diff options
Diffstat (limited to 'src/lib/libssl/t1_enc.c')
-rw-r--r-- | src/lib/libssl/t1_enc.c | 1419 |
1 files changed, 0 insertions, 1419 deletions
diff --git a/src/lib/libssl/t1_enc.c b/src/lib/libssl/t1_enc.c deleted file mode 100644 index 53570b2d4f..0000000000 --- a/src/lib/libssl/t1_enc.c +++ /dev/null | |||
@@ -1,1419 +0,0 @@ | |||
1 | /* $OpenBSD: t1_enc.c,v 1.85 2016/04/28 16:39:45 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | /* ==================================================================== | ||
112 | * Copyright 2005 Nokia. All rights reserved. | ||
113 | * | ||
114 | * The portions of the attached software ("Contribution") is developed by | ||
115 | * Nokia Corporation and is licensed pursuant to the OpenSSL open source | ||
116 | * license. | ||
117 | * | ||
118 | * The Contribution, originally written by Mika Kousa and Pasi Eronen of | ||
119 | * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites | ||
120 | * support (see RFC 4279) to OpenSSL. | ||
121 | * | ||
122 | * No patent licenses or other rights except those expressly stated in | ||
123 | * the OpenSSL open source license shall be deemed granted or received | ||
124 | * expressly, by implication, estoppel, or otherwise. | ||
125 | * | ||
126 | * No assurances are provided by Nokia that the Contribution does not | ||
127 | * infringe the patent or other intellectual property rights of any third | ||
128 | * party or that the license provides you with all the necessary rights | ||
129 | * to make use of the Contribution. | ||
130 | * | ||
131 | * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN | ||
132 | * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA | ||
133 | * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY | ||
134 | * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR | ||
135 | * OTHERWISE. | ||
136 | */ | ||
137 | |||
138 | #include <stdio.h> | ||
139 | |||
140 | #include "ssl_locl.h" | ||
141 | |||
142 | #include <openssl/evp.h> | ||
143 | #include <openssl/hmac.h> | ||
144 | #include <openssl/md5.h> | ||
145 | |||
146 | void | ||
147 | tls1_cleanup_key_block(SSL *s) | ||
148 | { | ||
149 | if (s->s3->tmp.key_block != NULL) { | ||
150 | explicit_bzero(s->s3->tmp.key_block, | ||
151 | s->s3->tmp.key_block_length); | ||
152 | free(s->s3->tmp.key_block); | ||
153 | s->s3->tmp.key_block = NULL; | ||
154 | } | ||
155 | s->s3->tmp.key_block_length = 0; | ||
156 | } | ||
157 | |||
158 | int | ||
159 | tls1_init_finished_mac(SSL *s) | ||
160 | { | ||
161 | BIO_free(s->s3->handshake_buffer); | ||
162 | tls1_free_digest_list(s); | ||
163 | |||
164 | s->s3->handshake_buffer = BIO_new(BIO_s_mem()); | ||
165 | if (s->s3->handshake_buffer == NULL) | ||
166 | return (0); | ||
167 | |||
168 | (void)BIO_set_close(s->s3->handshake_buffer, BIO_CLOSE); | ||
169 | |||
170 | return (1); | ||
171 | } | ||
172 | |||
173 | void | ||
174 | tls1_free_digest_list(SSL *s) | ||
175 | { | ||
176 | int i; | ||
177 | |||
178 | if (s == NULL) | ||
179 | return; | ||
180 | |||
181 | if (s->s3->handshake_dgst == NULL) | ||
182 | return; | ||
183 | for (i = 0; i < SSL_MAX_DIGEST; i++) { | ||
184 | if (s->s3->handshake_dgst[i]) | ||
185 | EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]); | ||
186 | } | ||
187 | free(s->s3->handshake_dgst); | ||
188 | s->s3->handshake_dgst = NULL; | ||
189 | } | ||
190 | |||
191 | void | ||
192 | tls1_finish_mac(SSL *s, const unsigned char *buf, int len) | ||
193 | { | ||
194 | if (s->s3->handshake_buffer && | ||
195 | !(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) { | ||
196 | BIO_write(s->s3->handshake_buffer, (void *)buf, len); | ||
197 | } else { | ||
198 | int i; | ||
199 | for (i = 0; i < SSL_MAX_DIGEST; i++) { | ||
200 | if (s->s3->handshake_dgst[i]!= NULL) | ||
201 | EVP_DigestUpdate(s->s3->handshake_dgst[i], buf, len); | ||
202 | } | ||
203 | } | ||
204 | } | ||
205 | |||
206 | int | ||
207 | tls1_digest_cached_records(SSL *s) | ||
208 | { | ||
209 | int i; | ||
210 | long mask; | ||
211 | const EVP_MD *md; | ||
212 | long hdatalen; | ||
213 | void *hdata; | ||
214 | |||
215 | tls1_free_digest_list(s); | ||
216 | |||
217 | s->s3->handshake_dgst = calloc(SSL_MAX_DIGEST, sizeof(EVP_MD_CTX *)); | ||
218 | if (s->s3->handshake_dgst == NULL) { | ||
219 | SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_MALLOC_FAILURE); | ||
220 | return 0; | ||
221 | } | ||
222 | hdatalen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata); | ||
223 | if (hdatalen <= 0) { | ||
224 | SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, | ||
225 | SSL_R_BAD_HANDSHAKE_LENGTH); | ||
226 | return 0; | ||
227 | } | ||
228 | |||
229 | /* Loop through bits of the algorithm2 field and create MD contexts. */ | ||
230 | for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) { | ||
231 | if ((mask & ssl_get_algorithm2(s)) && md) { | ||
232 | s->s3->handshake_dgst[i] = EVP_MD_CTX_create(); | ||
233 | if (s->s3->handshake_dgst[i] == NULL) { | ||
234 | SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, | ||
235 | ERR_R_MALLOC_FAILURE); | ||
236 | return 0; | ||
237 | } | ||
238 | if (!EVP_DigestInit_ex(s->s3->handshake_dgst[i], | ||
239 | md, NULL)) { | ||
240 | EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]); | ||
241 | return 0; | ||
242 | } | ||
243 | if (!EVP_DigestUpdate(s->s3->handshake_dgst[i], hdata, | ||
244 | hdatalen)) | ||
245 | return 0; | ||
246 | } | ||
247 | } | ||
248 | |||
249 | if (!(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) { | ||
250 | BIO_free(s->s3->handshake_buffer); | ||
251 | s->s3->handshake_buffer = NULL; | ||
252 | } | ||
253 | |||
254 | return 1; | ||
255 | } | ||
256 | |||
257 | void | ||
258 | tls1_record_sequence_increment(unsigned char *seq) | ||
259 | { | ||
260 | int i; | ||
261 | |||
262 | for (i = SSL3_SEQUENCE_SIZE - 1; i >= 0; i--) { | ||
263 | if (++seq[i] != 0) | ||
264 | break; | ||
265 | } | ||
266 | } | ||
267 | |||
268 | /* seed1 through seed5 are virtually concatenated */ | ||
269 | static int | ||
270 | tls1_P_hash(const EVP_MD *md, const unsigned char *sec, int sec_len, | ||
