data itself, less any preceeding explicit IV. | ||
361 | * data_plus_mac_size: the secret, reported length of the data and MAC | ||
362 | * once the padding has been removed. | ||
363 | * data_plus_mac_plus_padding_size: the public length of the whole | ||
364 | * record, including padding. | ||
365 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. | ||
366 | * | ||
367 | * On entry: by virtue of having been through one of the remove_padding | ||
368 | * functions, above, we know that data_plus_mac_size is large enough to contain | ||
369 | * a padding byte and MAC. (If the padding was invalid, it might contain the | ||
370 | * padding too. ) */ | ||
371 | int | ||
372 | ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out, | ||
373 | size_t* md_out_size, const unsigned char header[13], | ||
374 | const unsigned char *data, size_t data_plus_mac_size, | ||
375 | size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret, | ||
376 | unsigned mac_secret_length, char is_sslv3) | ||
377 | { | ||
378 | union { double align; | ||
379 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; | ||
380 | } md_state; | ||
381 | void (*md_final_raw)(void *ctx, unsigned char *md_out); | ||
382 | void (*md_transform)(void *ctx, const unsigned char *block); | ||
383 | unsigned md_size, md_block_size = 64; | ||
384 | unsigned sslv3_pad_length = 40, header_length, variance_blocks, | ||
385 | len, max_mac_bytes, num_blocks, | ||
386 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b; | ||
387 | unsigned int bits; /* at most 18 bits */ | ||
388 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; | ||
389 | /* hmac_pad is the masked HMAC key. */ | ||
390 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; | ||
391 | unsigned char first_block[MAX_HASH_BLOCK_SIZE]; | ||
392 | unsigned char mac_out[EVP_MAX_MD_SIZE]; | ||
393 | unsigned i, j, md_out_size_u; | ||
394 | EVP_MD_CTX md_ctx; | ||
395 | /* mdLengthSize is the number of bytes in the length field that terminates | ||
396 | * the hash. */ | ||
397 | unsigned md_length_size = 8; | ||
398 | char length_is_big_endian = 1; | ||
399 | |||
400 | /* This is a, hopefully redundant, check that allows us to forget about | ||
401 | * many possible overflows later in this function. */ | ||
402 | OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024); | ||
403 | |||
404 | switch (EVP_MD_CTX_type(ctx)) { | ||
405 | case NID_md5: | ||
406 | MD5_Init((MD5_CTX*)md_state.c); | ||
407 | md_final_raw = tls1_md5_final_raw; | ||
408 | md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform; | ||
409 | md_size = 16; | ||
410 | sslv3_pad_length = 48; | ||
411 | length_is_big_endian = 0; | ||
412 | break; | ||
413 | case NID_sha1: | ||
414 | SHA1_Init((SHA_CTX*)md_state.c); | ||
415 | md_final_raw = tls1_sha1_final_raw; | ||
416 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform; | ||
417 | md_size = 20; | ||
418 | break; | ||
419 | case NID_sha224: | ||
420 | SHA224_Init((SHA256_CTX*)md_state.c); | ||
421 | md_final_raw = tls1_sha256_final_raw; | ||
422 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; | ||
423 | md_size = 224/8; | ||
424 | break; | ||
425 | case NID_sha256: | ||
426 | SHA256_Init((SHA256_CTX*)md_state.c); | ||
427 | md_final_raw = tls1_sha256_final_raw; | ||
428 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; | ||
429 | md_size = 32; | ||
430 | break; | ||
431 | case NID_sha384: | ||
432 | SHA384_Init((SHA512_CTX*)md_state.c); | ||
433 | md_final_raw = tls1_sha512_final_raw; | ||
434 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; | ||
435 | md_size = 384/8; | ||
436 | md_block_size = 128; | ||
437 | md_length_size = 16; | ||
438 | break; | ||
439 | case NID_sha512: | ||
440 | SHA512_Init((SHA512_CTX*)md_state.c); | ||
441 | md_final_raw = tls1_sha512_final_raw; | ||
442 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; | ||
443 | md_size = 64; | ||
444 | md_block_size = 128; | ||
445 | md_length_size = 16; | ||
446 | break; | ||
447 | default: | ||
448 | /* ssl3_cbc_record_digest_supported should have been | ||
449 | * called first to check that the hash function is | ||
450 | * supported. */ | ||
451 | OPENSSL_assert(0); | ||
452 | if (md_out_size) | ||
453 | *md_out_size = 0; | ||
454 | return 0; | ||
455 | } | ||
456 | |||
457 | OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); | ||
458 | OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE); | ||
459 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); | ||
460 | |||
461 | header_length = 13; | ||
462 | if (is_sslv3) { | ||
463 | header_length = mac_secret_length + sslv3_pad_length + | ||
464 | 8 /* sequence number */ + | ||
