diff options
Diffstat (limited to 'src/lib/libssl/t1_enc.c')
| -rw-r--r-- | src/lib/libssl/t1_enc.c | 1364 |
1 files changed, 0 insertions, 1364 deletions
diff --git a/src/lib/libssl/t1_enc.c b/src/lib/libssl/t1_enc.c deleted file mode 100644 index 1c96abb378..0000000000 --- a/src/lib/libssl/t1_enc.c +++ /dev/null | |||
| @@ -1,1364 +0,0 @@ | |||
| 1 | /* $OpenBSD: t1_enc.c,v 1.83 2015/09/11 18:08:21 jsing Exp $ */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | /* ==================================================================== | ||
| 59 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. | ||
| 60 | * | ||
| 61 | * Redistribution and use in source and binary forms, with or without | ||
| 62 | * modification, are permitted provided that the following conditions | ||
| 63 | * are met: | ||
| 64 | * | ||
| 65 | * 1. Redistributions of source code must retain the above copyright | ||
| 66 | * notice, this list of conditions and the following disclaimer. | ||
| 67 | * | ||
| 68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 69 | * notice, this list of conditions and the following disclaimer in | ||
| 70 | * the documentation and/or other materials provided with the | ||
| 71 | * distribution. | ||
| 72 | * | ||
| 73 | * 3. All advertising materials mentioning features or use of this | ||
| 74 | * software must display the following acknowledgment: | ||
| 75 | * "This product includes software developed by the OpenSSL Project | ||
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 77 | * | ||
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 79 | * endorse or promote products derived from this software without | ||
| 80 | * prior written permission. For written permission, please contact | ||
| 81 | * openssl-core@openssl.org. | ||
| 82 | * | ||
| 83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 84 | * nor may "OpenSSL" appear in their names without prior written | ||
| 85 | * permission of the OpenSSL Project. | ||
| 86 | * | ||
| 87 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 88 | * acknowledgment: | ||
| 89 | * "This product includes software developed by the OpenSSL Project | ||
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 91 | * | ||
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 104 | * ==================================================================== | ||
| 105 | * | ||
| 106 | * This product includes cryptographic software written by Eric Young | ||
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 108 | * Hudson (tjh@cryptsoft.com). | ||
| 109 | * | ||
| 110 | */ | ||
| 111 | /* ==================================================================== | ||
| 112 | * Copyright 2005 Nokia. All rights reserved. | ||
| 113 | * | ||
| 114 | * The portions of the attached software ("Contribution") is developed by | ||
| 115 | * Nokia Corporation and is licensed pursuant to the OpenSSL open source | ||
| 116 | * license. | ||
| 117 | * | ||
| 118 | * The Contribution, originally written by Mika Kousa and Pasi Eronen of | ||
| 119 | * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites | ||
| 120 | * support (see RFC 4279) to OpenSSL. | ||
| 121 | * | ||
| 122 | * No patent licenses or other rights except those expressly stated in | ||
| 123 | * the OpenSSL open source license shall be deemed granted or received | ||
| 124 | * expressly, by implication, estoppel, or otherwise. | ||
| 125 | * | ||
| 126 | * No assurances are provided by Nokia that the Contribution does not | ||
| 127 | * infringe the patent or other intellectual property rights of any third | ||
| 128 | * party or that the license provides you with all the necessary rights | ||
| 129 | * to make use of the Contribution. | ||
| 130 | * | ||
| 131 | * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN | ||
| 132 | * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA | ||
| 133 | * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY | ||
| 134 | * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR | ||
| 135 | * OTHERWISE. | ||
| 136 | */ | ||
| 137 | |||
| 138 | #include <stdio.h> | ||
| 139 | |||
| 140 | #include "ssl_locl.h" | ||
| 141 | |||
| 142 | #include <openssl/evp.h> | ||
| 143 | #include <openssl/hmac.h> | ||
| 144 | #include <openssl/md5.h> | ||
| 145 | |||
| 146 | void | ||
| 147 | tls1_cleanup_key_block(SSL *s) | ||
| 148 | { | ||
| 149 | if (s->s3->tmp.key_block != NULL) { | ||
| 150 | explicit_bzero(s->s3->tmp.key_block, | ||
| 151 | s->s3->tmp.key_block_length); | ||
| 152 | free(s->s3->tmp.key_block); | ||
| 153 | s->s3->tmp.key_block = NULL; | ||
| 154 | } | ||
| 155 | s->s3->tmp.key_block_length = 0; | ||
| 156 | } | ||
| 157 | |||
| 158 | int | ||
| 159 | tls1_init_finished_mac(SSL *s) | ||
| 160 | { | ||
| 161 | BIO_free(s->s3->handshake_buffer); | ||
| 162 | tls1_free_digest_list(s); | ||
| 163 | |||
| 164 | s->s3->handshake_buffer = BIO_new(BIO_s_mem()); | ||
| 165 | if (s->s3->handshake_buffer == NULL) | ||
| 166 | return (0); | ||
| 167 | |||
| 168 | (void)BIO_set_close(s->s3->handshake_buffer, BIO_CLOSE); | ||
| 169 | |||
| 170 | return (1); | ||
| 171 | } | ||
| 172 | |||
| 173 | void | ||
| 174 | tls1_free_digest_list(SSL *s) | ||
| 175 | { | ||
| 176 | int i; | ||
| 177 | |||
| 178 | if (s == NULL) | ||
| 179 | return; | ||
| 180 | |||
| 181 | if (s->s3->handshake_dgst == NULL) | ||
| 182 | return; | ||
| 183 | for (i = 0; i < SSL_MAX_DIGEST; i++) { | ||
| 184 | if (s->s3->handshake_dgst[i]) | ||
| 185 | EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]); | ||
| 186 | } | ||
| 187 | free(s->s3->handshake_dgst); | ||
| 188 | s->s3->handshake_dgst = NULL; | ||
| 189 | } | ||
| 190 | |||
| 191 | void | ||
| 192 | tls1_finish_mac(SSL *s, const unsigned char *buf, int len) | ||
| 193 | { | ||
| 194 | if (s->s3->handshake_buffer && | ||
| 195 | !(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) { | ||
| 196 | BIO_write(s->s3->handshake_buffer, (void *)buf, len); | ||
| 197 | } else { | ||
| 198 | int i; | ||
| 199 | for (i = 0; i < SSL_MAX_DIGEST; i++) { | ||
| 200 | if (s->s3->handshake_dgst[i]!= NULL) | ||
| 201 | EVP_DigestUpdate(s->s3->handshake_dgst[i], buf, len); | ||
| 202 | } | ||
| 203 | } | ||
| 204 | } | ||
| 205 | |||
| 206 | int | ||
| 207 | tls1_digest_cached_records(SSL *s) | ||
| 208 | { | ||
| 209 | int i; | ||
| 210 | long mask; | ||
| 211 | const EVP_MD *md; | ||
| 212 | long hdatalen; | ||
| 213 | void *hdata; | ||
