diff options
Diffstat (limited to 'src')
| -rw-r--r-- | src/lib/libcrypto/man/BN_GF2m_add.3 | 514 | ||||
| -rw-r--r-- | src/lib/libcrypto/man/Makefile | 3 |
2 files changed, 1 insertions, 516 deletions
diff --git a/src/lib/libcrypto/man/BN_GF2m_add.3 b/src/lib/libcrypto/man/BN_GF2m_add.3 deleted file mode 100644 index 5b143cb438..0000000000 --- a/src/lib/libcrypto/man/BN_GF2m_add.3 +++ /dev/null | |||
| @@ -1,514 +0,0 @@ | |||
| 1 | .\" $OpenBSD: BN_GF2m_add.3,v 1.5 2022/12/06 02:12:05 jsg Exp $ | ||
| 2 | .\" | ||
| 3 | .\" Copyright (c) 2022 Ingo Schwarze <schwarze@openbsd.org> | ||
| 4 | .\" | ||
| 5 | .\" Permission to use, copy, modify, and distribute this software for any | ||
| 6 | .\" purpose with or without fee is hereby granted, provided that the above | ||
| 7 | .\" copyright notice and this permission notice appear in all copies. | ||
| 8 | .\" | ||
| 9 | .\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 10 | .\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 11 | .\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 12 | .\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 13 | .\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 14 | .\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 15 | .\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 16 | .\" | ||
| 17 | .Dd $Mdocdate: December 6 2022 $ | ||
| 18 | .Dt BN_GF2M_ADD 3 | ||
| 19 | .Os | ||
| 20 | .Sh NAME | ||
| 21 | .Nm BN_GF2m_add , | ||
| 22 | .Nm BN_GF2m_sub , | ||
| 23 | .Nm BN_GF2m_cmp , | ||
| 24 | .Nm BN_GF2m_mod_arr , | ||
| 25 | .Nm BN_GF2m_mod , | ||
| 26 | .Nm BN_GF2m_mod_mul_arr , | ||
| 27 | .Nm BN_GF2m_mod_mul , | ||
| 28 | .Nm BN_GF2m_mod_sqr_arr , | ||
| 29 | .Nm BN_GF2m_mod_sqr , | ||
| 30 | .Nm BN_GF2m_mod_inv , | ||
| 31 | .Nm BN_GF2m_mod_inv_arr , | ||
| 32 | .Nm BN_GF2m_mod_div , | ||
| 33 | .Nm BN_GF2m_mod_div_arr , | ||
| 34 | .Nm BN_GF2m_mod_exp_arr , | ||
| 35 | .Nm BN_GF2m_mod_exp , | ||
| 36 | .Nm BN_GF2m_mod_sqrt_arr , | ||
| 37 | .Nm BN_GF2m_mod_sqrt , | ||
| 38 | .Nm BN_GF2m_mod_solve_quad_arr , | ||
| 39 | .Nm BN_GF2m_mod_solve_quad , | ||
| 40 | .Nm BN_GF2m_poly2arr , | ||
| 41 | .Nm BN_GF2m_arr2poly | ||
| 42 | .Nd arithmetic in Galois fields of power-of-2 order | ||
| 43 | .Sh SYNOPSIS | ||
| 44 | .In openssl/bn.h | ||
| 45 | .Ft int | ||
| 46 | .Fo BN_GF2m_add | ||
| 47 | .Fa "BIGNUM *r" | ||
| 48 | .Fa "const BIGNUM *a" | ||
| 49 | .Fa "const BIGNUM *b" | ||
| 50 | .Fc | ||
| 51 | .Ft int | ||
| 52 | .Fo BN_GF2m_sub | ||
| 53 | .Fa "BIGNUM *r" | ||
| 54 | .Fa "const BIGNUM *a" | ||
| 55 | .Fa "const BIGNUM *b" | ||
| 56 | .Fc | ||