465 | 1 /* record type */ + | ||
466 | 2 /* record length */; | ||
467 | } | ||
468 | |||
469 | /* variance_blocks is the number of blocks of the hash that we have to | ||
470 | * calculate in constant time because they could be altered by the | ||
471 | * padding value. | ||
472 | * | ||
473 | * In SSLv3, the padding must be minimal so the end of the plaintext | ||
474 | * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that | ||
475 | * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash | ||
476 | * termination (0x80 + 64-bit length) don't fit in the final block, we | ||
477 | * say that the final two blocks can vary based on the padding. | ||
478 | * | ||
479 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not | ||
480 | * required to be minimal. Therefore we say that the final six blocks | ||
481 | * can vary based on the padding. | ||
482 | * | ||
483 | * Later in the function, if the message is short and there obviously | ||
484 | * cannot be this many blocks then variance_blocks can be reduced. */ | ||
485 | variance_blocks = is_sslv3 ? 2 : 6; | ||
486 | /* From now on we're dealing with the MAC, which conceptually has 13 | ||
487 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes | ||
488 | * (SSLv3) */ | ||
489 | len = data_plus_mac_plus_padding_size + header_length; | ||
490 | /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including | ||
491 | * |header|, assuming that there's no padding. */ | ||
492 | max_mac_bytes = len - md_size - 1; | ||
493 | /* num_blocks is the maximum number of hash blocks. */ | ||
494 | num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size; | ||
495 | /* In order to calculate the MAC in constant time we have to handle | ||
496 | * the final blocks specially because the padding value could cause the | ||
497 | * end to appear somewhere in the final |variance_blocks| blocks and we | ||
498 | * can't leak where. However, |num_starting_blocks| worth of data can | ||
499 | * be hashed right away because no padding value can affect whether | ||
500 | * they are plaintext. */ | ||
501 | num_starting_blocks = 0; | ||
502 | /* k is the starting byte offset into the conceptual header||data where | ||
503 | * we start processing. */ | ||
504 | k = 0; | ||
505 | /* mac_end_offset is the index just past the end of the data to be | ||
506 | * MACed. */ | ||
507 | mac_end_offset = data_plus_mac_size + header_length - md_size; | ||
508 | /* c is the index of the 0x80 byte in the final hash block that | ||
509 | * contains application data. */ | ||
510 | c = mac_end_offset % md_block_size; | ||
511 | /* index_a is the hash block number that contains the 0x80 terminating | ||
512 | * value. */ | ||
513 | index_a = mac_end_offset / md_block_size; | ||
514 | /* index_b is the hash block number that contains the 64-bit hash | ||
515 | * length, in bits. */ | ||
516 | index_b = (mac_end_offset + md_length_size) / md_block_size; | ||
517 | /* bits is the hash-length in bits. It includes the additional hash | ||
518 | * block for the masked HMAC key, or whole of |header| in the case of | ||
519 | * SSLv3. */ | ||
520 | |||
521 | /* For SSLv3, if we're going to have any starting blocks then we need | ||
522 | * at least two because the header is larger than a single block. */ | ||
523 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { | ||
524 | num_starting_blocks = num_blocks - variance_blocks; | ||
525 | k = md_block_size*num_starting_blocks; | ||
526 | } | ||
527 | |||
528 | bits = 8*mac_end_offset; | ||
529 | if (!is_sslv3) { | ||
530 | /* Compute the initial HMAC block. For SSLv3, the padding and | ||
531 | * secret bytes are included in |header| because they take more | ||
532 | * than a single block. */ | ||
533 | bits += 8*md_block_size; | ||
534 | memset(hmac_pad, 0, md_block_size); | ||
535 | OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad)); | ||
536 | memcpy(hmac_pad, mac_secret, mac_secret_length); | ||
537 | for (i = 0; i < md_block_size; i++) | ||
538 | hmac_pad[i] ^= 0x36; | ||
539 | |||
540 | md_transform(md_state.c, hmac_pad); | ||
541 | } | ||
542 | |||
543 | if (length_is_big_endian) { | ||
544 | memset(length_bytes, 0, md_length_size - 4); | ||
545 | length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); | ||
546 | length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); | ||
547 | length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); | ||
548 | length_bytes[md_length_size - 1] = (unsigned char)bits; | ||
549 | } else { | ||
550 | memset(length_bytes, 0, md_length_size); | ||
551 | length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); | ||
552 | length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); | ||