| 214 | |||
| 215 | tls1_free_digest_list(s); | ||
| 216 | |||
| 217 | s->s3->handshake_dgst = calloc(SSL_MAX_DIGEST, sizeof(EVP_MD_CTX *)); | ||
| 218 | if (s->s3->handshake_dgst == NULL) { | ||
| 219 | SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_MALLOC_FAILURE); | ||
| 220 | return 0; | ||
| 221 | } | ||
| 222 | hdatalen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata); | ||
| 223 | if (hdatalen <= 0) { | ||
| 224 | SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, | ||
| 225 | SSL_R_BAD_HANDSHAKE_LENGTH); | ||
| 226 | return 0; | ||
| 227 | } | ||
| 228 | |||
| 229 | /* Loop through bits of the algorithm2 field and create MD contexts. */ | ||
| 230 | for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) { | ||
| 231 | if ((mask & ssl_get_algorithm2(s)) && md) { | ||
| 232 | s->s3->handshake_dgst[i] = EVP_MD_CTX_create(); | ||
| 233 | if (s->s3->handshake_dgst[i] == NULL) { | ||
| 234 | SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, | ||
| 235 | ERR_R_MALLOC_FAILURE); | ||
| 236 | return 0; | ||
| 237 | } | ||
| 238 | if (!EVP_DigestInit_ex(s->s3->handshake_dgst[i], | ||
| 239 | md, NULL)) { | ||
| 240 | EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]); | ||
| 241 | return 0; | ||
| 242 | } | ||
| 243 | if (!EVP_DigestUpdate(s->s3->handshake_dgst[i], hdata, | ||
| 244 | hdatalen)) | ||
| 245 | return 0; | ||
| 246 | } | ||
| 247 | } | ||
| 248 | |||
| 249 | if (!(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) { | ||
| 250 | BIO_free(s->s3->handshake_buffer); | ||
| 251 | s->s3->handshake_buffer = NULL; | ||
| 252 | } | ||
| 253 | |||
| 254 | return 1; | ||
| 255 | } | ||
| 256 | |||
| 257 | void | ||
| 258 | tls1_record_sequence_increment(unsigned char *seq) | ||
| 259 | { | ||
| 260 | int i; | ||
| 261 | |||
| 262 | for (i = SSL3_SEQUENCE_SIZE - 1; i >= 0; i--) { | ||
| 263 | if (++seq[i] != 0) | ||
| 264 | break; | ||
| 265 | } | ||
| 266 | } | ||
| 267 | |||
| 268 | /* seed1 through seed5 are virtually concatenated */ | ||
| 269 | static int | ||
| 270 | tls1_P_hash(const EVP_MD *md, const unsigned char *sec, int sec_len, | ||
| 271 | const void *seed1, int seed1_len, const void *seed2, int seed2_len, | ||
| 272 | const void *seed3, int seed3_len, const void *seed4, int seed4_len, | ||
| 273 | const void *seed5, int seed5_len, unsigned char *out, int olen) | ||
| 274 | { | ||
| 275 | int chunk; | ||
| 276 | size_t j; | ||
| 277 | EVP_MD_CTX ctx, ctx_tmp; | ||
| 278 | EVP_PKEY *mac_key; | ||
| 279 | unsigned char A1[EVP_MAX_MD_SIZE]; | ||
| 280 | size_t A1_len; | ||
| 281 | int ret = 0; | ||
| 282 | |||
| 283 | chunk = EVP_MD_size(md); | ||
| 284 | OPENSSL_assert(chunk >= 0); | ||
| 285 | |||
| 286 | EVP_MD_CTX_init(&ctx); | ||
| 287 | EVP_MD_CTX_init(&ctx_tmp); | ||
| 288 | mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len); | ||
| 289 | if (!mac_key) | ||
| 290 | goto err; | ||
| 291 | if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key)) | ||
| 292 | goto err; | ||
| 293 | if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key)) | ||
| 294 | goto err; | ||
| 295 | if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) | ||
| 296 | goto err; | ||
| 297 | if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) | ||
| 298 | goto err; | ||
| 299 | if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) | ||
| 300 | goto err; | ||
| 301 | if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) | ||
| 302 | goto err; | ||
| 303 | if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) | ||
| 304 | goto err; | ||
| 305 | if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) | ||
| 306 | goto err; | ||
| 307 | |||
| 308 | for (;;) { | ||
| 309 | /* Reinit mac contexts */ | ||
| 310 | if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key)) | ||
| 311 | goto err; | ||
| 312 | if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key)) | ||
| 313 | goto err; | ||
| 314 | if (!EVP_DigestSignUpdate(&ctx, A1, A1_len)) | ||
| 315 | goto err; | ||
| 316 | if (!EVP_DigestSignUpdate(&ctx_tmp, A1, A1_len)) | ||
| 317 | goto err; | ||
| 318 | if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) | ||
| 319 | goto err; | ||
| 320 | if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) | ||
| 321 | goto err; | ||
| 322 | if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) | ||
| 323 | goto err; | ||
| 324 | if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) | ||
| 325 | goto err; | ||
| 326 | if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) | ||
| 327 | goto err; | ||
| 328 | |||
| 329 | if (olen > chunk) { | ||
| 330 | if (!EVP_DigestSignFinal(&ctx, out, &j)) | ||
| 331 | goto err; | ||
| 332 | out += j; | ||
| 333 | olen -= j; | ||
| 334 | /* calc the next A1 value */ | ||
| 335 | if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len)) | ||
| 336 | goto err; | ||
| 337 | } else { | ||
| 338 | /* last one */ | ||
| 339 | if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) | ||
| 340 | goto err; | ||
| 341 | memcpy(out, A1, olen); | ||
| 342 | break; | ||
| 343 | } | ||
| 344 | } | ||
| 345 | ret = 1; | ||
| 346 | |||
| 347 | err: | ||
| 348 | EVP_PKEY_free(mac_key); | ||
| 349 | EVP_MD_CTX_cleanup(&ctx); | ||
| 350 | EVP_MD_CTX_cleanup(&ctx_tmp); | ||
| 351 | explicit_bzero(A1, sizeof(A1)); | ||
| 352 | return ret; | ||
| 353 | } | ||
| 354 | |||
| 355 | /* seed1 through seed5 are virtually concatenated */ | ||
| 356 | static int | ||
| 357 | tls1_PRF(long digest_mask, const void *seed1, int seed1_len, const void *seed2, | ||
| 358 | int seed2_len, const void *seed3, int seed3_len, const void *seed4, | ||
| 359 | int seed4_len, const void *seed5, int seed5_len, const unsigned char *sec, | ||
| 360 | int slen, unsigned char *out1, unsigned char *out2, int olen) | ||
| 361 | { | ||
| 362 | int len, i, idx, count; | ||
| 363 | const unsigned char *S1; | ||
| 364 | long m; | ||
| 365 | const EVP_MD *md; | ||
| 366 | int ret = 0; | ||
| 367 | |||
| 368 | /* Count number of digests and partition sec evenly */ | ||
| 369 | count = 0; | ||
| 370 | for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { | ||
| 371 | if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) | ||
| 372 | count++; | ||
| 373 | } | ||
| 374 | if (count == 0) { | ||
| 375 | SSLerr(SSL_F_TLS1_PRF, | ||
| 376 | SSL_R_SSL_HANDSHAKE_FAILURE); | ||
| 377 | goto err; | ||
| 378 | } | ||
| 379 | len = slen / count; | ||
