summaryrefslogtreecommitdiff
path: root/src/lib/libssl/src/crypto/rc4/asm/rc4-586.pl
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libssl/src/crypto/rc4/asm/rc4-586.pl')
-rw-r--r--src/lib/libssl/src/crypto/rc4/asm/rc4-586.pl448
1 files changed, 244 insertions, 204 deletions
diff --git a/src/lib/libssl/src/crypto/rc4/asm/rc4-586.pl b/src/lib/libssl/src/crypto/rc4/asm/rc4-586.pl
index ef7eee766c..38a44a70ef 100644
--- a/src/lib/libssl/src/crypto/rc4/asm/rc4-586.pl
+++ b/src/lib/libssl/src/crypto/rc4/asm/rc4-586.pl
@@ -1,14 +1,21 @@
1#!/usr/local/bin/perl 1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
2 9
3# At some point it became apparent that the original SSLeay RC4 10# At some point it became apparent that the original SSLeay RC4
4# assembler implementation performs suboptimaly on latest IA-32 11# assembler implementation performs suboptimally on latest IA-32
5# microarchitectures. After re-tuning performance has changed as 12# microarchitectures. After re-tuning performance has changed as
6# following: 13# following:
7# 14#
8# Pentium +0% 15# Pentium -10%
9# Pentium III +17% 16# Pentium III +12%
10# AMD +52%(*) 17# AMD +50%(*)
11# P4 +180%(**) 18# P4 +250%(**)
12# 19#
13# (*) This number is actually a trade-off:-) It's possible to 20# (*) This number is actually a trade-off:-) It's possible to
14# achieve +72%, but at the cost of -48% off PIII performance. 21# achieve +72%, but at the cost of -48% off PIII performance.
@@ -17,214 +24,247 @@
17# For reference! This code delivers ~80% of rc4-amd64.pl 24# For reference! This code delivers ~80% of rc4-amd64.pl
18# performance on the same Opteron machine. 25# performance on the same Opteron machine.
19# (**) This number requires compressed key schedule set up by 26# (**) This number requires compressed key schedule set up by
20# RC4_set_key and therefore doesn't apply to 0.9.7 [option for 27# RC4_set_key [see commentary below for further details].
21# compressed key schedule is implemented in 0.9.8 and later,
22# see commentary section in rc4_skey.c for further details].
23# 28#
24# <appro@fy.chalmers.se> 29# <appro@fy.chalmers.se>
25 30
26push(@INC,"perlasm","../../perlasm"); 31$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
32push(@INC,"${dir}","${dir}../../perlasm");
27require "x86asm.pl"; 33require "x86asm.pl";
28 34
29&asm_init($ARGV[0],"rc4-586.pl"); 35&asm_init($ARGV[0],"rc4-586.pl");
30 36
31$x="eax"; 37$xx="eax";
32$y="ebx"; 38$yy="ebx";
33$tx="ecx"; 39$tx="ecx";
34$ty="edx"; 40$ty="edx";
35$in="esi"; 41$inp="esi";
36$out="edi"; 42$out="ebp";
37$d="ebp"; 43$dat="edi";
38 44
39&RC4("RC4"); 45sub RC4_loop {
40 46 my $i=shift;
41&asm_finish(); 47 my $func = ($i==0)?*mov:*or;
42 48
43sub RC4_loop 49 &add (&LB($yy),&LB($tx));
44 { 50 &mov ($ty,&DWP(0,$dat,$yy,4));
45 local($n,$p,$char)=@_; 51 &mov (&DWP(0,$dat,$yy,4),$tx);
46 52 &mov (&DWP(0,$dat,$xx,4),$ty);
47 &comment("Round $n"); 53 &add ($ty,$tx);
48 54 &inc (&LB($xx));
49 if ($char) 55 &and ($ty,0xff);
50 { 56 &ror ($out,8) if ($i!=0);
51 if ($p >= 0) 57 if ($i<3) {
52 { 58 &mov ($tx,&DWP(0,$dat,$xx,4));
53 &mov($ty, &swtmp(2)); 59 } else {
54 &cmp($ty, $in); 60 &mov ($tx,&wparam(3)); # reload [re-biased] out
55 &jbe(&label("finished"));
56 &inc($in);
57 }
58 else
59 {
60 &add($ty, 8);
61 &inc($in);
62 &cmp($ty, $in);
63 &jb(&label("finished"));
64 &mov(&swtmp(2), $ty);
65 }
66 }
67 # Moved out