271 | const void *seed1, int seed1_len, const void *seed2, int seed2_len, | ||
272 | const void *seed3, int seed3_len, const void *seed4, int seed4_len, | ||
273 | const void *seed5, int seed5_len, unsigned char *out, int olen) | ||
274 | { | ||
275 | int chunk; | ||
276 | size_t j; | ||
277 | EVP_MD_CTX ctx, ctx_tmp; | ||
278 | EVP_PKEY *mac_key; | ||
279 | unsigned char A1[EVP_MAX_MD_SIZE]; | ||
280 | size_t A1_len; | ||
281 | int ret = 0; | ||
282 | |||
283 | chunk = EVP_MD_size(md); | ||
284 | OPENSSL_assert(chunk >= 0); | ||
285 | |||
286 | EVP_MD_CTX_init(&ctx); | ||
287 | EVP_MD_CTX_init(&ctx_tmp); | ||
288 | mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len); | ||
289 | if (!mac_key) | ||
290 | goto err; | ||
291 | if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key)) | ||
292 | goto err; | ||
293 | if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key)) | ||
294 | goto err; | ||
295 | if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) | ||
296 | goto err; | ||
297 | if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) | ||
298 | goto err; | ||
299 | if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) | ||
300 | goto err; | ||
301 | if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) | ||
302 | goto err; | ||
303 | if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) | ||
304 | goto err; | ||
305 | if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) | ||
306 | goto err; | ||
307 | |||
308 | for (;;) { | ||
309 | /* Reinit mac contexts */ | ||
310 | if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key)) | ||
311 | goto err; | ||
312 | if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key)) | ||
313 | goto err; | ||
314 | if (!EVP_DigestSignUpdate(&ctx, A1, A1_len)) | ||
315 | goto err; | ||
316 | if (!EVP_DigestSignUpdate(&ctx_tmp, A1, A1_len)) | ||
317 | goto err; | ||
318 | if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len)) | ||
319 | goto err; | ||
320 | if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len)) | ||
321 | goto err; | ||
322 | if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len)) | ||
323 | goto err; | ||
324 | if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len)) | ||
325 | goto err; | ||
326 | if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len)) | ||
327 | goto err; | ||
328 | |||
329 | if (olen > chunk) { | ||
330 | if (!EVP_DigestSignFinal(&ctx, out, &j)) | ||
331 | goto err; | ||
332 | out += j; | ||
333 | olen -= j; | ||
334 | /* calc the next A1 value */ | ||
335 | if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len)) | ||
336 | goto err; | ||
337 | } else { | ||
338 | /* last one */ | ||
339 | if (!EVP_DigestSignFinal(&ctx, A1, &A1_len)) | ||
340 | goto err; | ||
341 | memcpy(out, A1, olen); | ||
342 | break; | ||
343 | } | ||
344 | } | ||
345 | ret = 1; | ||
346 | |||
347 | err: | ||
348 | EVP_PKEY_free(mac_key); | ||
349 | EVP_MD_CTX_cleanup(&ctx); | ||
350 | EVP_MD_CTX_cleanup(&ctx_tmp); | ||
351 | explicit_bzero(A1, sizeof(A1)); | ||
352 | return ret; | ||
353 | } | ||
354 | |||
355 | /* seed1 through seed5 are virtually concatenated */ | ||
356 | static int | ||
357 | tls1_PRF(long digest_mask, const void *seed1, int seed1_len, const void *seed2, | ||
358 | int seed2_len, const void *seed3, int seed3_len, const void *seed4, | ||
359 | int seed4_len, const void *seed5, int seed5_len, const unsigned char *sec, | ||
360 | int slen, unsigned char *out1, unsigned char *out2, int olen) | ||
361 | { | ||
362 | int len, i, idx, count; | ||
363 | const unsigned char *S1; | ||
364 | long m; | ||
365 | const EVP_MD *md; | ||
366 | int ret = 0; | ||
367 | |||
368 | /* Count number of digests and partition sec evenly */ | ||
369 | count = 0; | ||
370 | for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { | ||
371 | if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) | ||
372 | count++; | ||
373 | } | ||
374 | if (count == 0) { | ||
375 | SSLerr(SSL_F_TLS1_PRF, | ||
376 | SSL_R_SSL_HANDSHAKE_FAILURE); | ||
377 | goto err; | ||
378 | } | ||
379 | len = slen / count; | ||
380 | if (count == 1) | ||
381 | slen = 0; | ||
382 | S1 = sec; | ||
383 | memset(out1, 0, olen); | ||
384 | for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) { | ||
385 | if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) { | ||
386 | if (!md) { | ||
387 | SSLerr(SSL_F_TLS1_PRF, | ||
388 | SSL_R_UNSUPPORTED_DIGEST_TYPE); | ||
389 | goto err; | ||
390 | } | ||
391 | if (!tls1_P_hash(md , S1, len + (slen&1), seed1, | ||
392 | seed1_len, seed2, seed2_len, seed3, seed3_len, | ||
393 | seed4, seed4_len, seed5, seed5_len, out2, olen)) | ||
394 | goto err; | ||
395 | S1 += len; | ||
396 | for (i = 0; i < olen; i++) { | ||
397 | out1[i] ^= out2[i]; | ||
398 | } | ||
399 | } | ||
400 | } | ||
401 | ret = 1; | ||
402 | |||
403 | err: | ||
404 | return ret; | ||
405 | } | ||
406 | |||
407 | static int | ||
408 | tls1_generate_key_block(SSL *s, unsigned char *km, unsigned char *tmp, int num) | ||
409 | { | ||
410 | int ret; | ||
411 | |||
412 | ret = tls1_PRF(ssl_get_algorithm2(s), | ||
413 | TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE, | ||
414 | s->s3->server_random, SSL3_RANDOM_SIZE, | ||
415 | s->s3->client_random, SSL3_RANDOM_SIZE, | ||
416 | NULL, 0, NULL, 0, | ||
417 | s->session->master_key, s->session->master_key_length, | ||
418 | km, tmp, num); | ||
419 | return ret; | ||
420 | } | ||
421 | |||
422 | /* | ||
423 | * tls1_aead_ctx_init allocates aead_ctx, if needed. It returns 1 on success | ||
424 | * and 0 on failure. | ||
425 | */ | ||
426 | static int | ||
427 | tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) | ||
428 | { | ||
429 | if (*aead_ctx != NULL) { | ||
430 | EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx); | ||
431 | return (1); | ||
432 | } | ||
433 | |||
434 | *aead_ctx = malloc(sizeof(SSL_AEAD_CTX)); | ||
435 | if (*aead_ctx == NULL) { | ||
436 | SSLerr(SSL_F_TLS1_AEAD_CTX_INIT, ERR_R_MALLOC_FAILURE); | ||
437 | return (0); | ||
438 | } | ||
439 | |||
440 | return (1); | ||
441 | } | ||
442 | |||
443 | static int | ||