| 380 | if (count == 1) | ||
| 381 | slen = 0; | ||
| 382 | S1 = sec; | ||
| 383 | memset(out1, 0, olen); | ||
| 384 | for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { | ||
| 385 | if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) { | ||
| 386 | if (!md) { | ||
| 387 | SSLerr(SSL_F_TLS1_PRF, | ||
| 388 | SSL_R_UNSUPPORTED_DIGEST_TYPE); | ||
| 389 | goto err; | ||
| 390 | } | ||
| 391 | if (!tls1_P_hash(md , S1, len + (slen&1), seed1, | ||
| 392 | seed1_len, seed2, seed2_len, seed3, seed3_len, | ||
| 393 | seed4, seed4_len, seed5, seed5_len, out2, olen)) | ||
| 394 | goto err; | ||
| 395 | S1 += len; | ||
| 396 | for (i = 0; i < olen; i++) { | ||
| 397 | out1[i] ^= out2[i]; | ||
| 398 | } | ||
| 399 | } | ||
| 400 | } | ||
| 401 | ret = 1; | ||
| 402 | |||
| 403 | err: | ||
| 404 | return ret; | ||
| 405 | } | ||
| 406 | |||
| 407 | static int | ||
| 408 | tls1_generate_key_block(SSL *s, unsigned char *km, unsigned char *tmp, int num) | ||
| 409 | { | ||
| 410 | int ret; | ||
| 411 | |||
| 412 | ret = tls1_PRF(ssl_get_algorithm2(s), | ||
| 413 | TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE, | ||
| 414 | s->s3->server_random, SSL3_RANDOM_SIZE, | ||
| 415 | s->s3->client_random, SSL3_RANDOM_SIZE, | ||
| 416 | NULL, 0, NULL, 0, | ||
| 417 | s->session->master_key, s->session->master_key_length, | ||
| 418 | km, tmp, num); | ||
| 419 | return ret; | ||
| 420 | } | ||
| 421 | |||
| 422 | /* | ||
| 423 | * tls1_aead_ctx_init allocates aead_ctx, if needed. It returns 1 on success | ||
| 424 | * and 0 on failure. | ||
| 425 | */ | ||
| 426 | static int | ||
| 427 | tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) | ||
| 428 | { | ||
| 429 | if (*aead_ctx != NULL) { | ||
| 430 | EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx); | ||
| 431 | return (1); | ||
| 432 | } | ||
| 433 | |||
| 434 | *aead_ctx = malloc(sizeof(SSL_AEAD_CTX)); | ||
| 435 | if (*aead_ctx == NULL) { | ||
| 436 | SSLerr(SSL_F_TLS1_AEAD_CTX_INIT, ERR_R_MALLOC_FAILURE); | ||
| 437 | return (0); | ||
| 438 | } | ||
| 439 | |||
| 440 | return (1); | ||
| 441 | } | ||
| 442 | |||
| 443 | static int | ||
| 444 | tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key, | ||
| 445 | unsigned key_len, const unsigned char *iv, unsigned iv_len) | ||
| 446 | { | ||
| 447 | const EVP_AEAD *aead = s->s3->tmp.new_aead; | ||
| 448 | SSL_AEAD_CTX *aead_ctx; | ||
| 449 | |||
| 450 | if (is_read) { | ||
| 451 | if (!tls1_aead_ctx_init(&s->aead_read_ctx)) | ||
| 452 | return 0; | ||
| 453 | aead_ctx = s->aead_read_ctx; | ||
| 454 | } else { | ||
| 455 | if (!tls1_aead_ctx_init(&s->aead_write_ctx)) | ||
| 456 | return 0; | ||
| 457 | aead_ctx = s->aead_write_ctx; | ||
| 458 | } | ||
| 459 | |||
| 460 | if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len, | ||
| 461 | EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) | ||
| 462 | return (0); | ||
| 463 | if (iv_len > sizeof(aead_ctx->fixed_nonce)) { | ||
| 464 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, | ||
| 465 | ERR_R_INTERNAL_ERROR); | ||
| 466 | return (0); | ||
| 467 | } | ||
| 468 | memcpy(aead_ctx->fixed_nonce, iv, iv_len); | ||
| 469 | aead_ctx->fixed_nonce_len = iv_len; | ||
| 470 | aead_ctx->variable_nonce_len = 8; /* always the case, currently. */ | ||
| 471 | aead_ctx->variable_nonce_in_record = | ||
| 472 | (s->s3->tmp.new_cipher->algorithm2 & | ||
| 473 | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_IN_RECORD) != 0; | ||
| 474 | if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != | ||
| 475 | EVP_AEAD_nonce_length(aead)) { | ||
| 476 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, | ||
| 477 | ERR_R_INTERNAL_ERROR); | ||
| 478 | return (0); | ||
| 479 | } | ||
| 480 | aead_ctx->tag_len = EVP_AEAD_max_overhead(aead); | ||
| 481 | |||
| 482 | return (1); | ||
| 483 | } | ||
| 484 | |||
| 485 | /* | ||
| 486 | * tls1_change_cipher_state_cipher performs the work needed to switch cipher | ||
| 487 | * states when using EVP_CIPHER. The argument is_read is true iff this function | ||
| 488 | * is being called due to reading, as opposed to writing, a ChangeCipherSpec | ||
| 489 | * message. In order to support export ciphersuites, use_client_keys indicates | ||
| 490 | * whether the key material provided is in the "client write" direction. | ||
| 491 | */ | ||
| 492 | static int | ||
| 493 | tls1_change_cipher_state_cipher(SSL *s, char is_read, char use_client_keys, | ||
| 494 | const unsigned char *mac_secret, unsigned int mac_secret_size, | ||
| 495 | const unsigned char *key, unsigned int key_len, const unsigned char *iv, | ||
| 496 | unsigned int iv_len) | ||
| 497 | { | ||
| 498 | EVP_CIPHER_CTX *cipher_ctx; | ||
| 499 | const EVP_CIPHER *cipher; | ||
| 500 | EVP_MD_CTX *mac_ctx; | ||
| 501 | const EVP_MD *mac; | ||
| 502 | int mac_type; | ||
| 503 | |||
| 504 | cipher = s->s3->tmp.new_sym_enc; | ||
| 505 | mac = s->s3->tmp.new_hash; | ||
| 506 | mac_type = s->s3->tmp.new_mac_pkey_type; | ||
| 507 | |||
| 508 | if (is_read) { | ||
| 509 | if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) | ||
| 510 | s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM; | ||
| 511 | else | ||
| 512 | s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM; | ||
| 513 | |||
| 514 | EVP_CIPHER_CTX_free(s->enc_read_ctx); | ||
| 515 | s->enc_read_ctx = NULL; | ||
| 516 | EVP_MD_CTX_destroy(s->read_hash); | ||
| 517 | s->read_hash = NULL; | ||
| 518 | |||
| 519 | if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) | ||
| 520 | goto err; | ||
| 521 | s->enc_read_ctx = cipher_ctx; | ||
| 522 | if ((mac_ctx = EVP_MD_CTX_create()) == NULL) | ||
| 523 | goto err; | ||
| 524 | s->read_hash = mac_ctx; | ||
| 525 | } else { | ||
| 526 | if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) | ||
| 527 | s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM; | ||
| 528 | else | ||
| 529 | s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM; | ||
| 530 | |||
| 531 | /* | ||
| 532 | * DTLS fragments retain a pointer to the compression, cipher | ||
| 533 | * and hash contexts, so that it can restore state in order | ||
| 534 | * to perform retransmissions. As such, we cannot free write | ||
| 535 | * contexts that are used for DTLS - these are instead freed | ||
| 536 | * by DTLS when its frees a ChangeCipherSpec fragment. | ||
| 537 | */ | ||
| 538 | if (!SSL_IS_DTLS(s)) { | ||
| 539 | EVP_CIPHER_CTX_free(s->enc_write_ctx); | ||