68 # &mov( $tx, &DWP(0,$d,$x,4)) if $p < 0;
69
70 &add( &LB($y), &LB($tx));
71 &mov( $ty, &DWP(0,$d,$y,4));
72 # XXX
73 &mov( &DWP(0,$d,$x,4),$ty);
74 &add( $ty, $tx);
75 &mov( &DWP(0,$d,$y,4),$tx);
76 &and( $ty, 0xff);
77 &inc( &LB($x)); # NEXT ROUND
78 &mov( $tx, &DWP(0,$d,$x,4)) if $p < 1; # NEXT ROUND
79 &mov( $ty, &DWP(0,$d,$ty,4));
80
81 if (!$char)
82 {
83 #moved up into last round
84 if ($p >= 1)
85 {
86 &add( $out, 8)
87 }
88 &movb( &BP($n,"esp","",0), &LB($ty));
89 }
90 else
91 {
92 # Note in+=8 has occured
93 &movb( &HB($ty), &BP(-1,$in,"",0));
94 # XXX
95 &xorb(&LB($ty), &HB($ty));
96 # XXX
97 &movb(&BP($n,$out,"",0),&LB($ty));
98 }
99 } 61 }
100 62 &$func ($out,&DWP(0,$dat,$ty,4));
101 63}
102sub RC4 64
103 { 65# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
104 local($name)=@_; 66&function_begin("RC4");
105 67 &mov ($dat,&wparam(0)); # load key schedule pointer
106 &function_begin_B($name,""); 68 &mov ($ty, &wparam(1)); # load len
107 69 &mov ($inp,&wparam(2)); # load inp
108 &mov($ty,&wparam(1)); # len 70 &mov ($out,&wparam(3)); # load out
109 &cmp($ty,0); 71
110 &jne(&label("proceed")); 72 &xor ($xx,$xx); # avoid partial register stalls
111 &ret(); 73 &xor ($yy,$yy);
112 &set_label("proceed"); 74
113 75 &cmp ($ty,0); # safety net
114 &comment(""); 76 &je (&label("abort"));
115 77
116 &push("ebp"); 78 &mov (&LB($xx),&BP(0,$dat)); # load key->x
117 &push("ebx"); 79 &mov (&LB($yy),&BP(4,$dat)); # load key->y
118 &push("esi"); 80 &add ($dat,8);
119 &xor( $x, $x); # avoid partial register stalls 81
120 &push("edi"); 82 &lea ($tx,&DWP(0,$inp,$ty));
121 &xor( $y, $y); # avoid partial register stalls 83 &sub ($out,$inp); # re-bias out
122 &mov( $d, &wparam(0)); # key 84 &mov (&wparam(1),$tx); # save input+len
123 &mov( $in, &wparam(2)); 85
124 86 &inc (&LB($xx));
125 &movb( &LB($x), &BP(0,$d,"",1)); 87
126 &movb( &LB($y), &BP(4,$d,"",1)); 88 # detect compressed key schedule...
127 89 &cmp (&DWP(256,$dat),-1);
128 &mov( $out, &wparam(3)); 90 &je (&label("RC4_CHAR"));
129 &inc( &LB($x)); 91
130 92 &mov ($tx,&DWP(0,$dat,$xx,4));
131 &stack_push(3); # 3 temp variables 93
132 &add( $d, 8); 94 &and ($ty,-4); # how many 4-byte chunks?
133 95 &jz (&label("loop1"));
134 # detect compressed schedule, see commentary section in rc4_skey.c... 96
135 # in 0.9.7 context ~50 bytes below RC4_CHAR label remain redundant, 97 &lea ($ty,&DWP(-4,$inp,$ty));
136 # as compressed key schedule is set up in 0.9.8 and later. 98 &mov (&wparam(2),$ty); # save input+(len/4)*4-4
137 &cmp(&DWP(256,$d),-1); 99 &mov (&wparam(3),$out); # $out as accumulator in this loop
138 &je(&label("RC4_CHAR")); 100
139 101 &set_label("loop4",16);
140 &lea( $ty, &DWP(-8,$ty,$in)); 102 for ($i=0;$i<4;$i++) { RC4_loop($i); }
141 103 &ror ($out,8);
142 # check for 0 length input 104 &xor ($out,&DWP(0,$inp));
143 105 &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
144 &mov( &swtmp(2), $ty); # this is now address to exit at 106 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
145 &mov( $tx, &DWP(0,$d,$x,4)); 107 &lea ($inp,&DWP(4,$inp));
146 108 &mov ($tx,&DWP(0,$dat,$xx,4));
147 &cmp( $ty, $in); 109 &jb (&label("loop4"));
148 &jb( &label("end")); # less than 8 bytes 110
149 111 &cmp ($inp,&wparam(1)); # compare to input+len
150 &set_label("start"); 112 &je (&label("done"));
151 113 &mov ($out,&wparam(3)); # restore $out
152 # filling DELAY SLOT 114
153 &add( $in, 8); 115 &set_label("loop1",16);