444 | tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key, | ||
445 | unsigned key_len, const unsigned char *iv, unsigned iv_len) | ||
446 | { | ||
447 | const EVP_AEAD *aead = s->s3->tmp.new_aead; | ||
448 | SSL_AEAD_CTX *aead_ctx; | ||
449 | |||
450 | if (is_read) { | ||
451 | if (!tls1_aead_ctx_init(&s->aead_read_ctx)) | ||
452 | return 0; | ||
453 | aead_ctx = s->aead_read_ctx; | ||
454 | } else { | ||
455 | if (!tls1_aead_ctx_init(&s->aead_write_ctx)) | ||
456 | return 0; | ||
457 | aead_ctx = s->aead_write_ctx; | ||
458 | } | ||
459 | |||
460 | if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len, | ||
461 | EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) | ||
462 | return (0); | ||
463 | if (iv_len > sizeof(aead_ctx->fixed_nonce)) { | ||
464 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, | ||
465 | ERR_R_INTERNAL_ERROR); | ||
466 | return (0); | ||
467 | } | ||
468 | memcpy(aead_ctx->fixed_nonce, iv, iv_len); | ||
469 | aead_ctx->fixed_nonce_len = iv_len; | ||
470 | aead_ctx->variable_nonce_len = 8; /* always the case, currently. */ | ||
471 | aead_ctx->variable_nonce_in_record = | ||
472 | (s->s3->tmp.new_cipher->algorithm2 & | ||
473 | SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_IN_RECORD) != 0; | ||
474 | aead_ctx->xor_fixed_nonce = | ||
475 | s->s3->tmp.new_cipher->algorithm_enc == SSL_CHACHA20POLY1305; | ||
476 | aead_ctx->tag_len = EVP_AEAD_max_overhead(aead); | ||
477 | |||
478 | if (aead_ctx->xor_fixed_nonce) { | ||
479 | if (aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead) || | ||
480 | aead_ctx->variable_nonce_len > EVP_AEAD_nonce_length(aead)) { | ||
481 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, | ||
482 | ERR_R_INTERNAL_ERROR); | ||
483 | return (0); | ||
484 | } | ||
485 | } else { | ||
486 | if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != | ||
487 | EVP_AEAD_nonce_length(aead)) { | ||
488 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, | ||
489 | ERR_R_INTERNAL_ERROR); | ||
490 | return (0); | ||
491 | } | ||
492 | } | ||
493 | |||
494 | return (1); | ||
495 | } | ||
496 | |||
497 | /* | ||
498 | * tls1_change_cipher_state_cipher performs the work needed to switch cipher | ||
499 | * states when using EVP_CIPHER. The argument is_read is true iff this function | ||
500 | * is being called due to reading, as opposed to writing, a ChangeCipherSpec | ||
501 | * message. In order to support export ciphersuites, use_client_keys indicates | ||
502 | * whether the key material provided is in the "client write" direction. | ||
503 | */ | ||
504 | static int | ||
505 | tls1_change_cipher_state_cipher(SSL *s, char is_read, char use_client_keys, | ||
506 | const unsigned char *mac_secret, unsigned int mac_secret_size, | ||
507 | const unsigned char *key, unsigned int key_len, const unsigned char *iv, | ||
508 | unsigned int iv_len) | ||
509 | { | ||
510 | EVP_CIPHER_CTX *cipher_ctx; | ||
511 | const EVP_CIPHER *cipher; | ||
512 | EVP_MD_CTX *mac_ctx; | ||
513 | const EVP_MD *mac; | ||
514 | int mac_type; | ||
515 | |||
516 | cipher = s->s3->tmp.new_sym_enc; | ||
517 | mac = s->s3->tmp.new_hash; | ||
518 | mac_type = s->s3->tmp.new_mac_pkey_type; | ||
519 | |||
520 | if (is_read) { | ||
521 | if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) | ||
522 | s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM; | ||
523 | else | ||
524 | s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM; | ||
525 | |||
526 | EVP_CIPHER_CTX_free(s->enc_read_ctx); | ||
527 | s->enc_read_ctx = NULL; | ||
528 | EVP_MD_CTX_destroy(s->read_hash); | ||
529 | s->read_hash = NULL; | ||
530 | |||
531 | if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) | ||
532 | goto err; | ||
533 | s->enc_read_ctx = cipher_ctx; | ||
534 | if ((mac_ctx = EVP_MD_CTX_create()) == NULL) | ||
535 | goto err; | ||
536 | s->read_hash = mac_ctx; | ||
537 | } else { | ||
538 | if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) | ||
539 | s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM; | ||
540 | else | ||
541 | s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM; | ||
542 | |||
543 | /* | ||
544 | * DTLS fragments retain a pointer to the compression, cipher | ||
545 | * and hash contexts, so that it can restore state in order | ||
546 | * to perform retransmissions. As such, we cannot free write | ||
547 | * contexts that are used for DTLS - these are instead freed | ||
548 | * by DTLS when its frees a ChangeCipherSpec fragment. | ||
549 | */ | ||
550 | if (!SSL_IS_DTLS(s)) { | ||
551 | EVP_CIPHER_CTX_free(s->enc_write_ctx); | ||
552 | s->enc_write_ctx = NULL; | ||
553 | EVP_MD_CTX_destroy(s->write_hash); | ||
554 | s->write_hash = NULL; | ||
555 | } | ||
556 | if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) | ||
557 | goto err; | ||
558 | s->enc_write_ctx = cipher_ctx; | ||
559 | if ((mac_ctx = EVP_MD_CTX_create()) == NULL) | ||
560 | goto err; | ||
561 | s->write_hash = mac_ctx; | ||
562 | } | ||
563 | |||
564 | if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) { | ||
565 | EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, NULL, | ||
566 | !is_read); | ||
567 | EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GCM_SET_IV_FIXED, | ||
568 | iv_len, (unsigned char *)iv); | ||
569 | } else | ||
570 | EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, iv, !is_read); | ||
571 | |||
572 | if (!(EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { | ||
573 | EVP_PKEY *mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, | ||
574 | mac_secret, mac_secret_size); | ||
575 | if (mac_key == NULL) | ||
576 | goto err; | ||
577 | EVP_DigestSignInit(mac_ctx, NULL, mac, NULL, mac_key); | ||
578 | EVP_PKEY_free(mac_key); | ||
579 | } else if (mac_secret_size > 0) { | ||
580 | /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */ | ||
581 | EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_AEAD_SET_MAC_KEY, | ||
582 | mac_secret_size, (unsigned char *)mac_secret); | ||
583 | } | ||
584 | |||
585 | if (s->s3->tmp.new_cipher->algorithm_enc == SSL_eGOST2814789CNT) { | ||
586 | int nid; | ||