| 540 | s->enc_write_ctx = NULL; | ||
| 541 | EVP_MD_CTX_destroy(s->write_hash); | ||
| 542 | s->write_hash = NULL; | ||
| 543 | } | ||
| 544 | if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) | ||
| 545 | goto err; | ||
| 546 | s->enc_write_ctx = cipher_ctx; | ||
| 547 | if ((mac_ctx = EVP_MD_CTX_create()) == NULL) | ||
| 548 | goto err; | ||
| 549 | s->write_hash = mac_ctx; | ||
| 550 | } | ||
| 551 | |||
| 552 | if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) { | ||
| 553 | EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, NULL, | ||
| 554 | !is_read); | ||
| 555 | EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GCM_SET_IV_FIXED, | ||
| 556 | iv_len, (unsigned char *)iv); | ||
| 557 | } else | ||
| 558 | EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, iv, !is_read); | ||
| 559 | |||
| 560 | if (!(EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { | ||
| 561 | EVP_PKEY *mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, | ||
| 562 | mac_secret, mac_secret_size); | ||
| 563 | if (mac_key == NULL) | ||
| 564 | goto err; | ||
| 565 | EVP_DigestSignInit(mac_ctx, NULL, mac, NULL, mac_key); | ||
| 566 | EVP_PKEY_free(mac_key); | ||
| 567 | } else if (mac_secret_size > 0) { | ||
| 568 | /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */ | ||
| 569 | EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_AEAD_SET_MAC_KEY, | ||
| 570 | mac_secret_size, (unsigned char *)mac_secret); | ||
| 571 | } | ||
| 572 | |||
| 573 | if (s->s3->tmp.new_cipher->algorithm_enc == SSL_eGOST2814789CNT) { | ||
| 574 | int nid; | ||
| 575 | if (s->s3->tmp.new_cipher->algorithm2 & SSL_HANDSHAKE_MAC_GOST94) | ||
| 576 | nid = NID_id_Gost28147_89_CryptoPro_A_ParamSet; | ||
| 577 | else | ||
| 578 | nid = NID_id_tc26_gost_28147_param_Z; | ||
| 579 | |||
| 580 | EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GOST_SET_SBOX, nid, 0); | ||
| 581 | if (s->s3->tmp.new_cipher->algorithm_mac == SSL_GOST89MAC) | ||
| 582 | EVP_MD_CTX_ctrl(mac_ctx, EVP_MD_CTRL_GOST_SET_SBOX, nid, 0); | ||
| 583 | } | ||
| 584 | |||
| 585 | return (1); | ||
| 586 | |||
| 587 | err: | ||
| 588 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_CIPHER, ERR_R_MALLOC_FAILURE); | ||
| 589 | return (0); | ||
| 590 | } | ||
| 591 | |||
| 592 | int | ||
| 593 | tls1_change_cipher_state(SSL *s, int which) | ||
| 594 | { | ||
| 595 | const unsigned char *client_write_mac_secret, *server_write_mac_secret; | ||
| 596 | const unsigned char *client_write_key, *server_write_key; | ||
| 597 | const unsigned char *client_write_iv, *server_write_iv; | ||
| 598 | const unsigned char *mac_secret, *key, *iv; | ||
| 599 | int mac_secret_size, key_len, iv_len; | ||
| 600 | unsigned char *key_block, *seq; | ||
| 601 | const EVP_CIPHER *cipher; | ||
| 602 | const EVP_AEAD *aead; | ||
| 603 | char is_read, use_client_keys; | ||
| 604 | |||
| 605 | |||
| 606 | cipher = s->s3->tmp.new_sym_enc; | ||
| 607 | aead = s->s3->tmp.new_aead; | ||
| 608 | |||
| 609 | /* | ||
| 610 | * is_read is true if we have just read a ChangeCipherSpec message, | ||
| 611 | * that is we need to update the read cipherspec. Otherwise we have | ||
| 612 | * just written one. | ||
| 613 | */ | ||
| 614 | is_read = (which & SSL3_CC_READ) != 0; | ||
| 615 | |||
| 616 | /* | ||
| 617 | * use_client_keys is true if we wish to use the keys for the "client | ||
| 618 | * write" direction. This is the case if we're a client sending a | ||
| 619 | * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec. | ||
| 620 | */ | ||
| 621 | use_client_keys = ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || | ||
| 622 | (which == SSL3_CHANGE_CIPHER_SERVER_READ)); | ||
| 623 | |||
| 624 | |||
| 625 | /* | ||
| 626 | * Reset sequence number to zero - for DTLS this is handled in | ||
| 627 | * dtls1_reset_seq_numbers(). | ||
| 628 | */ | ||
| 629 | if (!SSL_IS_DTLS(s)) { | ||
| 630 | seq = is_read ? s->s3->read_sequence : s->s3->write_sequence; | ||
| 631 | memset(seq, 0, SSL3_SEQUENCE_SIZE); | ||
| 632 | } | ||
| 633 | |||
| 634 | if (aead != NULL) { | ||
| 635 | key_len = EVP_AEAD_key_length(aead); | ||
| 636 | iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher); | ||
| 637 | } else { | ||
| 638 | key_len = EVP_CIPHER_key_length(cipher); | ||
| 639 | iv_len = EVP_CIPHER_iv_length(cipher); | ||
| 640 | |||
| 641 | /* If GCM mode only part of IV comes from PRF. */ | ||
| 642 | if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) | ||
| 643 | iv_len = EVP_GCM_TLS_FIXED_IV_LEN; | ||
| 644 | } | ||
| 645 | |||
| 646 | mac_secret_size = s->s3->tmp.new_mac_secret_size; | ||
| 647 | |||
| 648 | key_block = s->s3->tmp.key_block; | ||
| 649 | client_write_mac_secret = key_block; | ||
| 650 | key_block += mac_secret_size; | ||
| 651 | server_write_mac_secret = key_block; | ||
| 652 | key_block += mac_secret_size; | ||
| 653 | client_write_key = key_block; | ||
| 654 | key_block += key_len; | ||
| 655 | server_write_key = key_block; | ||
| 656 | key_block += key_len; | ||
| 657 | client_write_iv = key_block; | ||
| 658 | key_block += iv_len; | ||
| 659 | server_write_iv = key_block; | ||
| 660 | key_block += iv_len; | ||
| 661 | |||
| 662 | if (use_client_keys) { | ||
| 663 | mac_secret = client_write_mac_secret; | ||
| 664 | key = client_write_key; | ||
| 665 | iv = client_write_iv; | ||
| 666 | } else { | ||
| 667 | mac_secret = server_write_mac_secret; | ||
| 668 | key = server_write_key; | ||
| 669 | iv = server_write_iv; | ||
| 670 | } | ||
| 671 | |||
| 672 | if (key_block - s->s3->tmp.key_block != s->s3->tmp.key_block_length) { | ||
| 673 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); | ||
| 674 | goto err2; | ||
| 675 | } | ||
| 676 | |||
| 677 | if (is_read) { | ||
| 678 | memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_size); | ||
| 679 | s->s3->read_mac_secret_size = mac_secret_size; | ||
| 680 | } else { | ||
| 681 | memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_size); | ||
| 682 | s->s3->write_mac_secret_size = mac_secret_size; | ||
| 683 | } | ||
| 684 | |||
| 685 | if (aead != NULL) { | ||
| 686 | return tls1_change_cipher_state_aead(s, is_read, key, key_len, | ||
| 687 | iv, iv_len); | ||
| 688 | } | ||
| 689 | |||
| 690 | return tls1_change_cipher_state_cipher(s, is_read, use_client_keys, | ||
| 691 | mac_secret, mac_secret_size, key, key_len, iv, iv_len); | ||
| 692 | |||
| 693 | err2: | ||
| 694 | return (0); | ||
