summaryrefslogtreecommitdiff
path: root/src/lib/libssl/t1_enc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libssl/t1_enc.c')
-rw-r--r--src/lib/libssl/t1_enc.c1419
1 files changed, 0 insertions, 1419 deletions
diff --git a/src/lib/libssl/t1_enc.c b/src/lib/libssl/t1_enc.c
deleted file mode 100644
index 53570b2d4f..0000000000
--- a/src/lib/libssl/t1_enc.c
+++ /dev/null
@@ -1,1419 +0,0 @@
1/* $OpenBSD: t1_enc.c,v 1.85 2016/04/28 16:39:45 jsing Exp $ */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111/* ====================================================================
112 * Copyright 2005 Nokia. All rights reserved.
113 *
114 * The portions of the attached software ("Contribution") is developed by
115 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116 * license.
117 *
118 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120 * support (see RFC 4279) to OpenSSL.
121 *
122 * No patent licenses or other rights except those expressly stated in
123 * the OpenSSL open source license shall be deemed granted or received
124 * expressly, by implication, estoppel, or otherwise.
125 *
126 * No assurances are provided by Nokia that the Contribution does not
127 * infringe the patent or other intellectual property rights of any third
128 * party or that the license provides you with all the necessary rights
129 * to make use of the Contribution.
130 *
131 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135 * OTHERWISE.
136 */
137
138#include <stdio.h>
139
140#include "ssl_locl.h"
141
142#include <openssl/evp.h>
143#include <openssl/hmac.h>
144#include <openssl/md5.h>
145
146void
147tls1_cleanup_key_block(SSL *s)
148{
149 if (s->s3->tmp.key_block != NULL) {
150 explicit_bzero(s->s3->tmp.key_block,
151 s->s3->tmp.key_block_length);
152 free(s->s3->tmp.key_block);
153 s->s3->tmp.key_block = NULL;
154 }
155 s->s3->tmp.key_block_length = 0;
156}
157
158int
159tls1_init_finished_mac(SSL *s)
160{
161 BIO_free(s->s3->handshake_buffer);
162 tls1_free_digest_list(s);
163
164 s->s3->handshake_buffer = BIO_new(BIO_s_mem());
165 if (s->s3->handshake_buffer == NULL)
166 return (0);
167
168 (void)BIO_set_close(s->s3->handshake_buffer, BIO_CLOSE);
169
170 return (1);
171}
172
173void
174tls1_free_digest_list(SSL *s)
175{
176 int i;
177
178 if (s == NULL)
179 return;
180
181 if (s->s3->handshake_dgst == NULL)
182 return;
183 for (i = 0; i < SSL_MAX_DIGEST; i++) {
184 if (s->s3->handshake_dgst[i])
185 EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]);
186 }
187 free(s->s3->handshake_dgst);
188 s->s3->handshake_dgst = NULL;
189}
190
191void
192tls1_finish_mac(SSL *s, const unsigned char *buf, int len)
193{
194 if (s->s3->handshake_buffer &&
195 !(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) {
196 BIO_write(s->s3->handshake_buffer, (void *)buf, len);
197 } else {
198 int i;
199 for (i = 0; i < SSL_MAX_DIGEST; i++) {
200 if (s->s3->handshake_dgst[i]!= NULL)
201 EVP_DigestUpdate(s->s3->handshake_dgst[i], buf, len);
202 }
203 }
204}
205
206int
207tls1_digest_cached_records(SSL *s)
208{
209 int i;
210 long mask;
211 const EVP_MD *md;
212 long hdatalen;
213 void *hdata;
214
215 tls1_free_digest_list(s);
216
217 s->s3->handshake_dgst = calloc(SSL_MAX_DIGEST, sizeof(EVP_MD_CTX *));
218 if (s->s3->handshake_dgst == NULL) {
219 SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_MALLOC_FAILURE);
220 return 0;
221 }
222 hdatalen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata);
223 if (hdatalen <= 0) {
224 SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS,
225 SSL_R_BAD_HANDSHAKE_LENGTH);
226 return 0;
227 }
228
229 /* Loop through bits of the algorithm2 field and create MD contexts. */
230 for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) {
231 if ((mask & ssl_get_algorithm2(s)) && md) {
232 s->s3->handshake_dgst[i] = EVP_MD_CTX_create();
233 if (s->s3->handshake_dgst[i] == NULL) {
234 SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS,
235 ERR_R_MALLOC_FAILURE);
236 return 0;
237 }
238 if (!EVP_DigestInit_ex(s->s3->handshake_dgst[i],
239 md, NULL)) {
240 EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]);
241 return 0;
242 }
243 if (!EVP_DigestUpdate(s->s3->handshake_dgst[i], hdata,
244 hdatalen))
245 return 0;
246 }
247 }
248
249 if (!(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) {
250 BIO_free(s->s3->handshake_buffer);
251 s->s3->handshake_buffer = NULL;
252 }
253
254 return 1;
255}
256
257void
258tls1_record_sequence_increment(unsigned char *seq)
259{
260 int i;
261
262 for (i = SSL3_SEQUENCE_SIZE - 1; i >= 0; i--) {
263 if (++seq[i] != 0)
264 break;
265 }
266}
267
268/* seed1 through seed5 are virtually concatenated */
269static int
270tls1_P_hash(const EVP_MD *md, const unsigned char *sec, int sec_len,
271 const void *seed1, int seed1_len, const void *seed2, int seed2_len,
272 const void *seed3, int seed3_len, const void *seed4, int seed4_len,
273 const void *seed5, int seed5_len, unsigned char *out, int olen)
274{
275 int chunk;
276 size_t j;
277 EVP_MD_CTX ctx, ctx_tmp;
278 EVP_PKEY *mac_key;
279 unsigned char A1[EVP_MAX_MD_SIZE];
280 size_t A1_len;
281 int ret = 0;
282
283 chunk = EVP_MD_size(md);
284 OPENSSL_assert(chunk >= 0);
285
286 EVP_MD_CTX_init(&ctx);
287 EVP_MD_CTX_init(&ctx_tmp);
288 mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len);
289 if (!mac_key)
290 goto err;
291 if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
292 goto err;
293 if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key))
294 goto err;
295 if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
296 goto err;
297 if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
298 goto err;
299 if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
300 goto err;
301 if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
302 goto err;
303 if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
304 goto err;