| 57 | .Ft int | ||
| 58 | .Fo BN_GF2m_cmp | ||
| 59 | .Fa "const BIGNUM *a" | ||
| 60 | .Fa "const BIGNUM *b" | ||
| 61 | .Fc | ||
| 62 | .Ft int | ||
| 63 | .Fo BN_GF2m_mod_arr | ||
| 64 | .Fa "BIGNUM *r" | ||
| 65 | .Fa "const BIGNUM *a" | ||
| 66 | .Fa "const int p[]" | ||
| 67 | .Fc | ||
| 68 | .Ft int | ||
| 69 | .Fo BN_GF2m_mod | ||
| 70 | .Fa "BIGNUM *r" | ||
| 71 | .Fa "const BIGNUM *a" | ||
| 72 | .Fa "const BIGNUM *p" | ||
| 73 | .Fc | ||
| 74 | .Ft int | ||
| 75 | .Fo BN_GF2m_mod_mul_arr | ||
| 76 | .Fa "BIGNUM *r" | ||
| 77 | .Fa "const BIGNUM *a" | ||
| 78 | .Fa "const BIGNUM *b" | ||
| 79 | .Fa "const int p[]" | ||
| 80 | .Fa "BN_CTX *ctx" | ||
| 81 | .Fc | ||
| 82 | .Ft int | ||
| 83 | .Fo BN_GF2m_mod_mul | ||
| 84 | .Fa "BIGNUM *r" | ||
| 85 | .Fa "const BIGNUM *a" | ||
| 86 | .Fa "const BIGNUM *b" | ||
| 87 | .Fa "const BIGNUM *p" | ||
| 88 | .Fa "BN_CTX *ctx" | ||
| 89 | .Fc | ||
| 90 | .Ft int | ||
| 91 | .Fo BN_GF2m_mod_sqr_arr | ||
| 92 | .Fa "BIGNUM *r" | ||
| 93 | .Fa "const BIGNUM *a" | ||
| 94 | .Fa "const int p[]" | ||
| 95 | .Fa "BN_CTX *ctx" | ||
| 96 | .Fc | ||
| 97 | .Ft int | ||
| 98 | .Fo BN_GF2m_mod_sqr | ||
| 99 | .Fa "BIGNUM *r" | ||
| 100 | .Fa "const BIGNUM *a" | ||
| 101 | .Fa "const BIGNUM *p" | ||
| 102 | .Fa "BN_CTX *ctx" | ||
| 103 | .Fc | ||
| 104 | .Ft int | ||
| 105 | .Fo BN_GF2m_mod_inv | ||
| 106 | .Fa "BIGNUM *r" | ||
| 107 | .Fa "const BIGNUM *b" | ||
| 108 | .Fa "const BIGNUM *p" | ||
| 109 | .Fa "BN_CTX *ctx" | ||
| 110 | .Fc | ||
| 111 | .Ft int | ||
| 112 | .Fo BN_GF2m_mod_inv_arr | ||
| 113 | .Fa "BIGNUM *r" | ||
| 114 | .Fa "const BIGNUM *b" | ||
| 115 | .Fa "const int p[]" | ||
| 116 | .Fa "BN_CTX *ctx" | ||
| 117 | .Fc | ||
| 118 | .Ft int | ||
| 119 | .Fo BN_GF2m_mod_div | ||
| 120 | .Fa "BIGNUM *r" | ||
| 121 | .Fa "const BIGNUM *a" | ||
| 122 | .Fa "const BIGNUM *b" | ||
| 123 | .Fa "const BIGNUM *p" | ||
| 124 | .Fa "BN_CTX *ctx" | ||
| 125 | .Fc | ||
| 126 | .Ft int | ||
| 127 | .Fo BN_GF2m_mod_div_arr | ||
| 128 | .Fa "BIGNUM *r" | ||
| 129 | .Fa "const BIGNUM *a" | ||
| 130 | .Fa "const BIGNUM *b" | ||
| 131 | .Fa "const int p[]" | ||
| 132 | .Fa "BN_CTX *ctx" | ||
| 133 | .Fc | ||
| 134 | .Ft int | ||
| 135 | .Fo BN_GF2m_mod_exp_arr | ||
| 136 | .Fa "BIGNUM *r" | ||
| 137 | .Fa "const BIGNUM *a" | ||
| 138 | .Fa "const BIGNUM *exponent" | ||
| 139 | .Fa "const int p[]" | ||
| 140 | .Fa "BN_CTX *ctx" | ||
| 141 | .Fc | ||
| 142 | .Ft int | ||
| 143 | .Fo BN_GF2m_mod_exp | ||
| 144 | .Fa "BIGNUM *r" | ||
| 145 | .Fa "const BIGNUM *a" | ||
| 146 | .Fa "const BIGNUM *exponent" | ||