| 695 | } | ||
| 696 | |||
| 697 | int | ||
| 698 | tls1_setup_key_block(SSL *s) | ||
| 699 | { | ||
| 700 | unsigned char *key_block, *tmp_block = NULL; | ||
| 701 | int mac_type = NID_undef, mac_secret_size = 0; | ||
| 702 | int key_block_len, key_len, iv_len; | ||
| 703 | const EVP_CIPHER *cipher = NULL; | ||
| 704 | const EVP_AEAD *aead = NULL; | ||
| 705 | const EVP_MD *mac = NULL; | ||
| 706 | int ret = 0; | ||
| 707 | |||
| 708 | if (s->s3->tmp.key_block_length != 0) | ||
| 709 | return (1); | ||
| 710 | |||
| 711 | if (s->session->cipher && | ||
| 712 | (s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD)) { | ||
| 713 | if (!ssl_cipher_get_evp_aead(s->session, &aead)) { | ||
| 714 | SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, | ||
| 715 | SSL_R_CIPHER_OR_HASH_UNAVAILABLE); | ||
| 716 | return (0); | ||
| 717 | } | ||
| 718 | key_len = EVP_AEAD_key_length(aead); | ||
| 719 | iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher); | ||
| 720 | } else { | ||
| 721 | if (!ssl_cipher_get_evp(s->session, &cipher, &mac, &mac_type, | ||
| 722 | &mac_secret_size)) { | ||
| 723 | SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, | ||
| 724 | SSL_R_CIPHER_OR_HASH_UNAVAILABLE); | ||
| 725 | return (0); | ||
| 726 | } | ||
| 727 | key_len = EVP_CIPHER_key_length(cipher); | ||
| 728 | iv_len = EVP_CIPHER_iv_length(cipher); | ||
| 729 | |||
| 730 | /* If GCM mode only part of IV comes from PRF. */ | ||
| 731 | if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) | ||
| 732 | iv_len = EVP_GCM_TLS_FIXED_IV_LEN; | ||
| 733 | } | ||
| 734 | |||
| 735 | s->s3->tmp.new_aead = aead; | ||
| 736 | s->s3->tmp.new_sym_enc = cipher; | ||
| 737 | s->s3->tmp.new_hash = mac; | ||
| 738 | s->s3->tmp.new_mac_pkey_type = mac_type; | ||
| 739 | s->s3->tmp.new_mac_secret_size = mac_secret_size; | ||
| 740 | |||
| 741 | tls1_cleanup_key_block(s); | ||
| 742 | |||
| 743 | if ((key_block = reallocarray(NULL, mac_secret_size + key_len + iv_len, | ||
| 744 | 2)) == NULL) { | ||
| 745 | SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); | ||
| 746 | goto err; | ||
| 747 | } | ||
| 748 | key_block_len = (mac_secret_size + key_len + iv_len) * 2; | ||
| 749 | |||
| 750 | s->s3->tmp.key_block_length = key_block_len; | ||
| 751 | s->s3->tmp.key_block = key_block; | ||
| 752 | |||
| 753 | if ((tmp_block = malloc(key_block_len)) == NULL) { | ||
| 754 | SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); | ||
| 755 | goto err; | ||
| 756 | } | ||
| 757 | |||
| 758 | if (!tls1_generate_key_block(s, key_block, tmp_block, key_block_len)) | ||
| 759 | goto err; | ||
| 760 | |||
| 761 | if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) && | ||
| 762 | s->method->version <= TLS1_VERSION) { | ||
| 763 | /* | ||
| 764 | * Enable vulnerability countermeasure for CBC ciphers with | ||
| 765 | * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt) | ||
| 766 | */ | ||
| 767 | s->s3->need_empty_fragments = 1; | ||
| 768 | |||
| 769 | if (s->session->cipher != NULL) { | ||
| 770 | if (s->session->cipher->algorithm_enc == SSL_eNULL) | ||
| 771 | s->s3->need_empty_fragments = 0; | ||
| 772 | |||
| 773 | #ifndef OPENSSL_NO_RC4 | ||
| 774 | if (s->session->cipher->algorithm_enc == SSL_RC4) | ||
| 775 | s->s3->need_empty_fragments = 0; | ||
| 776 | #endif | ||
| 777 | } | ||
| 778 | } | ||
| 779 | |||
| 780 | ret = 1; | ||
| 781 | |||
| 782 | err: | ||
| 783 | if (tmp_block) { | ||
| 784 | explicit_bzero(tmp_block, key_block_len); | ||
| 785 | free(tmp_block); | ||
| 786 | } | ||
| 787 | return (ret); | ||
| 788 | } | ||
| 789 | |||
| 790 | /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. | ||
| 791 | * | ||
| 792 | * Returns: | ||
| 793 | * 0: (in non-constant time) if the record is publically invalid (i.e. too | ||
| 794 | * short etc). | ||
| 795 | * 1: if the record's padding is valid / the encryption was successful. | ||
| 796 | * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, | ||
| 797 | * an internal error occured. | ||
| 798 | */ | ||
| 799 | int | ||
| 800 | tls1_enc(SSL *s, int send) | ||
| 801 | { | ||
| 802 | const SSL_AEAD_CTX *aead; | ||
| 803 | const EVP_CIPHER *enc; | ||
| 804 | EVP_CIPHER_CTX *ds; | ||
| 805 | SSL3_RECORD *rec; | ||
| 806 | unsigned char *seq; | ||
| 807 | unsigned long l; | ||
| 808 | int bs, i, j, k, pad = 0, ret, mac_size = 0; | ||
| 809 | |||
| 810 | if (send) { | ||
| 811 | aead = s->aead_write_ctx; | ||
| 812 | rec = &s->s3->wrec; | ||
| 813 | seq = s->s3->write_sequence; | ||
| 814 | } else { | ||
| 815 | aead = s->aead_read_ctx; | ||
| 816 | rec = &s->s3->rrec; | ||
| 817 | seq = s->s3->read_sequence; | ||
| 818 | } | ||
| 819 | |||
| 820 | if (aead) { | ||
| 821 | unsigned char ad[13], *in, *out, nonce[16]; | ||
| 822 | unsigned nonce_used; | ||
| 823 | size_t out_len; | ||
| 824 | |||
| 825 | if (SSL_IS_DTLS(s)) { | ||
| 826 | dtls1_build_sequence_number(ad, seq, | ||
| 827 | send ? s->d1->w_epoch : s->d1->r_epoch); | ||
| 828 | } else { | ||
| 829 | memcpy(ad, seq, SSL3_SEQUENCE_SIZE); | ||
| 830 | tls1_record_sequence_increment(seq); | ||
| 831 | } | ||
| 832 | |||
| 833 | ad[8] = rec->type; | ||
| 834 | ad[9] = (unsigned char)(s->version >> 8); | ||
| 835 | ad[10] = (unsigned char)(s->version); | ||
| 836 | |||
| 837 | if (aead->fixed_nonce_len + | ||
| 838 | aead->variable_nonce_len > sizeof(nonce) || | ||
| 839 | aead->variable_nonce_len > 8) | ||
| 840 | return -1; /* internal error - should never happen. */ | ||
| 841 | |||
| 842 | memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len); | ||
| 843 | nonce_used = aead->fixed_nonce_len; | ||
| 844 | |||
| 845 | if (send) { | ||
| 846 | size_t len = rec->length; | ||
| 847 | size_t eivlen = 0; | ||
| 848 | in = rec->input; | ||
| 849 | out = rec->data; | ||
| 850 | |||
| 851 | /* | ||
| 852 | * When sending we use the sequence number as the | ||
| 853 | * variable part of the nonce. | ||
| 854 | */ | ||
| 855 | if (aead->variable_nonce_len > 8) | ||
| 856 | return -1; | ||
| 857 | memcpy(nonce + nonce_used, ad, | ||
| 858 | aead->variable_nonce_len); | ||
| 859 | nonce_used += aead->variable_nonce_len; | ||
| 860 | |||
| 861 | /* | ||
| 862 | * In do_ssl3_write, rec->input is moved forward by | ||
| 863 | * variable_nonce_len in order to leave space for the | ||
| 864 | * variable nonce. Thus we can copy the sequence number | ||
| 865 | * bytes into place without overwriting any of the | ||