587 | if (s->s3->tmp.new_cipher->algorithm2 & SSL_HANDSHAKE_MAC_GOST94) | ||
588 | nid = NID_id_Gost28147_89_CryptoPro_A_ParamSet; | ||
589 | else | ||
590 | nid = NID_id_tc26_gost_28147_param_Z; | ||
591 | |||
592 | EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GOST_SET_SBOX, nid, 0); | ||
593 | if (s->s3->tmp.new_cipher->algorithm_mac == SSL_GOST89MAC) | ||
594 | EVP_MD_CTX_ctrl(mac_ctx, EVP_MD_CTRL_GOST_SET_SBOX, nid, 0); | ||
595 | } | ||
596 | |||
597 | return (1); | ||
598 | |||
599 | err: | ||
600 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_CIPHER, ERR_R_MALLOC_FAILURE); | ||
601 | return (0); | ||
602 | } | ||
603 | |||
604 | int | ||
605 | tls1_change_cipher_state(SSL *s, int which) | ||
606 | { | ||
607 | const unsigned char *client_write_mac_secret, *server_write_mac_secret; | ||
608 | const unsigned char *client_write_key, *server_write_key; | ||
609 | const unsigned char *client_write_iv, *server_write_iv; | ||
610 | const unsigned char *mac_secret, *key, *iv; | ||
611 | int mac_secret_size, key_len, iv_len; | ||
612 | unsigned char *key_block, *seq; | ||
613 | const EVP_CIPHER *cipher; | ||
614 | const EVP_AEAD *aead; | ||
615 | char is_read, use_client_keys; | ||
616 | |||
617 | |||
618 | cipher = s->s3->tmp.new_sym_enc; | ||
619 | aead = s->s3->tmp.new_aead; | ||
620 | |||
621 | /* | ||
622 | * is_read is true if we have just read a ChangeCipherSpec message, | ||
623 | * that is we need to update the read cipherspec. Otherwise we have | ||
624 | * just written one. | ||
625 | */ | ||
626 | is_read = (which & SSL3_CC_READ) != 0; | ||
627 | |||
628 | /* | ||
629 | * use_client_keys is true if we wish to use the keys for the "client | ||
630 | * write" direction. This is the case if we're a client sending a | ||
631 | * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec. | ||
632 | */ | ||
633 | use_client_keys = ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || | ||
634 | (which == SSL3_CHANGE_CIPHER_SERVER_READ)); | ||
635 | |||
636 | |||
637 | /* | ||
638 | * Reset sequence number to zero - for DTLS this is handled in | ||
639 | * dtls1_reset_seq_numbers(). | ||
640 | */ | ||
641 | if (!SSL_IS_DTLS(s)) { | ||
642 | seq = is_read ? s->s3->read_sequence : s->s3->write_sequence; | ||
643 | memset(seq, 0, SSL3_SEQUENCE_SIZE); | ||
644 | } | ||
645 | |||
646 | if (aead != NULL) { | ||
647 | key_len = EVP_AEAD_key_length(aead); | ||
648 | iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher); | ||
649 | } else { | ||
650 | key_len = EVP_CIPHER_key_length(cipher); | ||
651 | iv_len = EVP_CIPHER_iv_length(cipher); | ||
652 | |||
653 | /* If GCM mode only part of IV comes from PRF. */ | ||
654 | if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) | ||
655 | iv_len = EVP_GCM_TLS_FIXED_IV_LEN; | ||
656 | } | ||
657 | |||
658 | mac_secret_size = s->s3->tmp.new_mac_secret_size; | ||
659 | |||
660 | key_block = s->s3->tmp.key_block; | ||
661 | client_write_mac_secret = key_block; | ||
662 | key_block += mac_secret_size; | ||
663 | server_write_mac_secret = key_block; | ||
664 | key_block += mac_secret_size; | ||
665 | client_write_key = key_block; | ||
666 | key_block += key_len; | ||
667 | server_write_key = key_block; | ||
668 | key_block += key_len; | ||
669 | client_write_iv = key_block; | ||
670 | key_block += iv_len; | ||
671 | server_write_iv = key_block; | ||
672 | key_block += iv_len; | ||
673 | |||
674 | if (use_client_keys) { | ||
675 | mac_secret = client_write_mac_secret; | ||
676 | key = client_write_key; | ||
677 | iv = client_write_iv; | ||
678 | } else { | ||
679 | mac_secret = server_write_mac_secret; | ||
680 | key = server_write_key; | ||
681 | iv = server_write_iv; | ||
682 | } | ||
683 | |||
684 | if (key_block - s->s3->tmp.key_block != s->s3->tmp.key_block_length) { | ||
685 | SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); | ||
686 | goto err2; | ||
687 | } | ||
688 | |||
689 | if (is_read) { | ||
690 | memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_size); | ||
691 | s->s3->read_mac_secret_size = mac_secret_size; | ||
692 | } else { | ||
693 | memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_size); | ||
694 | s->s3->write_mac_secret_size = mac_secret_size; | ||
695 | } | ||
696 | |||
697 | if (aead != NULL) { | ||
698 | return tls1_change_cipher_state_aead(s, is_read, key, key_len, | ||
699 | iv, iv_len); | ||
700 | } | ||
701 | |||
702 | return tls1_change_cipher_state_cipher(s, is_read, use_client_keys, | ||
703 | mac_secret, mac_secret_size, key, key_len, iv, iv_len); | ||
704 | |||
705 | err2: | ||
706 | return (0); | ||
707 | } | ||
708 | |||
709 | int | ||
710 | tls1_setup_key_block(SSL *s) | ||
711 | { | ||
712 | unsigned char *key_block, *tmp_block = NULL; | ||
713 | int mac_type = NID_undef, mac_secret_size = 0; | ||
714 | int key_block_len, key_len, iv_len; | ||
715 | const EVP_CIPHER *cipher = NULL; | ||
716 | const EVP_AEAD *aead = NULL; | ||
717 | const EVP_MD *mac = NULL; | ||
718 | int ret = 0; | ||
719 | |||
720 | if (s->s3->tmp.key_block_length != 0) | ||
721 | return (1); | ||
722 | |||
723 | if (s->session->cipher && | ||
724 | (s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD)) { | ||
725 | if (!ssl_cipher_get_evp_aead(s->session, &aead)) { | ||
726 | SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, | ||
727 | SSL_R_CIPHER_OR_HASH_UNAVAILABLE); | ||
728 | return (0); | ||
729 | } | ||
730 | key_len = EVP_AEAD_key_length(aead); | ||
731 | iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher); | ||
732 | } else { | ||
733 | if (!ssl_cipher_get_evp(s->session, &cipher, &mac, &mac_type, | ||
734 | &mac_secret_size)) { | ||
735 | SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, | ||
736 | SSL_R_CIPHER_OR_HASH_UNAVAILABLE); | ||
737 | return (0); | ||
738 | } | ||
739 | key_len = EVP_CIPHER_key_length(cipher); | ||
740 | iv_len = EVP_CIPHER_iv_length(cipher); | ||
741 | |||
742 | /* If GCM mode only part of IV comes from PRF. */ | ||
743 | if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) | ||
744 | iv_len = EVP_GCM_TLS_FIXED_IV_LEN; | ||
745 | } | ||