553 | length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); | ||
554 | length_bytes[md_length_size - 8] = (unsigned char)bits; | ||
555 | } | ||
556 | |||
557 | if (k > 0) { | ||
558 | if (is_sslv3) { | ||
559 | /* The SSLv3 header is larger than a single block. | ||
560 | * overhang is the number of bytes beyond a single | ||
561 | * block that the header consumes: either 7 bytes | ||
562 | * (SHA1) or 11 bytes (MD5). */ | ||
563 | unsigned overhang = header_length - md_block_size; | ||
564 | md_transform(md_state.c, header); | ||
565 | memcpy(first_block, header + md_block_size, overhang); | ||
566 | memcpy(first_block + overhang, data, md_block_size - overhang); | ||
567 | md_transform(md_state.c, first_block); | ||
568 | for (i = 1; i < k/md_block_size - 1; i++) | ||
569 | md_transform(md_state.c, data + md_block_size*i - overhang); | ||
570 | } else { | ||
571 | /* k is a multiple of md_block_size. */ | ||
572 | memcpy(first_block, header, 13); | ||
573 | memcpy(first_block + 13, data, md_block_size - 13); | ||
574 | md_transform(md_state.c, first_block); | ||
575 | for (i = 1; i < k/md_block_size; i++) | ||
576 | md_transform(md_state.c, data + md_block_size*i - 13); | ||
577 | } | ||
578 | } | ||
579 | |||
580 | memset(mac_out, 0, sizeof(mac_out)); | ||
581 | |||
582 | /* We now process the final hash blocks. For each block, we construct | ||
583 | * it in constant time. If the |i==index_a| then we'll include the 0x80 | ||
584 | * bytes and zero pad etc. For each block we selectively copy it, in | ||
585 | * constant time, to |mac_out|. */ | ||
586 | for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) { | ||
587 | unsigned char block[MAX_HASH_BLOCK_SIZE]; | ||
588 | unsigned char is_block_a = constant_time_eq_8(i, index_a); | ||
589 | unsigned char is_block_b = constant_time_eq_8(i, index_b); | ||
590 | for (j = 0; j < md_block_size; j++) { | ||
591 | unsigned char b = 0, is_past_c, is_past_cp1; | ||
592 | if (k < header_length) | ||
593 | b = header[k]; | ||
594 | else if (k < data_plus_mac_plus_padding_size + header_length) | ||
595 | b = data[k - header_length]; | ||
596 | k++; | ||
597 | |||
598 | is_past_c = is_block_a & constant_time_ge(j, c); | ||
599 | is_past_cp1 = is_block_a & constant_time_ge(j, c + 1); | ||
600 | /* If this is the block containing the end of the | ||
601 | * application data, and we are at the offset for the | ||
602 | * 0x80 value, then overwrite b with 0x80. */ | ||
603 | b = (b&~is_past_c) | (0x80&is_past_c); | ||
604 | /* If this is the block containing the end of the | ||
605 | * application data and we're past the 0x80 value then | ||
606 | * just write zero. */ | ||
607 | b = b&~is_past_cp1; | ||
608 | /* If this is index_b (the final block), but not | ||
609 | * index_a (the end of the data), then the 64-bit | ||
610 | * length didn't fit into index_a and we're having to | ||
611 | * add an extra block of zeros. */ | ||
612 | b &= ~is_block_b | is_block_a; | ||
613 | |||
614 | /* The final bytes of one of the blocks contains the | ||
615 | * length. */ | ||
616 | if (j >= md_block_size - md_length_size) { | ||
617 | /* If this is index_b, write a length byte. */ | ||
618 | b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]); | ||
619 | } | ||
620 | block[j] = b; | ||
621 | } | ||
622 | |||
623 | md_transform(md_state.c, block); | ||
624 | md_final_raw(md_state.c, block); | ||
625 | /* If this is index_b, copy the hash value to |mac_out|. */ | ||
626 | for (j = 0; j < md_size; j++) | ||
627 | mac_out[j] |= block[j]&is_block_b; | ||
628 | } | ||
629 | |||
630 | EVP_MD_CTX_init(&md_ctx); | ||
631 | if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) { | ||
632 | EVP_MD_CTX_cleanup(&md_ctx); | ||
633 | return 0; | ||
634 | } | ||
635 | if (is_sslv3) { | ||
636 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ | ||
637 | memset(hmac_pad, 0x5c, sslv3_pad_length); | ||
638 | |||
639 | EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length); | ||
640 | EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length); | ||
641 | EVP_DigestUpdate(&md_ctx, mac_out, md_size); | ||
642 | } else { | ||
643 | /* Complete the HMAC in the standard manner. */ | ||
644 | for (i = 0; i < md_block_size; i++) | ||
645 | hmac_pad[i] ^= 0x6a; | ||
646 | |||
647 | EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size); | ||
648 | EVP_DigestUpdate(&md_ctx, mac_out, md_size); | ||
649 | } | ||
650 | EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); | ||
651 | if (md_out_size) | ||
652 | *md_out_size = md_out_size_u; | ||
653 | EVP_MD_CTX_cleanup(&md_ctx); | ||
654 | |||
655 | return 1; | ||
656 | } | ||