305 if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
306 goto err;
307
308 for (;;) {
309 /* Reinit mac contexts */
310 if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
311 goto err;
312 if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key))
313 goto err;
314 if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
315 goto err;
316 if (!EVP_DigestSignUpdate(&ctx_tmp, A1, A1_len))
317 goto err;
318 if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
319 goto err;
320 if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
321 goto err;
322 if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
323 goto err;
324 if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
325 goto err;
326 if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
327 goto err;
328
329 if (olen > chunk) {
330 if (!EVP_DigestSignFinal(&ctx, out, &j))
331 goto err;
332 out += j;
333 olen -= j;
334 /* calc the next A1 value */
335 if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len))
336 goto err;
337 } else {
338 /* last one */
339 if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
340 goto err;
341 memcpy(out, A1, olen);
342 break;
343 }
344 }
345 ret = 1;
346
347err:
348 EVP_PKEY_free(mac_key);
349 EVP_MD_CTX_cleanup(&ctx);
350 EVP_MD_CTX_cleanup(&ctx_tmp);
351 explicit_bzero(A1, sizeof(A1));
352 return ret;
353}
354
355/* seed1 through seed5 are virtually concatenated */
356static int
357tls1_PRF(long digest_mask, const void *seed1, int seed1_len, const void *seed2,
358 int seed2_len, const void *seed3, int seed3_len, const void *seed4,
359 int seed4_len, const void *seed5, int seed5_len, const unsigned char *sec,
360 int slen, unsigned char *out1, unsigned char *out2, int olen)
361{
362 int len, i, idx, count;
363 const unsigned char *S1;
364 long m;
365 const EVP_MD *md;
366 int ret = 0;
367
368 /* Count number of digests and partition sec evenly */
369 count = 0;
370 for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
371 if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask)
372 count++;
373 }
374 if (count == 0) {
375 SSLerr(SSL_F_TLS1_PRF,
376 SSL_R_SSL_HANDSHAKE_FAILURE);
377 goto err;
378 }
379 len = slen / count;
380 if (count == 1)
381 slen = 0;
382 S1 = sec;
383 memset(out1, 0, olen);
384 for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
385 if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) {
386 if (!md) {
387 SSLerr(SSL_F_TLS1_PRF,
388 SSL_R_UNSUPPORTED_DIGEST_TYPE);
389 goto err;
390 }
391 if (!tls1_P_hash(md , S1, len + (slen&1), seed1,
392 seed1_len, seed2, seed2_len, seed3, seed3_len,
393 seed4, seed4_len, seed5, seed5_len, out2, olen))
394 goto err;
395 S1 += len;
396 for (i = 0; i < olen; i++) {
397 out1[i] ^= out2[i];
398 }
399 }
400 }
401 ret = 1;
402
403err:
404 return ret;
405}
406
407static int
408tls1_generate_key_block(SSL *s, unsigned char *km, unsigned char *tmp, int num)
409{
410 int ret;
411
412 ret = tls1_PRF(ssl_get_algorithm2(s),
413 TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE,
414 s->s3->server_random, SSL3_RANDOM_SIZE,
415 s->s3->client_random, SSL3_RANDOM_SIZE,
416 NULL, 0, NULL, 0,
417 s->session->master_key, s->session->master_key_length,
418 km, tmp, num);
419 return ret;
420}
421
422/*
423 * tls1_aead_ctx_init allocates aead_ctx, if needed. It returns 1 on success
424 * and 0 on failure.
425 */
426static int
427tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx)
428{
429 if (*aead_ctx != NULL) {
430 EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
431 return (1);
432 }
433
434 *aead_ctx = malloc(sizeof(SSL_AEAD_CTX));
435 if (*aead_ctx == NULL) {
436 SSLerr(SSL_F_TLS1_AEAD_CTX_INIT, ERR_R_MALLOC_FAILURE);
437 return (0);
438 }
439
440 return (1);
441}
442
443static int
444tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key,
445 unsigned key_len, const unsigned char *iv, unsigned iv_len)
446{
447 const EVP_AEAD *aead = s->s3->tmp.new_aead;
448 SSL_AEAD_CTX *aead_ctx;
449
450 if (is_read) {
451 if (!tls1_aead_ctx_init(&s->aead_read_ctx))
452 return 0;
453 aead_ctx = s->aead_read_ctx;
454 } else {
455 if (!tls1_aead_ctx_init(&s->aead_write_ctx))
456 return 0;
457 aead_ctx = s->aead_write_ctx;
458 }
459
460 if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
461 EVP_AEAD_DEFAULT_TAG_LENGTH, NULL))
462 return (0);
463 if (iv_len > sizeof(aead_ctx->fixed_nonce)) {
464 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD,
465 ERR_R_INTERNAL_ERROR);
466 return (0);
467 }
468 memcpy(aead_ctx->fixed_nonce, iv, iv_len);
469 aead_ctx->fixed_nonce_len = iv_len;
470 aead_ctx->variable_nonce_len = 8; /* always the case, currently. */
471 aead_ctx->variable_nonce_in_record =
472 (s->s3->tmp.new_cipher->algorithm2 &
473 SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_IN_RECORD) != 0;
474 aead_ctx->xor_fixed_nonce =
475 s->s3->tmp.new_cipher->algorithm_enc == SSL_CHACHA20POLY1305;
476 aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
477
478 if (aead_ctx->xor_fixed_nonce) {
479 if (aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead) ||
480 aead_ctx->variable_nonce_len > EVP_AEAD_nonce_length(aead)) {
481 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD,
482 ERR_R_INTERNAL_ERROR);
483 return (0);
484 }
485 } else {
486 if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len !=
487 EVP_AEAD_nonce_length(aead)) {
488 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD,
489 ERR_R_INTERNAL_ERROR);
490 return (0);
491 }
492 }
493
494 return (1);
495}
496
497/*
498 * tls1_change_cipher_state_cipher performs the work needed to switch cipher
499 * states when using EVP_CIPHER. The argument is_read is true iff this function
500 * is being called due to reading, as opposed to writing, a ChangeCipherSpec
501 * message. In order to support export ciphersuites, use_client_keys indicates
502 * whether the key material provided is in the "client write" direction.