| 866 | * plaintext. | ||
| 867 | */ | ||
| 868 | if (aead->variable_nonce_in_record) { | ||
| 869 | memcpy(out, ad, aead->variable_nonce_len); | ||
| 870 | len -= aead->variable_nonce_len; | ||
| 871 | eivlen = aead->variable_nonce_len; | ||
| 872 | } | ||
| 873 | |||
| 874 | ad[11] = len >> 8; | ||
| 875 | ad[12] = len & 0xff; | ||
| 876 | |||
| 877 | if (!EVP_AEAD_CTX_seal(&aead->ctx, | ||
| 878 | out + eivlen, &out_len, len + aead->tag_len, nonce, | ||
| 879 | nonce_used, in + eivlen, len, ad, sizeof(ad))) | ||
| 880 | return -1; | ||
| 881 | if (aead->variable_nonce_in_record) | ||
| 882 | out_len += aead->variable_nonce_len; | ||
| 883 | } else { | ||
| 884 | /* receive */ | ||
| 885 | size_t len = rec->length; | ||
| 886 | |||
| 887 | if (rec->data != rec->input) | ||
| 888 | return -1; /* internal error - should never happen. */ | ||
| 889 | out = in = rec->input; | ||
| 890 | |||
| 891 | if (len < aead->variable_nonce_len) | ||
| 892 | return 0; | ||
| 893 | memcpy(nonce + nonce_used, | ||
| 894 | aead->variable_nonce_in_record ? in : ad, | ||
| 895 | aead->variable_nonce_len); | ||
| 896 | nonce_used += aead->variable_nonce_len; | ||
| 897 | |||
| 898 | if (aead->variable_nonce_in_record) { | ||
| 899 | in += aead->variable_nonce_len; | ||
| 900 | len -= aead->variable_nonce_len; | ||
| 901 | out += aead->variable_nonce_len; | ||
| 902 | } | ||
| 903 | |||
| 904 | if (len < aead->tag_len) | ||
| 905 | return 0; | ||
| 906 | len -= aead->tag_len; | ||
| 907 | |||
| 908 | ad[11] = len >> 8; | ||
| 909 | ad[12] = len & 0xff; | ||
| 910 | |||
| 911 | if (!EVP_AEAD_CTX_open(&aead->ctx, out, &out_len, len, | ||
| 912 | nonce, nonce_used, in, len + aead->tag_len, ad, | ||
| 913 | sizeof(ad))) | ||
| 914 | return -1; | ||
| 915 | |||
| 916 | rec->data = rec->input = out; | ||
| 917 | } | ||
| 918 | |||
| 919 | rec->length = out_len; | ||
| 920 | |||
| 921 | return 1; | ||
| 922 | } | ||
| 923 | |||
| 924 | if (send) { | ||
| 925 | if (EVP_MD_CTX_md(s->write_hash)) { | ||
| 926 | int n = EVP_MD_CTX_size(s->write_hash); | ||
| 927 | OPENSSL_assert(n >= 0); | ||
| 928 | } | ||
| 929 | ds = s->enc_write_ctx; | ||
| 930 | if (s->enc_write_ctx == NULL) | ||
| 931 | enc = NULL; | ||
| 932 | else { | ||
| 933 | int ivlen = 0; | ||
| 934 | enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); | ||
| 935 | if (SSL_USE_EXPLICIT_IV(s) && | ||
| 936 | EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) | ||
| 937 | ivlen = EVP_CIPHER_iv_length(enc); | ||
| 938 | if (ivlen > 1) { | ||
| 939 | if (rec->data != rec->input) | ||
| 940 | /* we can't write into the input stream: | ||
| 941 | * Can this ever happen?? (steve) | ||
| 942 | */ | ||
| 943 | fprintf(stderr, | ||
| 944 | "%s:%d: rec->data != rec->input\n", | ||
| 945 | __FILE__, __LINE__); | ||
| 946 | else | ||
| 947 | arc4random_buf(rec->input, ivlen); | ||
| 948 | } | ||
| 949 | } | ||
| 950 | } else { | ||
| 951 | if (EVP_MD_CTX_md(s->read_hash)) { | ||
| 952 | int n = EVP_MD_CTX_size(s->read_hash); | ||
| 953 | OPENSSL_assert(n >= 0); | ||
| 954 | } | ||
| 955 | ds = s->enc_read_ctx; | ||
| 956 | if (s->enc_read_ctx == NULL) | ||
| 957 | enc = NULL; | ||
| 958 | else | ||
| 959 | enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); | ||
| 960 | } | ||
| 961 | |||
| 962 | if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { | ||
| 963 | memmove(rec->data, rec->input, rec->length); | ||
| 964 | rec->input = rec->data; | ||
| 965 | ret = 1; | ||
| 966 | } else { | ||
| 967 | l = rec->length; | ||
| 968 | bs = EVP_CIPHER_block_size(ds->cipher); | ||
| 969 | |||
| 970 | if (EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { | ||
| 971 | unsigned char buf[13]; | ||
| 972 | |||
| 973 | if (SSL_IS_DTLS(s)) { | ||
| 974 | dtls1_build_sequence_number(buf, seq, | ||
| 975 | send ? s->d1->w_epoch : s->d1->r_epoch); | ||
| 976 | } else { | ||
| 977 | memcpy(buf, seq, SSL3_SEQUENCE_SIZE); | ||
| 978 | tls1_record_sequence_increment(seq); | ||
| 979 | } | ||
| 980 | |||
| 981 | buf[8] = rec->type; | ||
| 982 | buf[9] = (unsigned char)(s->version >> 8); | ||
| 983 | buf[10] = (unsigned char)(s->version); | ||
| 984 | buf[11] = rec->length >> 8; | ||
| 985 | buf[12] = rec->length & 0xff; | ||
| 986 | pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, 13, buf); | ||
| 987 | if (send) { | ||
| 988 | l += pad; | ||
| 989 | rec->length += pad; | ||
| 990 | } | ||
| 991 | } else if ((bs != 1) && send) { | ||
| 992 | i = bs - ((int)l % bs); | ||
| 993 | |||
| 994 | /* Add weird padding of upto 256 bytes */ | ||
| 995 | |||
| 996 | /* we need to add 'i' padding bytes of value j */ | ||
| 997 | j = i - 1; | ||
| 998 | for (k = (int)l; k < (int)(l + i); k++) | ||
| 999 | rec->input[k] = j; | ||
| 1000 | l += i; | ||
| 1001 | rec->length += i; | ||
| 1002 | } | ||
| 1003 | |||
| 1004 | if (!send) { | ||
| 1005 | if (l == 0 || l % bs != 0) | ||
| 1006 | return 0; | ||
| 1007 | } | ||
| 1008 | |||
| 1009 | i = EVP_Cipher(ds, rec->data, rec->input, l); | ||
| 1010 | if ((EVP_CIPHER_flags(ds->cipher) & | ||
| 1011 | EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (i < 0) : (i == 0)) | ||
| 1012 | return -1; /* AEAD can fail to verify MAC */ | ||
| 1013 | if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) { | ||
| 1014 | rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN; | ||
| 1015 | rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN; | ||
| 1016 | rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; | ||
| 1017 | } | ||
| 1018 | |||
| 1019 | ret = 1; | ||
| 1020 | if (EVP_MD_CTX_md(s->read_hash) != NULL) | ||
| 1021 | mac_size = EVP_MD_CTX_size(s->read_hash); | ||
| 1022 | if ((bs != 1) && !send) | ||
| 1023 | ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); | ||
| 1024 | if (pad && !send) | ||
| 1025 | rec->length -= pad; | ||
| 1026 | } | ||
| 1027 | return ret; | ||
| 1028 | } | ||
| 1029 | |||
| 1030 | int | ||
| 1031 | tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out) | ||
| 1032 | { | ||
| 1033 | EVP_MD_CTX ctx, *d = NULL; | ||
| 1034 | unsigned int ret; | ||
| 1035 | int i; | ||
| 1036 | |||
| 1037 | if (s->s3->handshake_buffer) | ||
| 1038 | if (!tls1_digest_cached_records(s)) | ||
| 1039 | return 0; | ||
| 1040 | |||
| 1041 | for (i = 0; i < SSL_MAX_DIGEST; i++) { | ||
| 1042 | if (s->s3->handshake_dgst[i] && | ||
| 1043 | EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) { | ||
| 1044 | d = s->s3->handshake_dgst[i]; | ||