746 | |||
747 | s->s3->tmp.new_aead = aead; | ||
748 | s->s3->tmp.new_sym_enc = cipher; | ||
749 | s->s3->tmp.new_hash = mac; | ||
750 | s->s3->tmp.new_mac_pkey_type = mac_type; | ||
751 | s->s3->tmp.new_mac_secret_size = mac_secret_size; | ||
752 | |||
753 | tls1_cleanup_key_block(s); | ||
754 | |||
755 | if ((key_block = reallocarray(NULL, mac_secret_size + key_len + iv_len, | ||
756 | 2)) == NULL) { | ||
757 | SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); | ||
758 | goto err; | ||
759 | } | ||
760 | key_block_len = (mac_secret_size + key_len + iv_len) * 2; | ||
761 | |||
762 | s->s3->tmp.key_block_length = key_block_len; | ||
763 | s->s3->tmp.key_block = key_block; | ||
764 | |||
765 | if ((tmp_block = malloc(key_block_len)) == NULL) { | ||
766 | SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); | ||
767 | goto err; | ||
768 | } | ||
769 | |||
770 | if (!tls1_generate_key_block(s, key_block, tmp_block, key_block_len)) | ||
771 | goto err; | ||
772 | |||
773 | if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) && | ||
774 | s->method->version <= TLS1_VERSION) { | ||
775 | /* | ||
776 | * Enable vulnerability countermeasure for CBC ciphers with | ||
777 | * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt) | ||
778 | */ | ||
779 | s->s3->need_empty_fragments = 1; | ||
780 | |||
781 | if (s->session->cipher != NULL) { | ||
782 | if (s->session->cipher->algorithm_enc == SSL_eNULL) | ||
783 | s->s3->need_empty_fragments = 0; | ||
784 | |||
785 | #ifndef OPENSSL_NO_RC4 | ||
786 | if (s->session->cipher->algorithm_enc == SSL_RC4) | ||
787 | s->s3->need_empty_fragments = 0; | ||
788 | #endif | ||
789 | } | ||
790 | } | ||
791 | |||
792 | ret = 1; | ||
793 | |||
794 | err: | ||
795 | if (tmp_block) { | ||
796 | explicit_bzero(tmp_block, key_block_len); | ||
797 | free(tmp_block); | ||
798 | } | ||
799 | return (ret); | ||
800 | } | ||
801 | |||
802 | /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. | ||
803 | * | ||
804 | * Returns: | ||
805 | * 0: (in non-constant time) if the record is publically invalid (i.e. too | ||
806 | * short etc). | ||
807 | * 1: if the record's padding is valid / the encryption was successful. | ||
808 | * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, | ||
809 | * an internal error occured. | ||
810 | */ | ||
811 | int | ||
812 | tls1_enc(SSL *s, int send) | ||
813 | { | ||
814 | const SSL_AEAD_CTX *aead; | ||
815 | const EVP_CIPHER *enc; | ||
816 | EVP_CIPHER_CTX *ds; | ||
817 | SSL3_RECORD *rec; | ||
818 | unsigned char *seq; | ||
819 | unsigned long l; | ||
820 | int bs, i, j, k, pad = 0, ret, mac_size = 0; | ||
821 | |||
822 | if (send) { | ||
823 | aead = s->aead_write_ctx; | ||
824 | rec = &s->s3->wrec; | ||
825 | seq = s->s3->write_sequence; | ||
826 | } else { | ||
827 | aead = s->aead_read_ctx; | ||
828 | rec = &s->s3->rrec; | ||
829 | seq = s->s3->read_sequence; | ||
830 | } | ||
831 | |||
832 | if (aead) { | ||
833 | unsigned char ad[13], *in, *out, nonce[16]; | ||
834 | size_t out_len, pad_len = 0; | ||
835 | unsigned int nonce_used; | ||
836 | |||
837 | if (SSL_IS_DTLS(s)) { | ||
838 | dtls1_build_sequence_number(ad, seq, | ||
839 | send ? s->d1->w_epoch : s->d1->r_epoch); | ||
840 | } else { | ||
841 | memcpy(ad, seq, SSL3_SEQUENCE_SIZE); | ||
842 | tls1_record_sequence_increment(seq); | ||
843 | } | ||
844 | |||
845 | ad[8] = rec->type; | ||
846 | ad[9] = (unsigned char)(s->version >> 8); | ||
847 | ad[10] = (unsigned char)(s->version); | ||
848 | |||
849 | if (aead->variable_nonce_len > 8 || | ||
850 | aead->variable_nonce_len > sizeof(nonce)) | ||
851 | return -1; | ||
852 | |||
853 | if (aead->xor_fixed_nonce) { | ||
854 | if (aead->fixed_nonce_len > sizeof(nonce) || | ||
855 | aead->variable_nonce_len > aead->fixed_nonce_len) | ||
856 | return -1; /* Should never happen. */ | ||
857 | pad_len = aead->fixed_nonce_len - aead->variable_nonce_len; | ||
858 | } else { | ||
859 | if (aead->fixed_nonce_len + | ||
860 | aead->variable_nonce_len > sizeof(nonce)) | ||
861 | return -1; /* Should never happen. */ | ||
862 | } | ||
863 | |||
864 | if (send) { | ||
865 | size_t len = rec->length; | ||
866 | size_t eivlen = 0; | ||
867 | in = rec->input; | ||
868 | out = rec->data; | ||
869 | |||
870 | if (aead->xor_fixed_nonce) { | ||
871 | /* | ||
872 | * The sequence number is left zero | ||
873 | * padded, then xored with the fixed | ||
874 | * nonce. | ||
875 | */ | ||
876 | memset(nonce, 0, pad_len); | ||
877 | memcpy(nonce + pad_len, ad, | ||
878 | aead->variable_nonce_len); | ||
879 | for (i = 0; i < aead->fixed_nonce_len; i++) | ||
880 | nonce[i] ^= aead->fixed_nonce[i]; | ||
881 | nonce_used = aead->fixed_nonce_len; | ||
882 | } else { | ||
883 | /* | ||
884 | * When sending we use the sequence number as | ||
885 | * the variable part of the nonce. | ||
886 | */ | ||
887 | memcpy(nonce, aead->fixed_nonce, | ||
888 | aead->fixed_nonce_len); | ||
889 | nonce_used = aead->fixed_nonce_len; | ||
890 | memcpy(nonce + nonce_used, ad, | ||
891 | aead->variable_nonce_len); | ||
892 | nonce_used += aead->variable_nonce_len; | ||
893 | } | ||
894 | |||
895 | /* | ||
896 | * In do_ssl3_write, rec->input is moved forward by | ||
897 | * variable_nonce_len in order to leave space for the | ||
898 | * variable nonce. Thus we can copy the sequence number | ||
899 | * bytes into place without overwriting any of the | ||
900 | * plaintext. | ||
901 | */ | ||
902 | if (aead->variable_nonce_in_record) { | ||
903 | memcpy(out, ad, aead->variable_nonce_len); | ||
904 | len -= aead->variable_nonce_len; | ||
905 | eivlen = aead->variable_nonce_len; | ||
906 | } | ||
907 | |||
908 | ad[11] = len >> 8; | ||
909 | ad[12] = len & 0xff; | ||
910 | |||
911 | if (!EVP_AEAD_CTX_seal(&aead->ctx, | ||
912 | out + eivlen, &out_len, len + aead->tag_len, nonce, | ||
913 | nonce_used, in + eivlen, len, ad, sizeof(ad))) | ||
914 | return -1; | ||
915 | if (aead->variable_nonce_in_record) | ||
916 | out_len += aead->variable_nonce_len; | ||
917 | } else { | ||
918 | /* receive */ | ||
919 | size_t len = rec->length; | ||
920 | |||