503 */
504static int
505tls1_change_cipher_state_cipher(SSL *s, char is_read, char use_client_keys,
506 const unsigned char *mac_secret, unsigned int mac_secret_size,
507 const unsigned char *key, unsigned int key_len, const unsigned char *iv,
508 unsigned int iv_len)
509{
510 EVP_CIPHER_CTX *cipher_ctx;
511 const EVP_CIPHER *cipher;
512 EVP_MD_CTX *mac_ctx;
513 const EVP_MD *mac;
514 int mac_type;
515
516 cipher = s->s3->tmp.new_sym_enc;
517 mac = s->s3->tmp.new_hash;
518 mac_type = s->s3->tmp.new_mac_pkey_type;
519
520 if (is_read) {
521 if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
522 s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
523 else
524 s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
525
526 EVP_CIPHER_CTX_free(s->enc_read_ctx);
527 s->enc_read_ctx = NULL;
528 EVP_MD_CTX_destroy(s->read_hash);
529 s->read_hash = NULL;
530
531 if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
532 goto err;
533 s->enc_read_ctx = cipher_ctx;
534 if ((mac_ctx = EVP_MD_CTX_create()) == NULL)
535 goto err;
536 s->read_hash = mac_ctx;
537 } else {
538 if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
539 s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
540 else
541 s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
542
543 /*
544 * DTLS fragments retain a pointer to the compression, cipher
545 * and hash contexts, so that it can restore state in order
546 * to perform retransmissions. As such, we cannot free write
547 * contexts that are used for DTLS - these are instead freed
548 * by DTLS when its frees a ChangeCipherSpec fragment.
549 */
550 if (!SSL_IS_DTLS(s)) {
551 EVP_CIPHER_CTX_free(s->enc_write_ctx);
552 s->enc_write_ctx = NULL;
553 EVP_MD_CTX_destroy(s->write_hash);
554 s->write_hash = NULL;
555 }
556 if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
557 goto err;
558 s->enc_write_ctx = cipher_ctx;
559 if ((mac_ctx = EVP_MD_CTX_create()) == NULL)
560 goto err;
561 s->write_hash = mac_ctx;
562 }
563
564 if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) {
565 EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, NULL,
566 !is_read);
567 EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GCM_SET_IV_FIXED,
568 iv_len, (unsigned char *)iv);
569 } else
570 EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, iv, !is_read);
571
572 if (!(EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
573 EVP_PKEY *mac_key = EVP_PKEY_new_mac_key(mac_type, NULL,
574 mac_secret, mac_secret_size);
575 if (mac_key == NULL)
576 goto err;
577 EVP_DigestSignInit(mac_ctx, NULL, mac, NULL, mac_key);
578 EVP_PKEY_free(mac_key);
579 } else if (mac_secret_size > 0) {
580 /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
581 EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_AEAD_SET_MAC_KEY,
582 mac_secret_size, (unsigned char *)mac_secret);
583 }
584
585 if (s->s3->tmp.new_cipher->algorithm_enc == SSL_eGOST2814789CNT) {
586 int nid;
587 if (s->s3->tmp.new_cipher->algorithm2 & SSL_HANDSHAKE_MAC_GOST94)
588 nid = NID_id_Gost28147_89_CryptoPro_A_ParamSet;
589 else
590 nid = NID_id_tc26_gost_28147_param_Z;
591
592 EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GOST_SET_SBOX, nid, 0);
593 if (s->s3->tmp.new_cipher->algorithm_mac == SSL_GOST89MAC)
594 EVP_MD_CTX_ctrl(mac_ctx, EVP_MD_CTRL_GOST_SET_SBOX, nid, 0);
595 }
596
597 return (1);
598
599err:
600 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_CIPHER, ERR_R_MALLOC_FAILURE);
601 return (0);
602}
603
604int
605tls1_change_cipher_state(SSL *s, int which)
606{
607 const unsigned char *client_write_mac_secret, *server_write_mac_secret;
608 const unsigned char *client_write_key, *server_write_key;
609 const unsigned char *client_write_iv, *server_write_iv;
610 const unsigned char *mac_secret, *key, *iv;
611 int mac_secret_size, key_len, iv_len;
612 unsigned char *key_block, *seq;
613 const EVP_CIPHER *cipher;
614 const EVP_AEAD *aead;
615 char is_read, use_client_keys;
616
617
618 cipher = s->s3->tmp.new_sym_enc;
619 aead = s->s3->tmp.new_aead;
620
621 /*
622 * is_read is true if we have just read a ChangeCipherSpec message,
623 * that is we need to update the read cipherspec. Otherwise we have
624 * just written one.