| 1045 | break; | ||
| 1046 | } | ||
| 1047 | } | ||
| 1048 | if (d == NULL) { | ||
| 1049 | SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC, SSL_R_NO_REQUIRED_DIGEST); | ||
| 1050 | return 0; | ||
| 1051 | } | ||
| 1052 | |||
| 1053 | EVP_MD_CTX_init(&ctx); | ||
| 1054 | if (!EVP_MD_CTX_copy_ex(&ctx, d)) | ||
| 1055 | return 0; | ||
| 1056 | EVP_DigestFinal_ex(&ctx, out, &ret); | ||
| 1057 | EVP_MD_CTX_cleanup(&ctx); | ||
| 1058 | |||
| 1059 | return ((int)ret); | ||
| 1060 | } | ||
| 1061 | |||
| 1062 | int | ||
| 1063 | tls1_final_finish_mac(SSL *s, const char *str, int slen, unsigned char *out) | ||
| 1064 | { | ||
| 1065 | unsigned int i; | ||
| 1066 | EVP_MD_CTX ctx; | ||
| 1067 | unsigned char buf[2*EVP_MAX_MD_SIZE]; | ||
| 1068 | unsigned char *q, buf2[12]; | ||
| 1069 | int idx; | ||
| 1070 | long mask; | ||
| 1071 | int err = 0; | ||
| 1072 | const EVP_MD *md; | ||
| 1073 | |||
| 1074 | q = buf; | ||
| 1075 | |||
| 1076 | if (s->s3->handshake_buffer) | ||
| 1077 | if (!tls1_digest_cached_records(s)) | ||
| 1078 | return 0; | ||
| 1079 | |||
| 1080 | EVP_MD_CTX_init(&ctx); | ||
| 1081 | |||
| 1082 | for (idx = 0; ssl_get_handshake_digest(idx, &mask, &md); idx++) { | ||
| 1083 | if (ssl_get_algorithm2(s) & mask) { | ||
| 1084 | int hashsize = EVP_MD_size(md); | ||
| 1085 | EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx]; | ||
| 1086 | if (!hdgst || hashsize < 0 || | ||
| 1087 | hashsize > (int)(sizeof buf - (size_t)(q - buf))) { | ||
| 1088 | /* internal error: 'buf' is too small for this cipersuite! */ | ||
| 1089 | err = 1; | ||
| 1090 | } else { | ||
| 1091 | if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) || | ||
| 1092 | !EVP_DigestFinal_ex(&ctx, q, &i) || | ||
| 1093 | (i != (unsigned int)hashsize)) | ||
| 1094 | err = 1; | ||
| 1095 | q += hashsize; | ||
| 1096 | } | ||
| 1097 | } | ||
| 1098 | } | ||
| 1099 | |||
| 1100 | if (!tls1_PRF(ssl_get_algorithm2(s), str, slen, buf, (int)(q - buf), | ||
| 1101 | NULL, 0, NULL, 0, NULL, 0, | ||
| 1102 | s->session->master_key, s->session->master_key_length, | ||
| 1103 | out, buf2, sizeof buf2)) | ||
| 1104 | err = 1; | ||
| 1105 | EVP_MD_CTX_cleanup(&ctx); | ||
| 1106 | |||
| 1107 | if (err) | ||
| 1108 | return 0; | ||
| 1109 | else | ||
| 1110 | return sizeof buf2; | ||
| 1111 | } | ||
| 1112 | |||
| 1113 | int | ||
| 1114 | tls1_mac(SSL *ssl, unsigned char *md, int send) | ||
| 1115 | { | ||
| 1116 | SSL3_RECORD *rec; | ||
| 1117 | unsigned char *seq; | ||
| 1118 | EVP_MD_CTX *hash; | ||
| 1119 | size_t md_size, orig_len; | ||
| 1120 | EVP_MD_CTX hmac, *mac_ctx; | ||
| 1121 | unsigned char header[13]; | ||
| 1122 | int stream_mac = (send ? | ||
| 1123 | (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) : | ||
| 1124 | (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); | ||
| 1125 | int t; | ||
| 1126 | |||
| 1127 | if (send) { | ||
| 1128 | rec = &(ssl->s3->wrec); | ||
| 1129 | seq = &(ssl->s3->write_sequence[0]); | ||
| 1130 | hash = ssl->write_hash; | ||
| 1131 | } else { | ||
| 1132 | rec = &(ssl->s3->rrec); | ||
| 1133 | seq = &(ssl->s3->read_sequence[0]); | ||
| 1134 | hash = ssl->read_hash; | ||
| 1135 | } | ||
| 1136 | |||
| 1137 | t = EVP_MD_CTX_size(hash); | ||
| 1138 | OPENSSL_assert(t >= 0); | ||
| 1139 | md_size = t; | ||
| 1140 | |||
| 1141 | /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ | ||
| 1142 | if (stream_mac) { | ||
| 1143 | mac_ctx = hash; | ||
| 1144 | } else { | ||
| 1145 | if (!EVP_MD_CTX_copy(&hmac, hash)) | ||
| 1146 | return -1; | ||
| 1147 | mac_ctx = &hmac; | ||
| 1148 | } | ||
| 1149 | |||
| 1150 | if (SSL_IS_DTLS(ssl)) | ||
| 1151 | dtls1_build_sequence_number(header, seq, | ||
| 1152 | send ? ssl->d1->w_epoch : ssl->d1->r_epoch); | ||
| 1153 | else | ||
| 1154 | memcpy(header, seq, SSL3_SEQUENCE_SIZE); | ||
| 1155 | |||
| 1156 | /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */ | ||
| 1157 | orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8); | ||
| 1158 | rec->type &= 0xff; | ||
| 1159 | |||
| 1160 | header[8] = rec->type; | ||
| 1161 | header[9] = (unsigned char)(ssl->version >> 8); | ||
| 1162 | header[10] = (unsigned char)(ssl->version); | ||
| 1163 | header[11] = (rec->length) >> 8; | ||
| 1164 | header[12] = (rec->length) & 0xff; | ||
| 1165 | |||
| 1166 | if (!send && | ||
| 1167 | EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && | ||
| 1168 | ssl3_cbc_record_digest_supported(mac_ctx)) { | ||
| 1169 | /* This is a CBC-encrypted record. We must avoid leaking any | ||
| 1170 | * timing-side channel information about how many blocks of | ||
| 1171 | * data we are hashing because that gives an attacker a | ||
| 1172 | * timing-oracle. */ | ||
| 1173 | if (!ssl3_cbc_digest_record(mac_ctx, | ||
| 1174 | md, &md_size, header, rec->input, | ||
| 1175 | rec->length + md_size, orig_len, | ||
| 1176 | ssl->s3->read_mac_secret, | ||
| 1177 | ssl->s3->read_mac_secret_size, | ||
| 1178 | 0 /* not SSLv3 */)) | ||
| 1179 | return -1; | ||
| 1180 | } else { | ||
| 1181 | EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)); | ||
| 1182 | EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length); | ||
| 1183 | t = EVP_DigestSignFinal(mac_ctx, md, &md_size); | ||
| 1184 | OPENSSL_assert(t > 0); | ||
| 1185 | } | ||
| 1186 | |||
| 1187 | if (!stream_mac) | ||
| 1188 | EVP_MD_CTX_cleanup(&hmac); | ||
| 1189 | |||
| 1190 | if (!SSL_IS_DTLS(ssl)) | ||
| 1191 | tls1_record_sequence_increment(seq); | ||
| 1192 | |||
| 1193 | return (md_size); | ||
| 1194 | } | ||
| 1195 | |||
| 1196 | int | ||
| 1197 | tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, | ||
| 1198 | int len) | ||
| 1199 | { | ||
| 1200 | unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH]; | ||
| 1201 | |||
| 1202 | tls1_PRF(ssl_get_algorithm2(s), | ||
| 1203 | TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE, | ||
| 1204 | s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0, | ||
| 1205 | s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0, | ||
| 1206 | p, len, s->session->master_key, buff, sizeof buff); | ||
| 1207 | |||
| 1208 | return (SSL3_MASTER_SECRET_SIZE); | ||
| 1209 | } | ||
| 1210 | |||
| 1211 | int | ||
| 1212 | tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, | ||
| 1213 | const char *label, size_t llen, const unsigned char *context, | ||
| 1214 | size_t contextlen, int use_context) | ||
| 1215 | { | ||