154 116 &add (&LB($yy),&LB($tx));
155 &RC4_loop(0,-1,0); 117 &mov ($ty,&DWP(0,$dat,$yy,4));
156 &RC4_loop(1,0,0); 118 &mov (&DWP(0,$dat,$yy,4),$tx);
157 &RC4_loop(2,0,0); 119 &mov (&DWP(0,$dat,$xx,4),$ty);
158 &RC4_loop(3,0,0); 120 &add ($ty,$tx);
159 &RC4_loop(4,0,0); 121 &inc (&LB($xx));
160 &RC4_loop(5,0,0); 122 &and ($ty,0xff);
161 &RC4_loop(6,0,0); 123 &mov ($ty,&DWP(0,$dat,$ty,4));
162 &RC4_loop(7,1,0); 124 &xor (&LB($ty),&BP(0,$inp));
163 125 &lea ($inp,&DWP(1,$inp));
164 &comment("apply the cipher text"); 126 &mov ($tx,&DWP(0,$dat,$xx,4));
165 # xor the cipher data with input 127 &cmp ($inp,&wparam(1)); # compare to input+len
166 128 &mov (&BP(-1,$out,$inp),&LB($ty));
167 #&add( $out, 8); #moved up into last round 129 &jb (&label("loop1"));
168 130
169 &mov( $tx, &swtmp(0)); 131 &jmp (&label("done"));
170 &mov( $ty, &DWP(-8,$in,"",0)); 132
171 &xor( $tx, $ty); 133# this is essentially Intel P4 specific codepath...
172 &mov( $ty, &DWP(-4,$in,"",0)); 134&set_label("RC4_CHAR",16);
173 &mov( &DWP(-8,$out,"",0), $tx); 135 &movz ($tx,&BP(0,$dat,$xx));
174 &mov( $tx, &swtmp(1));
175 &xor( $tx, $ty);
176 &mov( $ty, &swtmp(2)); # load end ptr;
177 &mov( &DWP(-4,$out,"",0), $tx);
178 &mov( $tx, &DWP(0,$d,$x,4));
179 &cmp($in, $ty);
180 &jbe(&label("start"));
181
182 &set_label("end");
183
184 # There is quite a bit of extra crap in RC4_loop() for this
185 # first round
186 &RC4_loop(0,-1,1);
187 &RC4_loop(1,0,1);
188 &RC4_loop(2,0,1);
189 &RC4_loop(3,0,1);
190 &RC4_loop(4,0,1);
191 &RC4_loop(5,0,1);
192 &RC4_loop(6,1,1);
193
194 &jmp(&label("finished"));
195
196 &align(16);
197 # this is essentially Intel P4 specific codepath, see rc4_skey.c,
198 # and is engaged in 0.9.8 and later context...
199 &set_label("RC4_CHAR");
200
201 &lea ($ty,&DWP(0,$in,$ty));
202 &mov (&swtmp(2),$ty);
203 &movz ($tx,&BP(0,$d,$x));
204
205 # strangely enough unrolled loop performs over 20% slower... 136 # strangely enough unrolled loop performs over 20% slower...
206 &set_label("RC4_CHAR_loop"); 137 &set_label("cloop1");
207 &add (&LB($y),&LB($tx)); 138 &add (&LB($yy),&LB($tx));
208 &movz ($ty,&BP(0,$d,$y)); 139 &movz ($ty,&BP(0,$dat,$yy));
209 &movb (&BP(0,$d,$y),&LB($tx)); 140 &mov (&BP(0,$dat,$yy),&LB($tx));
210 &movb (&BP(0,$d,$x),&LB($ty)); 141 &mov (&BP(0,$dat,$xx),&LB($ty));
211 &add (&LB($ty),&LB($tx)); 142 &add (&LB($ty),&LB($tx));
212 &movz ($ty,&BP(0,$d,$ty)); 143 &movz ($ty,&BP(0,$dat,$ty));
213 &add (&LB($x),1); 144 &add (&LB($xx),1);
214 &xorb (&LB($ty),&BP(0,$in)); 145 &xor (&LB($ty),&BP(0,$inp));
215 &lea ($in,&DWP(1,$in)); 146 &lea ($inp,&DWP(1,$inp));
216 &movz ($tx,&BP(0,$d,$x)); 147 &movz ($tx,&BP(0,$dat,$xx));
217 &cmp ($in,&swtmp(2)); 148 &cmp ($inp,&wparam(1));
218 &movb (&BP(0,$out),&LB($ty)); 149 &mov (&BP(-1,$out,$inp),&LB($ty));
219 &lea ($out,&DWP(1,$out)); 150 &jb (&label("cloop1"));
220 &jb (&label("RC4_CHAR_loop")); 151
221 152&set_label("done");
222 &set_label("finished"); 153 &dec (&LB($xx));
223 &dec( $x); 154 &mov (&BP(-4,$dat),&LB($yy)); # save key->y
224 &stack_pop(3); 155 &mov (&BP(-8,$dat),&LB($xx)); # save key->x
225 &movb( &BP(-4,$d,"",0),&LB($y)); 156&set_label("abort");
226 &movb( &BP(-8,$d,"",0),&LB($x)); 157&function_end("RC4");
227 158
228 &function_end($name); 159########################################################################
229 } 160
161$inp="esi";
162$out="edi";
163$idi="ebp";