921 | if (rec->data != rec->input) | ||
922 | return -1; /* internal error - should never happen. */ | ||
923 | out = in = rec->input; | ||
924 | |||
925 | if (len < aead->variable_nonce_len) | ||
926 | return 0; | ||
927 | |||
928 | if (aead->xor_fixed_nonce) { | ||
929 | /* | ||
930 | * The sequence number is left zero | ||
931 | * padded, then xored with the fixed | ||
932 | * nonce. | ||
933 | */ | ||
934 | memset(nonce, 0, pad_len); | ||
935 | memcpy(nonce + pad_len, ad, | ||
936 | aead->variable_nonce_len); | ||
937 | for (i = 0; i < aead->fixed_nonce_len; i++) | ||
938 | nonce[i] ^= aead->fixed_nonce[i]; | ||
939 | nonce_used = aead->fixed_nonce_len; | ||
940 | } else { | ||
941 | memcpy(nonce, aead->fixed_nonce, | ||
942 | aead->fixed_nonce_len); | ||
943 | nonce_used = aead->fixed_nonce_len; | ||
944 | |||
945 | memcpy(nonce + nonce_used, | ||
946 | aead->variable_nonce_in_record ? in : ad, | ||
947 | aead->variable_nonce_len); | ||
948 | nonce_used += aead->variable_nonce_len; | ||
949 | } | ||
950 | |||
951 | if (aead->variable_nonce_in_record) { | ||
952 | in += aead->variable_nonce_len; | ||
953 | len -= aead->variable_nonce_len; | ||
954 | out += aead->variable_nonce_len; | ||
955 | } | ||
956 | |||
957 | if (len < aead->tag_len) | ||
958 | return 0; | ||
959 | len -= aead->tag_len; | ||
960 | |||
961 | ad[11] = len >> 8; | ||
962 | ad[12] = len & 0xff; | ||
963 | |||
964 | if (!EVP_AEAD_CTX_open(&aead->ctx, out, &out_len, len, | ||
965 | nonce, nonce_used, in, len + aead->tag_len, ad, | ||
966 | sizeof(ad))) | ||
967 | return -1; | ||
968 | |||
969 | rec->data = rec->input = out; | ||
970 | } | ||
971 | |||
972 | rec->length = out_len; | ||
973 | |||
974 | return 1; | ||
975 | } | ||
976 | |||
977 | if (send) { | ||
978 | if (EVP_MD_CTX_md(s->write_hash)) { | ||
979 | int n = EVP_MD_CTX_size(s->write_hash); | ||
980 | OPENSSL_assert(n >= 0); | ||
981 | } | ||
982 | ds = s->enc_write_ctx; | ||
983 | if (s->enc_write_ctx == NULL) | ||
984 | enc = NULL; | ||
985 | else { | ||
986 | int ivlen = 0; | ||
987 | enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); | ||
988 | if (SSL_USE_EXPLICIT_IV(s) && | ||
989 | EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) | ||
990 | ivlen = EVP_CIPHER_iv_length(enc); | ||
991 | if (ivlen > 1) { | ||
992 | if (rec->data != rec->input) { | ||
993 | #ifdef DEBUG | ||
994 | /* we can't write into the input stream: | ||
995 | * Can this ever happen?? (steve) | ||
996 | */ | ||
997 | fprintf(stderr, | ||
998 | "%s:%d: rec->data != rec->input\n", | ||
999 | __FILE__, __LINE__); | ||
1000 | #endif | ||
1001 | } else | ||
1002 | arc4random_buf(rec->input, ivlen); | ||
1003 | } | ||
1004 | } | ||
1005 | } else { | ||
1006 | if (EVP_MD_CTX_md(s->read_hash)) { | ||
1007 | int n = EVP_MD_CTX_size(s->read_hash); | ||
1008 | OPENSSL_assert(n >= 0); | ||
1009 | } | ||
1010 | ds = s->enc_read_ctx; | ||
1011 | if (s->enc_read_ctx == NULL) | ||
1012 | enc = NULL; | ||
1013 | else | ||
1014 | enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); | ||
1015 | } | ||
1016 | |||
1017 | if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { | ||
1018 | memmove(rec->data, rec->input, rec->length); | ||
1019 | rec->input = rec->data; | ||
1020 | ret = 1; | ||
1021 | } else { | ||
1022 | l = rec->length; | ||
1023 | bs = EVP_CIPHER_block_size(ds->cipher); | ||
1024 | |||
1025 | if (EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { | ||
1026 | unsigned char buf[13]; | ||
1027 | |||
1028 | if (SSL_IS_DTLS(s)) { | ||
1029 | dtls1_build_sequence_number(buf, seq, | ||
1030 | send ? s->d1->w_epoch : s->d1->r_epoch); | ||
1031 | } else { | ||
1032 | memcpy(buf, seq, SSL3_SEQUENCE_SIZE); | ||
1033 | tls1_record_sequence_increment(seq); | ||
1034 | } | ||
1035 | |||
1036 | buf[8] = rec->type; | ||
1037 | buf[9] = (unsigned char)(s->version >> 8); | ||
1038 | buf[10] = (unsigned char)(s->version); | ||
1039 | buf[11] = rec->length >> 8; | ||
1040 | buf[12] = rec->length & 0xff; | ||
1041 | pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, 13, buf); | ||
1042 | if (send) { | ||
1043 | l += pad; | ||
1044 | rec->length += pad; | ||
1045 | } | ||
1046 | } else if ((bs != 1) && send) { | ||
1047 | i = bs - ((int)l % bs); | ||
1048 | |||
1049 | /* Add weird padding of upto 256 bytes */ | ||
1050 | |||
1051 | /* we need to add 'i' padding bytes of value j */ | ||
1052 | j = i - 1; | ||
1053 | for (k = (int)l; k < (int)(l + i); k++) | ||
1054 | rec->input[k] = j; | ||
1055 | l += i; | ||
1056 | rec->length += i; | ||
1057 | } | ||
1058 | |||
1059 | if (!send) { | ||
1060 | if (l == 0 || l % bs != 0) | ||
1061 | return 0; | ||
1062 | } | ||
1063 | |||
1064 | i = EVP_Cipher(ds, rec->data, rec->input, l); | ||
1065 | if ((EVP_CIPHER_flags(ds->cipher) & | ||
1066 | EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (i < 0) : (i == 0)) | ||
1067 | return -1; /* AEAD can fail to verify MAC */ | ||
1068 | if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) { | ||
1069 | rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN; | ||
1070 | rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN; | ||
1071 | rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; | ||
1072 | } | ||
1073 | |||
1074 | ret = 1; | ||
1075 | if (EVP_MD_CTX_md(s->read_hash) != NULL) | ||
1076 | mac_size = EVP_MD_CTX_size(s->read_hash); | ||
1077 | if ((bs != 1) && !send) | ||
1078 | ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); | ||
1079 | if (pad && !send) | ||
1080 | rec->length -= pad; | ||
1081 | } | ||
1082 | return ret; | ||
1083 | } | ||
1084 | |||
1085 | int | ||
1086 | tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out) | ||
1087 | { | ||
1088 | EVP_MD_CTX ctx, *d = NULL; | ||
1089 | unsigned int ret; | ||
1090 | int i; | ||
1091 | |||
1092 | if (s->s3->handshake_buffer) | ||
1093 | if (!tls1_digest_cached_records(s)) | ||
1094 | return 0; | ||
1095 | |||
1096 | for (i = 0; i < SSL_MAX_DIGEST; i++) { | ||
1097 | if (s->s3->handshake_dgst[i] && | ||
1098 | EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) { | ||
1099 | d = s->s3->handshake_dgst[i]; | ||