| 147 | .Fa "const BIGNUM *p" | ||
| 148 | .Fa "BN_CTX *ctx" | ||
| 149 | .Fc | ||
| 150 | .Ft int | ||
| 151 | .Fo BN_GF2m_mod_sqrt_arr | ||
| 152 | .Fa "BIGNUM *r" | ||
| 153 | .Fa "const BIGNUM *a" | ||
| 154 | .Fa "const int p[]" | ||
| 155 | .Fa "BN_CTX *ctx" | ||
| 156 | .Fc | ||
| 157 | .Ft int | ||
| 158 | .Fo BN_GF2m_mod_sqrt | ||
| 159 | .Fa "BIGNUM *r" | ||
| 160 | .Fa "const BIGNUM *a" | ||
| 161 | .Fa "const BIGNUM *p" | ||
| 162 | .Fa "BN_CTX *ctx" | ||
| 163 | .Fc | ||
| 164 | .Ft int | ||
| 165 | .Fo BN_GF2m_mod_solve_quad_arr | ||
| 166 | .Fa "BIGNUM *r" | ||
| 167 | .Fa "const BIGNUM *a" | ||
| 168 | .Fa "const int p[]" | ||
| 169 | .Fa "BN_CTX *ctx" | ||
| 170 | .Fc | ||
| 171 | .Ft int | ||
| 172 | .Fo BN_GF2m_mod_solve_quad | ||
| 173 | .Fa "BIGNUM *r" | ||
| 174 | .Fa "const BIGNUM *a" | ||
| 175 | .Fa "const BIGNUM *p" | ||
| 176 | .Fa "BN_CTX *ctx" | ||
| 177 | .Fc | ||
| 178 | .Ft int | ||
| 179 | .Fo BN_GF2m_poly2arr | ||
| 180 | .Fa "const BIGNUM *poly_in" | ||
| 181 | .Fa "int arr_out[]" | ||
| 182 | .Fa "int arr_size" | ||
| 183 | .Fc | ||
| 184 | .Ft int | ||
| 185 | .Fo BN_GF2m_arr2poly | ||
| 186 | .Fa "const int arr_in[]" | ||
| 187 | .Fa "BIGNUM *poly_out" | ||
| 188 | .Fc | ||
| 189 | .Sh DESCRIPTION | ||
| 190 | Two fields containing the same, finite number of elements are isomorphic, | ||
| 191 | and the number of elements is called their order. | ||
| 192 | The unique field of a given finite order is called the Galois field | ||
| 193 | of that order. | ||
| 194 | .EQ | ||
| 195 | delim $$ | ||
| 196 | .EN | ||
| 197 | The following functions perform arithmetic operations | ||
| 198 | on $roman GF left ( 2 sup m right )$, the Galois fields of order $2 sup m$, | ||
| 199 | where $m$ is a natural number. | ||
| 200 | .Pp | ||
| 201 | The $2 sup m$ elements of $roman GF left ( 2 sup m right )$ | ||
| 202 | are usually represented by the $2 sup m$ polynomials | ||
| 203 | of a degrees less than $m$ with binary coefficients. | ||
| 204 | Such a polynomial can either be specified by storing the coefficients | ||
| 205 | in a | ||
| 206 | .Vt BIGNUM | ||
| 207 | object, using the $m$ lowest bits with bit numbers corresponding to degrees, | ||
| 208 | or by storing the degrees that have | ||
| 209 | coefficients of 1 in an integer array of at most $m + 1$ elements. | ||
| 210 | For the functions below, the array needs to be sorted in decreasing | ||
| 211 | order and terminated by the delimiter element \-1. | ||
| 212 | .Pp | ||
| 213 | A specific representation of $roman GF left ( 2 sup m right )$ | ||