625 */
626 is_read = (which & SSL3_CC_READ) != 0;
627
628 /*
629 * use_client_keys is true if we wish to use the keys for the "client
630 * write" direction. This is the case if we're a client sending a
631 * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec.
632 */
633 use_client_keys = ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
634 (which == SSL3_CHANGE_CIPHER_SERVER_READ));
635
636
637 /*
638 * Reset sequence number to zero - for DTLS this is handled in
639 * dtls1_reset_seq_numbers().
640 */
641 if (!SSL_IS_DTLS(s)) {
642 seq = is_read ? s->s3->read_sequence : s->s3->write_sequence;
643 memset(seq, 0, SSL3_SEQUENCE_SIZE);
644 }
645
646 if (aead != NULL) {
647 key_len = EVP_AEAD_key_length(aead);
648 iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher);
649 } else {
650 key_len = EVP_CIPHER_key_length(cipher);
651 iv_len = EVP_CIPHER_iv_length(cipher);
652
653 /* If GCM mode only part of IV comes from PRF. */
654 if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE)
655 iv_len = EVP_GCM_TLS_FIXED_IV_LEN;
656 }
657
658 mac_secret_size = s->s3->tmp.new_mac_secret_size;
659
660 key_block = s->s3->tmp.key_block;
661 client_write_mac_secret = key_block;
662 key_block += mac_secret_size;
663 server_write_mac_secret = key_block;
664 key_block += mac_secret_size;
665 client_write_key = key_block;
666 key_block += key_len;
667 server_write_key = key_block;
668 key_block += key_len;
669 client_write_iv = key_block;
670 key_block += iv_len;
671 server_write_iv = key_block;
672 key_block += iv_len;
673
674 if (use_client_keys) {
675 mac_secret = client_write_mac_secret;
676 key = client_write_key;
677 iv = client_write_iv;
678 } else {
679 mac_secret = server_write_mac_secret;
680 key = server_write_key;
681 iv = server_write_iv;
682 }
683
684 if (key_block - s->s3->tmp.key_block != s->s3->tmp.key_block_length) {
685 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
686 goto err2;
687 }
688
689 if (is_read) {
690 memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_size);
691 s->s3->read_mac_secret_size = mac_secret_size;
692 } else {
693 memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_size);
694 s->s3->write_mac_secret_size = mac_secret_size;
695 }
696
697 if (aead != NULL) {
698 return tls1_change_cipher_state_aead(s, is_read, key, key_len,
699 iv, iv_len);
700 }
701
702 return tls1_change_cipher_state_cipher(s, is_read, use_client_keys,
703 mac_secret, mac_secret_size, key, key_len, iv, iv_len);
704
705err2:
706 return (0);
707}
708
709int
710tls1_setup_key_block(SSL *s)
711{
712 unsigned char *key_block, *tmp_block = NULL;
713 int mac_type = NID_undef, mac_secret_size = 0;
714 int key_block_len, key_len, iv_len;
715 const EVP_CIPHER *cipher = NULL;
716 const EVP_AEAD *aead = NULL;
717 const EVP_MD *mac = NULL;
718 int ret = 0;
719
720 if (s->s3->tmp.key_block_length != 0)
721 return (1);
722
723 if (s->session->cipher &&
724 (s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD)) {
725 if (!ssl_cipher_get_evp_aead(s->session, &aead)) {
726 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK,
727 SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
728 return (0);
729 }
730 key_len = EVP_AEAD_key_length(aead);
731 iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher);
732 } else {
733 if (!ssl_cipher_get_evp(s->session, &cipher, &mac, &mac_type,
734 &mac_secret_size)) {
735 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK,
736 SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
737 return (0);
738 }
739 key_len = EVP_CIPHER_key_length(cipher);
740 iv_len = EVP_CIPHER_iv_length(cipher);
741
742 /* If GCM mode only part of IV comes from PRF. */
743 if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE)
744 iv_len = EVP_GCM_TLS_FIXED_IV_LEN;
745 }
746
747 s->s3->tmp.new_aead = aead;
748 s->s3->tmp.new_sym_enc = cipher;
749 s->s3->tmp.new_hash = mac;
750 s->s3->tmp.new_mac_pkey_type = mac_type;
751 s->s3->tmp.new_mac_secret_size = mac_secret_size;
752
753 tls1_cleanup_key_block(s);
754
755 if ((key_block = reallocarray(NULL, mac_secret_size + key_len + iv_len,
756 2)) == NULL) {
757 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
758 goto err;
759 }
760 key_block_len = (mac_secret_size + key_len + iv_len) * 2;
761
762 s->s3->tmp.key_block_length = key_block_len;
763 s->s3->tmp.key_block = key_block;
764
765 if ((tmp_block = malloc(key_block_len)) == NULL) {
766 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
767 goto err;
768 }
769
770 if (!tls1_generate_key_block(s, key_block, tmp_block, key_block_len))
771 goto err;
772
773 if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) &&
774 s->method->version <= TLS1_VERSION) {
775 /*
776 * Enable vulnerability countermeasure for CBC ciphers with
777 * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
778 */
779 s->s3->need_empty_fragments = 1;
780
781 if (s->session->cipher != NULL) {
782 if (s->session->cipher->algorithm_enc == SSL_eNULL)
783 s->s3->need_empty_fragments = 0;
784
785#ifndef OPENSSL_NO_RC4
786 if (s->session->cipher->algorithm_enc == SSL_RC4)
787 s->s3->need_empty_fragments = 0;
788#endif
789 }
790 }
791
792 ret = 1;
793
794err:
795 if (tmp_block) {
796 explicit_bzero(tmp_block, key_block_len);
797 free(tmp_block);
798 }
799 return (ret);
800}
801
802/* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
803 *
804 * Returns:
805 * 0: (in non-constant time) if the record is publically invalid (i.e. too
806 * short etc).