1100 | break; | ||
1101 | } | ||
1102 | } | ||
1103 | if (d == NULL) { | ||
1104 | SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC, SSL_R_NO_REQUIRED_DIGEST); | ||
1105 | return 0; | ||
1106 | } | ||
1107 | |||
1108 | EVP_MD_CTX_init(&ctx); | ||
1109 | if (!EVP_MD_CTX_copy_ex(&ctx, d)) | ||
1110 | return 0; | ||
1111 | EVP_DigestFinal_ex(&ctx, out, &ret); | ||
1112 | EVP_MD_CTX_cleanup(&ctx); | ||
1113 | |||
1114 | return ((int)ret); | ||
1115 | } | ||
1116 | |||
1117 | int | ||
1118 | tls1_final_finish_mac(SSL *s, const char *str, int slen, unsigned char *out) | ||
1119 | { | ||
1120 | unsigned int i; | ||
1121 | EVP_MD_CTX ctx; | ||
1122 | unsigned char buf[2*EVP_MAX_MD_SIZE]; | ||
1123 | unsigned char *q, buf2[12]; | ||
1124 | int idx; | ||
1125 | long mask; | ||
1126 | int err = 0; | ||
1127 | const EVP_MD *md; | ||
1128 | |||
1129 | q = buf; | ||
1130 | |||
1131 | if (s->s3->handshake_buffer) | ||
1132 | if (!tls1_digest_cached_records(s)) | ||
1133 | return 0; | ||
1134 | |||
1135 | EVP_MD_CTX_init(&ctx); | ||
1136 | |||
1137 | for (idx = 0; ssl_get_handshake_digest(idx, &mask, &md); idx++) { | ||
1138 | if (ssl_get_algorithm2(s) & mask) { | ||
1139 | int hashsize = EVP_MD_size(md); | ||
1140 | EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx]; | ||
1141 | if (!hdgst || hashsize < 0 || | ||
1142 | hashsize > (int)(sizeof buf - (size_t)(q - buf))) { | ||
1143 | /* internal error: 'buf' is too small for this cipersuite! */ | ||
1144 | err = 1; | ||
1145 | } else { | ||
1146 | if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) || | ||
1147 | !EVP_DigestFinal_ex(&ctx, q, &i) || | ||
1148 | (i != (unsigned int)hashsize)) | ||
1149 | err = 1; | ||
1150 | q += hashsize; | ||
1151 | } | ||
1152 | } | ||
1153 | } | ||
1154 | |||
1155 | if (!tls1_PRF(ssl_get_algorithm2(s), str, slen, buf, (int)(q - buf), | ||
1156 | NULL, 0, NULL, 0, NULL, 0, | ||
1157 | s->session->master_key, s->session->master_key_length, | ||
1158 | out, buf2, sizeof buf2)) | ||
1159 | err = 1; | ||
1160 | EVP_MD_CTX_cleanup(&ctx); | ||
1161 | |||
1162 | if (err) | ||
1163 | return 0; | ||
1164 | else | ||
1165 | return sizeof buf2; | ||
1166 | } | ||
1167 | |||
1168 | int | ||
1169 | tls1_mac(SSL *ssl, unsigned char *md, int send) | ||
1170 | { | ||
1171 | SSL3_RECORD *rec; | ||
1172 | unsigned char *seq; | ||
1173 | EVP_MD_CTX *hash; | ||
1174 | size_t md_size, orig_len; | ||
1175 | EVP_MD_CTX hmac, *mac_ctx; | ||
1176 | unsigned char header[13]; | ||
1177 | int stream_mac = (send ? | ||
1178 | (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) : | ||
1179 | (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); | ||
1180 | int t; | ||
1181 | |||
1182 | if (send) { | ||
1183 | rec = &(ssl->s3->wrec); | ||
1184 | seq = &(ssl->s3->write_sequence[0]); | ||
1185 | hash = ssl->write_hash; | ||
1186 | } else { | ||
1187 | rec = &(ssl->s3->rrec); | ||
1188 | seq = &(ssl->s3->read_sequence[0]); | ||
1189 | hash = ssl->read_hash; | ||
1190 | } | ||
1191 | |||
1192 | t = EVP_MD_CTX_size(hash); | ||
1193 | OPENSSL_assert(t >= 0); | ||
1194 | md_size = t; | ||
1195 | |||
1196 | /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ | ||
1197 | if (stream_mac) { | ||
1198 | mac_ctx = hash; | ||
1199 | } else { | ||
1200 | if (!EVP_MD_CTX_copy(&hmac, hash)) | ||
1201 | return -1; | ||
1202 | mac_ctx = &hmac; | ||
1203 | } | ||
1204 | |||
1205 | if (SSL_IS_DTLS(ssl)) | ||
1206 | dtls1_build_sequence_number(header, seq, | ||
1207 | send ? ssl->d1->w_epoch : ssl->d1->r_epoch); | ||
1208 | else | ||
1209 | memcpy(header, seq, SSL3_SEQUENCE_SIZE); | ||
1210 | |||
1211 | /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */ | ||
1212 | orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8); | ||
1213 | rec->type &= 0xff; | ||
1214 | |||
1215 | header[8] = rec->type; | ||
1216 | header[9] = (unsigned char)(ssl->version >> 8); | ||
1217 | header[10] = (unsigned char)(ssl->version); | ||
1218 | header[11] = (rec->length) >> 8; | ||
1219 | header[12] = (rec->length) & 0xff; | ||
1220 | |||
1221 | if (!send && | ||
1222 | EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && | ||
1223 | ssl3_cbc_record_digest_supported(mac_ctx)) { | ||
1224 | /* This is a CBC-encrypted record. We must avoid leaking any | ||
1225 | * timing-side channel information about how many blocks of | ||
1226 | * data we are hashing because that gives an attacker a | ||
1227 | * timing-oracle. */ | ||
1228 | if (!ssl3_cbc_digest_record(mac_ctx, | ||
1229 | md, &md_size, header, rec->input, | ||
1230 | rec->length + md_size, orig_len, | ||
1231 | ssl->s3->read_mac_secret, | ||
1232 | ssl->s3->read_mac_secret_size, | ||
1233 | 0 /* not SSLv3 */)) | ||
1234 | return -1; | ||
1235 | } else { | ||
1236 | EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)); | ||
1237 | EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length); | ||
1238 | t = EVP_DigestSignFinal(mac_ctx, md, &md_size); | ||
1239 | OPENSSL_assert(t > 0); | ||
1240 | } | ||
1241 | |||
1242 | if (!stream_mac) | ||
1243 | EVP_MD_CTX_cleanup(&hmac); | ||
1244 | |||
1245 | if (!SSL_IS_DTLS(ssl)) | ||
1246 | tls1_record_sequence_increment(seq); | ||
1247 | |||
1248 | return (md_size); | ||
1249 | } | ||
1250 | |||
1251 | int | ||
1252 | tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, | ||
1253 | int len) | ||
1254 | { | ||
1255 | unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH]; | ||
1256 | |||
1257 | tls1_PRF(ssl_get_algorithm2(s), | ||
1258 | TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE, | ||
1259 | s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0, | ||
1260 | s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0, | ||
1261 | p, len, s->session->master_key, buff, sizeof buff); | ||
1262 | |||
1263 | return (SSL3_MASTER_SECRET_SIZE); | ||
1264 | } | ||
1265 | |||
1266 | int | ||
1267 | tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, | ||
1268 | const char *label, size_t llen, const unsigned char *context, | ||
1269 | size_t contextlen, int use_context) | ||
1270 | { | ||
1271 | unsigned char *buff; | ||