| 1216 | unsigned char *buff; | ||
| 1217 | unsigned char *val = NULL; | ||
| 1218 | size_t vallen, currentvalpos; | ||
| 1219 | int rv; | ||
| 1220 | |||
| 1221 | buff = malloc(olen); | ||
| 1222 | if (buff == NULL) | ||
| 1223 | goto err2; | ||
| 1224 | |||
| 1225 | /* construct PRF arguments | ||
| 1226 | * we construct the PRF argument ourself rather than passing separate | ||
| 1227 | * values into the TLS PRF to ensure that the concatenation of values | ||
| 1228 | * does not create a prohibited label. | ||
| 1229 | */ | ||
| 1230 | vallen = llen + SSL3_RANDOM_SIZE * 2; | ||
| 1231 | if (use_context) { | ||
| 1232 | vallen += 2 + contextlen; | ||
| 1233 | } | ||
| 1234 | |||
| 1235 | val = malloc(vallen); | ||
| 1236 | if (val == NULL) | ||
| 1237 | goto err2; | ||
| 1238 | currentvalpos = 0; | ||
| 1239 | memcpy(val + currentvalpos, (unsigned char *) label, llen); | ||
| 1240 | currentvalpos += llen; | ||
| 1241 | memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); | ||
| 1242 | currentvalpos += SSL3_RANDOM_SIZE; | ||
| 1243 | memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); | ||
| 1244 | currentvalpos += SSL3_RANDOM_SIZE; | ||
| 1245 | |||
| 1246 | if (use_context) { | ||
| 1247 | val[currentvalpos] = (contextlen >> 8) & 0xff; | ||
| 1248 | currentvalpos++; | ||
| 1249 | val[currentvalpos] = contextlen & 0xff; | ||
| 1250 | currentvalpos++; | ||
| 1251 | if ((contextlen > 0) || (context != NULL)) { | ||
| 1252 | memcpy(val + currentvalpos, context, contextlen); | ||
| 1253 | } | ||
| 1254 | } | ||
| 1255 | |||
| 1256 | /* disallow prohibited labels | ||
| 1257 | * note that SSL3_RANDOM_SIZE > max(prohibited label len) = | ||
| 1258 | * 15, so size of val > max(prohibited label len) = 15 and the | ||
| 1259 | * comparisons won't have buffer overflow | ||
| 1260 | */ | ||
| 1261 | if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, | ||
| 1262 | TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) | ||
| 1263 | goto err1; | ||
| 1264 | if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, | ||
| 1265 | TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) | ||
| 1266 | goto err1; | ||
| 1267 | if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, | ||
| 1268 | TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) | ||
| 1269 | goto err1; | ||
| 1270 | if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, | ||
| 1271 | TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) | ||
| 1272 | goto err1; | ||
| 1273 | |||
| 1274 | rv = tls1_PRF(ssl_get_algorithm2(s), | ||
| 1275 | val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, | ||
| 1276 | s->session->master_key, s->session->master_key_length, | ||
| 1277 | out, buff, olen); | ||
| 1278 | |||
| 1279 | goto ret; | ||
| 1280 | err1: | ||
| 1281 | SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, | ||
| 1282 | SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); | ||
| 1283 | rv = 0; | ||
| 1284 | goto ret; | ||
| 1285 | err2: | ||
| 1286 | SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE); | ||
| 1287 | rv = 0; | ||
| 1288 | ret: | ||
| 1289 | free(buff); | ||
| 1290 | free(val); | ||
| 1291 | |||
| 1292 | return (rv); | ||
| 1293 | } | ||
| 1294 | |||
| 1295 | int | ||
| 1296 | tls1_alert_code(int code) | ||
| 1297 | { | ||
| 1298 | switch (code) { | ||
| 1299 | case SSL_AD_CLOSE_NOTIFY: | ||
| 1300 | return (SSL3_AD_CLOSE_NOTIFY); | ||
| 1301 | case SSL_AD_UNEXPECTED_MESSAGE: | ||
| 1302 | return (SSL3_AD_UNEXPECTED_MESSAGE); | ||
| 1303 | case SSL_AD_BAD_RECORD_MAC: | ||
| 1304 | return (SSL3_AD_BAD_RECORD_MAC); | ||
| 1305 | case SSL_AD_DECRYPTION_FAILED: | ||
| 1306 | return (TLS1_AD_DECRYPTION_FAILED); | ||
| 1307 | case SSL_AD_RECORD_OVERFLOW: | ||
| 1308 | return (TLS1_AD_RECORD_OVERFLOW); | ||
| 1309 | case SSL_AD_DECOMPRESSION_FAILURE: | ||
| 1310 | return (SSL3_AD_DECOMPRESSION_FAILURE); | ||
| 1311 | case SSL_AD_HANDSHAKE_FAILURE: | ||
| 1312 | return (SSL3_AD_HANDSHAKE_FAILURE); | ||
| 1313 | case SSL_AD_NO_CERTIFICATE: | ||
| 1314 | return (-1); | ||
| 1315 | case SSL_AD_BAD_CERTIFICATE: | ||
| 1316 | return (SSL3_AD_BAD_CERTIFICATE); | ||
| 1317 | case SSL_AD_UNSUPPORTED_CERTIFICATE: | ||
| 1318 | return (SSL3_AD_UNSUPPORTED_CERTIFICATE); | ||
| 1319 | case SSL_AD_CERTIFICATE_REVOKED: | ||
| 1320 | return (SSL3_AD_CERTIFICATE_REVOKED); | ||
| 1321 | case SSL_AD_CERTIFICATE_EXPIRED: | ||
| 1322 | return (SSL3_AD_CERTIFICATE_EXPIRED); | ||
| 1323 | case SSL_AD_CERTIFICATE_UNKNOWN: | ||
| 1324 | return (SSL3_AD_CERTIFICATE_UNKNOWN); | ||
| 1325 | case SSL_AD_ILLEGAL_PARAMETER: | ||
| 1326 | return (SSL3_AD_ILLEGAL_PARAMETER); | ||
| 1327 | case SSL_AD_UNKNOWN_CA: | ||
| 1328 | return (TLS1_AD_UNKNOWN_CA); | ||
| 1329 | case SSL_AD_ACCESS_DENIED: | ||
| 1330 | return (TLS1_AD_ACCESS_DENIED); | ||
| 1331 | case SSL_AD_DECODE_ERROR: | ||
| 1332 | return (TLS1_AD_DECODE_ERROR); | ||
| 1333 | case SSL_AD_DECRYPT_ERROR: | ||
| 1334 | return (TLS1_AD_DECRYPT_ERROR); | ||
| 1335 | case SSL_AD_EXPORT_RESTRICTION: | ||
| 1336 | return (TLS1_AD_EXPORT_RESTRICTION); | ||
| 1337 | case SSL_AD_PROTOCOL_VERSION: | ||
| 1338 | return (TLS1_AD_PROTOCOL_VERSION); | ||
| 1339 | case SSL_AD_INSUFFICIENT_SECURITY: | ||
| 1340 | return (TLS1_AD_INSUFFICIENT_SECURITY); | ||
| 1341 | case SSL_AD_INTERNAL_ERROR: | ||
| 1342 | return (TLS1_AD_INTERNAL_ERROR); | ||
| 1343 | case SSL_AD_INAPPROPRIATE_FALLBACK: | ||
| 1344 | return(TLS1_AD_INAPPROPRIATE_FALLBACK); | ||
| 1345 | case SSL_AD_USER_CANCELLED: | ||
| 1346 | return (TLS1_AD_USER_CANCELLED); | ||
| 1347 | case SSL_AD_NO_RENEGOTIATION: | ||
| 1348 | return (TLS1_AD_NO_RENEGOTIATION); | ||
| 1349 | case SSL_AD_UNSUPPORTED_EXTENSION: | ||
| 1350 | return (TLS1_AD_UNSUPPORTED_EXTENSION); | ||
| 1351 | case SSL_AD_CERTIFICATE_UNOBTAINABLE: | ||
| 1352 | return (TLS1_AD_CERTIFICATE_UNOBTAINABLE); | ||
| 1353 | case SSL_AD_UNRECOGNIZED_NAME: | ||
| 1354 | return (TLS1_AD_UNRECOGNIZED_NAME); | ||
| 1355 | case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: | ||
| 1356 | return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE); | ||
| 1357 | case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: | ||
| 1358 | return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE); | ||
| 1359 | case SSL_AD_UNKNOWN_PSK_IDENTITY: | ||
| 1360 | return (TLS1_AD_UNKNOWN_PSK_IDENTITY); | ||
| 1361 | default: | ||
| 1362 | return (-1); | ||
| 1363 | } | ||
| 1364 | } | ||