807 * 1: if the record's padding is valid / the encryption was successful.
808 * -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
809 * an internal error occured.
810 */
811int
812tls1_enc(SSL *s, int send)
813{
814 const SSL_AEAD_CTX *aead;
815 const EVP_CIPHER *enc;
816 EVP_CIPHER_CTX *ds;
817 SSL3_RECORD *rec;
818 unsigned char *seq;
819 unsigned long l;
820 int bs, i, j, k, pad = 0, ret, mac_size = 0;
821
822 if (send) {
823 aead = s->aead_write_ctx;
824 rec = &s->s3->wrec;
825 seq = s->s3->write_sequence;
826 } else {
827 aead = s->aead_read_ctx;
828 rec = &s->s3->rrec;
829 seq = s->s3->read_sequence;
830 }
831
832 if (aead) {
833 unsigned char ad[13], *in, *out, nonce[16];
834 size_t out_len, pad_len = 0;
835 unsigned int nonce_used;
836
837 if (SSL_IS_DTLS(s)) {
838 dtls1_build_sequence_number(ad, seq,
839 send ? s->d1->w_epoch : s->d1->r_epoch);
840 } else {
841 memcpy(ad, seq, SSL3_SEQUENCE_SIZE);
842 tls1_record_sequence_increment(seq);
843 }
844
845 ad[8] = rec->type;
846 ad[9] = (unsigned char)(s->version >> 8);
847 ad[10] = (unsigned char)(s->version);
848
849 if (aead->variable_nonce_len > 8 ||
850 aead->variable_nonce_len > sizeof(nonce))
851 return -1;
852
853 if (aead->xor_fixed_nonce) {
854 if (aead->fixed_nonce_len > sizeof(nonce) ||
855 aead->variable_nonce_len > aead->fixed_nonce_len)
856 return -1; /* Should never happen. */
857 pad_len = aead->fixed_nonce_len - aead->variable_nonce_len;
858 } else {
859 if (aead->fixed_nonce_len +
860 aead->variable_nonce_len > sizeof(nonce))
861 return -1; /* Should never happen. */
862 }
863
864 if (send) {
865 size_t len = rec->length;
866 size_t eivlen = 0;
867 in = rec->input;
868 out = rec->data;
869
870 if (aead->xor_fixed_nonce) {
871 /*
872 * The sequence number is left zero
873 * padded, then xored with the fixed
874 * nonce.
875 */
876 memset(nonce, 0, pad_len);
877 memcpy(nonce + pad_len, ad,
878 aead->variable_nonce_len);
879 for (i = 0; i < aead->fixed_nonce_len; i++)
880 nonce[i] ^= aead->fixed_nonce[i];
881 nonce_used = aead->fixed_nonce_len;
882 } else {
883 /*
884 * When sending we use the sequence number as
885 * the variable part of the nonce.
886 */
887 memcpy(nonce, aead->fixed_nonce,
888 aead->fixed_nonce_len);
889 nonce_used = aead->fixed_nonce_len;
890 memcpy(nonce + nonce_used, ad,
891 aead->variable_nonce_len);
892 nonce_used += aead->variable_nonce_len;
893 }
894
895 /*
896 * In do_ssl3_write, rec->input is moved forward by
897 * variable_nonce_len in order to leave space for the
898 * variable nonce. Thus we can copy the sequence number
899 * bytes into place without overwriting any of the
900 * plaintext.
901 */
902 if (aead->variable_nonce_in_record) {
903 memcpy(out, ad, aead->variable_nonce_len);
904 len -= aead->variable_nonce_len;
905 eivlen = aead->variable_nonce_len;
906 }
907
908 ad[11] = len >> 8;
909 ad[12] = len & 0xff;
910
911 if (!EVP_AEAD_CTX_seal(&aead->ctx,
912 out + eivlen, &out_len, len + aead->tag_len, nonce,
913 nonce_used, in + eivlen, len, ad, sizeof(ad)))
914 return -1;
915 if (aead->variable_nonce_in_record)
916 out_len += aead->variable_nonce_len;
917 } else {
918 /* receive */
919 size_t len = rec->length;
920
921 if (rec->data != rec->input)
922 return -1; /* internal error - should never happen. */
923 out = in = rec->input;
924
925 if (len < aead->variable_nonce_len)
926 return 0;
927
928 if (aead->xor_fixed_nonce) {
929 /*
930 * The sequence number is left zero
931 * padded, then xored with the fixed
932 * nonce.