1272 | unsigned char *val = NULL; | ||
1273 | size_t vallen, currentvalpos; | ||
1274 | int rv; | ||
1275 | |||
1276 | buff = malloc(olen); | ||
1277 | if (buff == NULL) | ||
1278 | goto err2; | ||
1279 | |||
1280 | /* construct PRF arguments | ||
1281 | * we construct the PRF argument ourself rather than passing separate | ||
1282 | * values into the TLS PRF to ensure that the concatenation of values | ||
1283 | * does not create a prohibited label. | ||
1284 | */ | ||
1285 | vallen = llen + SSL3_RANDOM_SIZE * 2; | ||
1286 | if (use_context) { | ||
1287 | vallen += 2 + contextlen; | ||
1288 | } | ||
1289 | |||
1290 | val = malloc(vallen); | ||
1291 | if (val == NULL) | ||
1292 | goto err2; | ||
1293 | currentvalpos = 0; | ||
1294 | memcpy(val + currentvalpos, (unsigned char *) label, llen); | ||
1295 | currentvalpos += llen; | ||
1296 | memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); | ||
1297 | currentvalpos += SSL3_RANDOM_SIZE; | ||
1298 | memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); | ||
1299 | currentvalpos += SSL3_RANDOM_SIZE; | ||
1300 | |||
1301 | if (use_context) { | ||
1302 | val[currentvalpos] = (contextlen >> 8) & 0xff; | ||
1303 | currentvalpos++; | ||
1304 | val[currentvalpos] = contextlen & 0xff; | ||
1305 | currentvalpos++; | ||
1306 | if ((contextlen > 0) || (context != NULL)) { | ||
1307 | memcpy(val + currentvalpos, context, contextlen); | ||
1308 | } | ||
1309 | } | ||
1310 | |||
1311 | /* disallow prohibited labels | ||
1312 | * note that SSL3_RANDOM_SIZE > max(prohibited label len) = | ||
1313 | * 15, so size of val > max(prohibited label len) = 15 and the | ||
1314 | * comparisons won't have buffer overflow | ||
1315 | */ | ||
1316 | if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, | ||
1317 | TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) | ||
1318 | goto err1; | ||
1319 | if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, | ||
1320 | TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) | ||
1321 | goto err1; | ||
1322 | if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, | ||
1323 | TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) | ||
1324 | goto err1; | ||
1325 | if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, | ||
1326 | TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) | ||
1327 | goto err1; | ||
1328 | |||
1329 | rv = tls1_PRF(ssl_get_algorithm2(s), | ||
1330 | val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, | ||
1331 | s->session->master_key, s->session->master_key_length, | ||
1332 | out, buff, olen); | ||
1333 | |||
1334 | goto ret; | ||
1335 | err1: | ||
1336 | SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, | ||
1337 | SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); | ||
1338 | rv = 0; | ||
1339 | goto ret; | ||
1340 | err2: | ||
1341 | SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE); | ||
1342 | rv = 0; | ||
1343 | ret: | ||
1344 | free(buff); | ||
1345 | free(val); | ||
1346 | |||
1347 | return (rv); | ||
1348 | } | ||
1349 | |||
1350 | int | ||
1351 | tls1_alert_code(int code) | ||
1352 | { | ||
1353 | switch (code) { | ||
1354 | case SSL_AD_CLOSE_NOTIFY: | ||
1355 | return (SSL3_AD_CLOSE_NOTIFY); | ||
1356 | case SSL_AD_UNEXPECTED_MESSAGE: | ||
1357 | return (SSL3_AD_UNEXPECTED_MESSAGE); | ||
1358 | case SSL_AD_BAD_RECORD_MAC: | ||
1359 | return (SSL3_AD_BAD_RECORD_MAC); | ||
1360 | case SSL_AD_DECRYPTION_FAILED: | ||
1361 | return (TLS1_AD_DECRYPTION_FAILED); | ||
1362 | case SSL_AD_RECORD_OVERFLOW: | ||
1363 | return (TLS1_AD_RECORD_OVERFLOW); | ||
1364 | case SSL_AD_DECOMPRESSION_FAILURE: | ||
1365 | return (SSL3_AD_DECOMPRESSION_FAILURE); | ||
1366 | case SSL_AD_HANDSHAKE_FAILURE: | ||
1367 | return (SSL3_AD_HANDSHAKE_FAILURE); | ||
1368 | case SSL_AD_NO_CERTIFICATE: | ||
1369 | return (-1); | ||
1370 | case SSL_AD_BAD_CERTIFICATE: | ||
1371 | return (SSL3_AD_BAD_CERTIFICATE); | ||
1372 | case SSL_AD_UNSUPPORTED_CERTIFICATE: | ||
1373 | return (SSL3_AD_UNSUPPORTED_CERTIFICATE); | ||
1374 | case SSL_AD_CERTIFICATE_REVOKED: | ||
1375 | return (SSL3_AD_CERTIFICATE_REVOKED); | ||
1376 | case SSL_AD_CERTIFICATE_EXPIRED: | ||
1377 | return (SSL3_AD_CERTIFICATE_EXPIRED); | ||
1378 | case SSL_AD_CERTIFICATE_UNKNOWN: | ||
1379 | return (SSL3_AD_CERTIFICATE_UNKNOWN); | ||
1380 | case SSL_AD_ILLEGAL_PARAMETER: | ||
1381 | return (SSL3_AD_ILLEGAL_PARAMETER); | ||
1382 | case SSL_AD_UNKNOWN_CA: | ||
1383 | return (TLS1_AD_UNKNOWN_CA); | ||
1384 | case SSL_AD_ACCESS_DENIED: | ||
1385 | return (TLS1_AD_ACCESS_DENIED); | ||
1386 | case SSL_AD_DECODE_ERROR: | ||
1387 | return (TLS1_AD_DECODE_ERROR); | ||
1388 | case SSL_AD_DECRYPT_ERROR: | ||
1389 | return (TLS1_AD_DECRYPT_ERROR); | ||
1390 | case SSL_AD_EXPORT_RESTRICTION: | ||
1391 | return (TLS1_AD_EXPORT_RESTRICTION); | ||
1392 | case SSL_AD_PROTOCOL_VERSION: | ||
1393 | return (TLS1_AD_PROTOCOL_VERSION); | ||
1394 | case SSL_AD_INSUFFICIENT_SECURITY: | ||
1395 | return (TLS1_AD_INSUFFICIENT_SECURITY); | ||
1396 | case SSL_AD_INTERNAL_ERROR: | ||
1397 | return (TLS1_AD_INTERNAL_ERROR); | ||
1398 | case SSL_AD_INAPPROPRIATE_FALLBACK: | ||
1399 | return(TLS1_AD_INAPPROPRIATE_FALLBACK); | ||
1400 | case SSL_AD_USER_CANCELLED: | ||
1401 | return (TLS1_AD_USER_CANCELLED); | ||
1402 | case SSL_AD_NO_RENEGOTIATION: | ||
1403 | return (TLS1_AD_NO_RENEGOTIATION); | ||
1404 | case SSL_AD_UNSUPPORTED_EXTENSION: | ||
1405 | return (TLS1_AD_UNSUPPORTED_EXTENSION); | ||
1406 | case SSL_AD_CERTIFICATE_UNOBTAINABLE: | ||
1407 | return (TLS1_AD_CERTIFICATE_UNOBTAINABLE); | ||
1408 | case SSL_AD_UNRECOGNIZED_NAME: | ||
1409 | return (TLS1_AD_UNRECOGNIZED_NAME); | ||
1410 | case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: | ||
1411 | return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE); | ||
1412 | case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: | ||
1413 | return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE); | ||
1414 | case SSL_AD_UNKNOWN_PSK_IDENTITY: | ||
1415 | return (TLS1_AD_UNKNOWN_PSK_IDENTITY); | ||
1416 | default: | ||
1417 | return (-1); | ||
1418 | } | ||
1419 | } | ||