164$ido="ecx";
165$idx="edx";
166
167&external_label("OPENSSL_ia32cap_P");
168
169# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
170&function_begin("RC4_set_key");
171 &mov ($out,&wparam(0)); # load key
172 &mov ($idi,&wparam(1)); # load len
173 &mov ($inp,&wparam(2)); # load data
174 &picmeup($idx,"OPENSSL_ia32cap_P");
175
176 &lea ($out,&DWP(2*4,$out)); # &key->data
177 &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
178 &neg ($idi);
179 &xor ("eax","eax");
180 &mov (&DWP(-4,$out),$idi); # borrow key->y
181
182 &bt (&DWP(0,$idx),20); # check for bit#20
183 &jc (&label("c1stloop"));
184
185&set_label("w1stloop",16);
186 &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
187 &add (&LB("eax"),1); # i++;
188 &jnc (&label("w1stloop"));
189
190 &xor ($ido,$ido);
191 &xor ($idx,$idx);
192
193&set_label("w2ndloop",16);
194 &mov ("eax",&DWP(0,$out,$ido,4));
195 &add (&LB($idx),&BP(0,$inp,$idi));
196 &add (&LB($idx),&LB("eax"));
197 &add ($idi,1);
198 &mov ("ebx",&DWP(0,$out,$idx,4));
199 &jnz (&label("wnowrap"));
200 &mov ($idi,&DWP(-4,$out));
201 &set_label("wnowrap");
202 &mov (&DWP(0,$out,$idx,4),"eax");
203 &mov (&DWP(0,$out,$ido,4),"ebx");
204 &add (&LB($ido),1);
205 &jnc (&label("w2ndloop"));
206&jmp (&label("exit"));
207
208# Unlike all other x86 [and x86_64] implementations, Intel P4 core
209# [including EM64T] was found to perform poorly with above "32-bit" key
210# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
211# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
212# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
213# schedule for x86[_64], because non-P4 implementations suffer from
214# significant performance losses then, e.g. PIII exhibits >2x
215# deterioration, and so does Opteron. In order to assure optimal
216# all-round performance, we detect P4 at run-time and set up compressed
217# key schedule, which is recognized by RC4 procedure.
218
219&set_label("c1stloop",16);
220 &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
221 &add (&LB("eax"),1); # i++;
222 &jnc (&label("c1stloop"));
223
224 &xor ($ido,$ido);
225 &xor ($idx,$idx);
226 &xor ("ebx","ebx");
227
228&set_label("c2ndloop",16);
229 &mov (&LB("eax"),&BP(0,$out,$ido));
230 &add (&LB($idx),&BP(0,$inp,$idi));
231 &add (&LB($idx),&LB("eax"));
232 &add ($idi,1);
233 &mov (&LB("ebx"),&BP(0,$out,$idx));
234 &jnz (&label("cnowrap"));
235 &mov ($idi,&DWP(-4,$out));
236 &set_label("cnowrap");
237 &mov (&BP(0,$out,$idx),&LB("eax"));
238 &mov (&BP(0,$out,$ido),&LB("ebx"));
239 &add (&LB($ido),1);
240 &jnc (&label("c2ndloop"));
241
242 &mov (&DWP(256,$out),-1); # mark schedule as compressed
243
244&set_label("exit");
245 &xor ("eax","eax");
246 &mov (&DWP(-8,$out),"eax"); # key->x=0;
247 &mov (&DWP(-4,$out),"eax"); # key->y=0;
248&function_end("RC4_set_key");
249
250# const char *RC4_options(void);
251&function_begin_B("RC4_options");
252 &call (&label("pic_point"));
253&set_label("pic_point");
254 &blindpop("eax");
255 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
256 &picmeup("edx","OPENSSL_ia32cap_P");
257 &bt (&DWP(0,"edx"),20);
258 &jnc (&label("skip"));
259 &add ("eax",12);
260 &set_label("skip");
261 &ret ();
262&set_label("opts",64);
263&asciz ("rc4(4x,int)");
264&asciz ("rc4(1x,char)");
265&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
266&align (64);
267&function_end_B("RC4_options");
268
269&asm_finish();
230 270