933 */
934 memset(nonce, 0, pad_len);
935 memcpy(nonce + pad_len, ad,
936 aead->variable_nonce_len);
937 for (i = 0; i < aead->fixed_nonce_len; i++)
938 nonce[i] ^= aead->fixed_nonce[i];
939 nonce_used = aead->fixed_nonce_len;
940 } else {
941 memcpy(nonce, aead->fixed_nonce,
942 aead->fixed_nonce_len);
943 nonce_used = aead->fixed_nonce_len;
944
945 memcpy(nonce + nonce_used,
946 aead->variable_nonce_in_record ? in : ad,
947 aead->variable_nonce_len);
948 nonce_used += aead->variable_nonce_len;
949 }
950
951 if (aead->variable_nonce_in_record) {
952 in += aead->variable_nonce_len;
953 len -= aead->variable_nonce_len;
954 out += aead->variable_nonce_len;
955 }
956
957 if (len < aead->tag_len)
958 return 0;
959 len -= aead->tag_len;
960
961 ad[11] = len >> 8;
962 ad[12] = len & 0xff;
963
964 if (!EVP_AEAD_CTX_open(&aead->ctx, out, &out_len, len,
965 nonce, nonce_used, in, len + aead->tag_len, ad,
966 sizeof(ad)))
967 return -1;
968
969 rec->data = rec->input = out;
970 }
971
972 rec->length = out_len;
973
974 return 1;
975 }
976
977 if (send) {
978 if (EVP_MD_CTX_md(s->write_hash)) {
979 int n = EVP_MD_CTX_size(s->write_hash);
980 OPENSSL_assert(n >= 0);
981 }
982 ds = s->enc_write_ctx;
983 if (s->enc_write_ctx == NULL)
984 enc = NULL;
985 else {
986 int ivlen = 0;
987 enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
988 if (SSL_USE_EXPLICIT_IV(s) &&
989 EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
990 ivlen = EVP_CIPHER_iv_length(enc);
991 if (ivlen > 1) {
992 if (rec->data != rec->input) {
993#ifdef DEBUG
994 /* we can't write into the input stream:
995 * Can this ever happen?? (steve)
996 */
997 fprintf(stderr,
998 "%s:%d: rec->data != rec->input\n",
999 __FILE__, __LINE__);
1000#endif
1001 } else
1002 arc4random_buf(rec->input, ivlen);
1003 }
1004 }
1005 } else {
1006 if (EVP_MD_CTX_md(s->read_hash)) {
1007 int n = EVP_MD_CTX_size(s->read_hash);
1008 OPENSSL_assert(n >= 0);
1009 }
1010 ds = s->enc_read_ctx;
1011 if (s->enc_read_ctx == NULL)
1012 enc = NULL;
1013 else
1014 enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
1015 }
1016
1017 if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
1018 memmove(rec->data, rec->input, rec->length);
1019 rec->input = rec->data;
1020 ret = 1;
1021 } else {
1022 l = rec->length;
1023 bs = EVP_CIPHER_block_size(ds->cipher);
1024
1025 if (EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
1026 unsigned char buf[13];
1027
1028 if (SSL_IS_DTLS(s)) {
1029 dtls1_build_sequence_number(buf, seq,
1030 send ? s->d1->w_epoch : s->d1->r_epoch);
1031 } else {
1032 memcpy(buf, seq, SSL3_SEQUENCE_SIZE);
1033 tls1_record_sequence_increment(seq);
1034 }
1035
1036 buf[8] = rec->type;
1037 buf[9] = (unsigned char)(s->version >> 8);
1038 buf[10] = (unsigned char)(s->version);
1039 buf[11] = rec->length >> 8;
1040 buf[12] = rec->length & 0xff;
1041 pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, 13, buf);
1042 if (send) {
1043 l += pad;
1044 rec->length += pad;
1045 }
1046 } else if ((bs != 1) && send) {
1047 i = bs - ((int)l % bs);
1048
1049 /* Add weird padding of upto 256 bytes */
1050
1051 /* we need to add 'i' padding bytes of value j */
1052 j = i - 1;
1053 for (k = (int)l; k < (int)(l + i); k++)
1054 rec->input[k] = j;
1055 l += i;
1056 rec->length += i;
1057 }
1058
1059 if (!send) {
1060 if (l == 0 || l % bs != 0)
1061 return 0;
1062 }
1063
1064 i = EVP_Cipher(ds, rec->data, rec->input, l);
1065 if ((EVP_CIPHER_flags(ds->cipher) &
1066 EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (i < 0) : (i == 0))
1067 return -1; /* AEAD can fail to verify MAC */
1068 if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) {
1069 rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1070 rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1071 rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
1072 }
1073
1074 ret = 1;
1075 if (EVP_MD_CTX_md(s->read_hash) != NULL)
1076 mac_size = EVP_MD_CTX_size(s->read_hash);
1077 if ((bs != 1) && !send)
1078 ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
1079 if (pad && !send)
1080 rec->length -= pad;
1081 }
1082 return ret;
1083}
1084
1085int
1086tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out)
1087{
1088 EVP_MD_CTX ctx, *d = NULL;
1089 unsigned int ret;
1090 int i;
1091
1092 if (s->s3->handshake_buffer)
1093 if (!tls1_digest_cached_records(s))
1094 return 0;
1095
1096 for (i = 0; i < SSL_MAX_DIGEST; i++) {
1097 if (s->s3->handshake_dgst[i] &&
1098 EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) {
1099 d = s->s3->handshake_dgst[i];
1100 break;
1101 }
1102 }
1103 if (d == NULL) {
1104 SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC, SSL_R_NO_REQUIRED_DIGEST);
1105 return 0;
1106 }
1107
1108 EVP_MD_CTX_init(&ctx);
1109 if (!EVP_MD_CTX_copy_ex(&ctx, d))
1110 return 0;
1111 EVP_DigestFinal_ex(&ctx, out, &ret);
1112 EVP_MD_CTX_cleanup(&ctx);
1113
1114 return ((int)ret);
1115}
1116
1117int
1118tls1_final_finish_mac(SSL *s, const char *str, int slen, unsigned char *out)
1119{
1120 unsigned int i;
1121 EVP_MD_CTX ctx;
1122 unsigned char buf[2*EVP_MAX_MD_SIZE];
1123 unsigned char *q, buf2[12];
1124 int idx;
1125 long mask;
1126 int err = 0;
1127 const EVP_MD *md;
1128
1129 q = buf;
1130
1131 if (s->s3->handshake_buffer)
1132 if (!tls1_digest_cached_records(s))
1133 return 0;
1134
1135 EVP_MD_CTX_init(&ctx);
1136
1137 for (idx = 0; ssl_get_handshake_digest(idx, &mask, &md); idx++) {
1138 if (ssl_get_algorithm2(s) & mask) {
1139 int hashsize = EVP_MD_size(md);
1140 EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx];
1141 if (!hdgst || hashsize < 0 ||
1142 hashsize > (int)(sizeof buf - (size_t)(q - buf))) {
1143 /* internal error: 'buf' is too small for this cipersuite! */
1144 err = 1;
1145 } else {
1146 if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
1147 !EVP_DigestFinal_ex(&ctx, q, &i) ||
1148 (i != (unsigned int)hashsize))
1149 err = 1;
1150 q += hashsize;
1151 }
1152 }
1153 }
1154
1155 if (!tls1_PRF(ssl_get_algorithm2(s), str, slen, buf, (int)(q - buf),
1156 NULL, 0, NULL, 0, NULL, 0,
1157 s->session->master_key, s->session->master_key_length,
1158 out, buf2, sizeof buf2))
1159 err = 1;
1160 EVP_MD_CTX_cleanup(&ctx);
1161
1162 if (err)
1163 return 0;
1164 else
1165 return sizeof buf2;
1166}
1167
1168int
1169tls1_mac(SSL *ssl, unsigned char *md, int send)
1170{
1171 SSL3_RECORD *rec;
1172 unsigned char *seq;
1173 EVP_MD_CTX *hash;
1174 size_t md_size, orig_len;
1175 EVP_MD_CTX hmac, *mac_ctx;
1176 unsigned char header[13];
1177 int stream_mac = (send ?
1178 (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) :
1179 (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM));
1180 int t;
1181
1182 if (send) {
1183 rec = &(ssl->s3->wrec);
1184 seq = &(ssl->s3->write_sequence[0]);
1185 hash = ssl->write_hash;
1186 } else {
1187 rec = &(ssl->s3->rrec);
1188 seq = &(ssl->s3->read_sequence[0]);
1189 hash = ssl->read_hash;
1190 }
1191
1192 t = EVP_MD_CTX_size(hash);
1193 OPENSSL_assert(t >= 0);
1194 md_size = t;
1195
1196 /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
1197 if (stream_mac) {
1198 mac_ctx = hash;
1199 } else {
1200 if (!EVP_MD_CTX_copy(&hmac, hash))
1201 return -1;
1202 mac_ctx = &hmac;
1203 }
1204
1205 if (SSL_IS_DTLS(ssl))
1206 dtls1_build_sequence_number(header, seq,
1207 send ? ssl->d1->w_epoch : ssl->d1->r_epoch);
1208 else
1209 memcpy(header, seq, SSL3_SEQUENCE_SIZE);
1210
1211 /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */
1212 orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
1213 rec->type &= 0xff;
1214
1215 header[8] = rec->type;
1216 header[9] = (unsigned char)(ssl->version >> 8);
1217 header[10] = (unsigned char)(ssl->version);
1218 header[11] = (rec->length) >> 8;
1219 header[12] = (rec->length) & 0xff;
1220
1221 if (!send &&
1222 EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1223 ssl3_cbc_record_digest_supported(mac_ctx)) {
1224 /* This is a CBC-encrypted record. We must avoid leaking any
1225 * timing-side channel information about how many blocks of
1226 * data we are hashing because that gives an attacker a
1227 * timing-oracle. */
1228 if (!ssl3_cbc_digest_record(mac_ctx,
1229 md, &md_size, header, rec->input,
1230 rec->length + md_size, orig_len,
1231 ssl->s3->read_mac_secret,
1232 ssl->s3->read_mac_secret_size,
1233 0 /* not SSLv3 */))
1234 return -1;
1235 } else {
1236 EVP_DigestSignUpdate(mac_ctx, header, sizeof(header));
1237 EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length);
1238 t = EVP_DigestSignFinal(mac_ctx, md, &md_size);
1239 OPENSSL_assert(t > 0);
1240 }
1241
1242 if (!stream_mac)
1243 EVP_MD_CTX_cleanup(&hmac);
1244
1245 if (!SSL_IS_DTLS(ssl))
1246 tls1_record_sequence_increment(seq);
1247
1248 return (md_size);
1249}
1250
1251int
1252tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
1253 int len)
1254{
1255 unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];
1256
1257 tls1_PRF(ssl_get_algorithm2(s),
1258 TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE,
1259 s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0,
1260 s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0,
1261 p, len, s->session->master_key, buff, sizeof buff);
1262
1263 return (SSL3_MASTER_SECRET_SIZE);
1264}
1265
1266int
1267tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
1268 const char *label, size_t llen, const unsigned char *context,
1269 size_t contextlen, int use_context)
1270{
1271 unsigned char *buff;
1272 unsigned char *val = NULL;
1273 size_t vallen, currentvalpos;
1274 int rv;
1275
1276 buff = malloc(olen);
1277 if (buff == NULL)
1278 goto err2;
1279
1280 /* construct PRF arguments
1281 * we construct the PRF argument ourself rather than passing separate
1282 * values into the TLS PRF to ensure that the concatenation of values
1283 * does not create a prohibited label.
1284 */
1285 vallen = llen + SSL3_RANDOM_SIZE * 2;
1286 if (use_context) {
1287 vallen += 2 + contextlen;
1288 }
1289
1290 val = malloc(vallen);
1291 if (val == NULL)
1292 goto err2;
1293 currentvalpos = 0;
1294 memcpy(val + currentvalpos, (unsigned char *) label, llen);
1295 currentvalpos += llen;
1296 memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
1297 currentvalpos += SSL3_RANDOM_SIZE;
1298 memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
1299 currentvalpos += SSL3_RANDOM_SIZE;
1300
1301 if (use_context) {
1302 val[currentvalpos] = (contextlen >> 8) & 0xff;
1303 currentvalpos++;
1304 val[currentvalpos] = contextlen & 0xff;
1305 currentvalpos++;
1306 if ((contextlen > 0) || (context != NULL)) {
1307 memcpy(val + currentvalpos, context, contextlen);
1308 }
1309 }
1310
1311 /* disallow prohibited labels
1312 * note that SSL3_RANDOM_SIZE > max(prohibited label len) =
1313 * 15, so size of val > max(prohibited label len) = 15 and the
1314 * comparisons won't have buffer overflow
1315 */
1316 if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
1317 TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
1318 goto err1;
1319 if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
1320 TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
1321 goto err1;
1322 if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
1323 TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
1324 goto err1;
1325 if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
1326 TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
1327 goto err1;
1328
1329 rv = tls1_PRF(ssl_get_algorithm2(s),
1330 val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0,
1331 s->session->master_key, s->session->master_key_length,
1332 out, buff, olen);
1333
1334 goto ret;
1335err1:
1336 SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL,
1337 SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
1338 rv = 0;
1339 goto ret;
1340err2:
1341 SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE);
1342 rv = 0;
1343ret:
1344 free(buff);
1345 free(val);
1346
1347 return (rv);
1348}
1349
1350int
1351tls1_alert_code(int code)
1352{
1353 switch (code) {
1354 case SSL_AD_CLOSE_NOTIFY:
1355 return (SSL3_AD_CLOSE_NOTIFY);
1356 case SSL_AD_UNEXPECTED_MESSAGE:
1357 return (SSL3_AD_UNEXPECTED_MESSAGE);
1358 case SSL_AD_BAD_RECORD_MAC:
1359 return (SSL3_AD_BAD_RECORD_MAC);
1360 case SSL_AD_DECRYPTION_FAILED:
1361 return (TLS1_AD_DECRYPTION_FAILED);
1362 case SSL_AD_RECORD_OVERFLOW:
1363 return (TLS1_AD_RECORD_OVERFLOW);
1364 case SSL_AD_DECOMPRESSION_FAILURE:
1365 return (SSL3_AD_DECOMPRESSION_FAILURE);
1366 case SSL_AD_HANDSHAKE_FAILURE:
1367 return (SSL3_AD_HANDSHAKE_FAILURE);
1368 case SSL_AD_NO_CERTIFICATE:
1369 return (-1);
1370 case SSL_AD_BAD_CERTIFICATE:
1371 return (SSL3_AD_BAD_CERTIFICATE);
1372 case SSL_AD_UNSUPPORTED_CERTIFICATE:
1373 return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
1374 case SSL_AD_CERTIFICATE_REVOKED:
1375 return (SSL3_AD_CERTIFICATE_REVOKED);
1376 case SSL_AD_CERTIFICATE_EXPIRED:
1377 return (SSL3_AD_CERTIFICATE_EXPIRED);
1378 case SSL_AD_CERTIFICATE_UNKNOWN:
1379 return (SSL3_AD_CERTIFICATE_UNKNOWN);
1380 case SSL_AD_ILLEGAL_PARAMETER:
1381 return (SSL3_AD_ILLEGAL_PARAMETER);
1382 case SSL_AD_UNKNOWN_CA:
1383 return (TLS1_AD_UNKNOWN_CA);
1384 case SSL_AD_ACCESS_DENIED:
1385 return (TLS1_AD_ACCESS_DENIED);
1386 case SSL_AD_DECODE_ERROR:
1387 return (TLS1_AD_DECODE_ERROR);
1388 case SSL_AD_DECRYPT_ERROR:
1389 return (TLS1_AD_DECRYPT_ERROR);
1390 case SSL_AD_EXPORT_RESTRICTION:
1391 return (TLS1_AD_EXPORT_RESTRICTION);
1392 case SSL_AD_PROTOCOL_VERSION:
1393 return (TLS1_AD_PROTOCOL_VERSION);
1394 case SSL_AD_INSUFFICIENT_SECURITY:
1395 return (TLS1_AD_INSUFFICIENT_SECURITY);
1396 case SSL_AD_INTERNAL_ERROR:
1397 return (TLS1_AD_INTERNAL_ERROR);
1398 case SSL_AD_INAPPROPRIATE_FALLBACK:
1399 return(TLS1_AD_INAPPROPRIATE_FALLBACK);
1400 case SSL_AD_USER_CANCELLED:
1401 return (TLS1_AD_USER_CANCELLED);
1402 case SSL_AD_NO_RENEGOTIATION:
1403 return (TLS1_AD_NO_RENEGOTIATION);
1404 case SSL_AD_UNSUPPORTED_EXTENSION:
1405 return (TLS1_AD_UNSUPPORTED_EXTENSION);
1406 case SSL_AD_CERTIFICATE_UNOBTAINABLE:
1407 return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
1408 case SSL_AD_UNRECOGNIZED_NAME:
1409 return (TLS1_AD_UNRECOGNIZED_NAME);
1410 case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
1411 return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
1412 case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
1413 return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
1414 case SSL_AD_UNKNOWN_PSK_IDENTITY:
1415 return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
1416 default:
1417 return (-1);
1418 }
1419}