| 214 | is selected by choosing a polynomial of degree $m$ that is irreducible | ||
| 215 | with binary coefficients, called the reducing polynomial. | ||
| 216 | Making sure that $p$ is of the correct degree and indeed irreducible | ||
| 217 | is the responsibility of the user. | ||
| 218 | Typically, the following functions silently produce nonsensical results | ||
| 219 | when given a | ||
| 220 | .Fa p | ||
| 221 | argument that is of the wrong degree or that is reducible. | ||
| 222 | Storing the reducing polynomial requires $m + 1$ bits in a | ||
| 223 | .Vt BIGNUM | ||
| 224 | object or an | ||
| 225 | .Vt int | ||
| 226 | array of up to $m + 2$ elements, including the terminating \-1 element. | ||
| 227 | .Pp | ||
| 228 | All functions produce correct results even if some or all of the arguments | ||
| 229 | .Fa r , | ||
| 230 | .Fa a , | ||
| 231 | and | ||
| 232 | .Fa b | ||
| 233 | point to the same object. | ||
| 234 | .Pp | ||
| 235 | .Fn BN_GF2m_add | ||
| 236 | adds the two polynomials | ||
| 237 | .Fa a | ||
| 238 | and | ||
| 239 | .Fa b | ||
| 240 | with binary coefficients, which is equivalent to a pairwise exclusive OR | ||
| 241 | operation on the coefficients, and places the result into | ||
| 242 | .Fa r . | ||
| 243 | In particular, if | ||
| 244 | .Fa a | ||
| 245 | and | ||
| 246 | .Fa b | ||
| 247 | are elements of the same representation | ||
| 248 | of the same $roman GF left ( 2 sup m right )$ field, | ||
| 249 | the sum of both in that representation of that field is computed | ||
| 250 | .Po | ||
| 251 | $r = a + b$ | ||
| 252 | .Pc . | ||
| 253 | In contrast to most of the other functions described here, no modulo | ||
| 254 | operation is performed. | ||
| 255 | Consequently, if the degree of at least one of the arguments may be larger | ||
| 256 | than or equal to $m$, a follow-up call to | ||
| 257 | .Fn BN_GF2m_mod_arr | ||
| 258 | or | ||
| 259 | .Fn BN_GF2m_mod | ||
| 260 | may occasionally be useful. | ||
| 261 | .Pp | ||
| 262 | .Fn BN_GF2m_sub | ||
| 263 | calculates the difference of | ||
| 264 | .Fa a | ||
| 265 | and | ||
| 266 | .Fa b | ||
| 267 | .Po | ||
| 268 | $r = a - b = a + b$ | ||
| 269 | .Pc . | ||
| 270 | Since \-1 is the same as 1 in binary arithmetic, | ||
| 271 | .Fn BN_GF2m_sub | ||
| 272 | does exactly the same as | ||
| 273 | .Fn BN_GF2m_add . | ||
| 274 | It is implemented as a macro. | ||
| 275 | .Pp | ||
| 276 | .Fn BN_GF2m_cmp | ||
| 277 | is an alias for | ||
| 278 | .Xr BN_ucmp 3 . | ||
| 279 | Despite its name, it does not attempt to find out whether the two | ||
| 280 | polynomials belong to the same congruence class with respect to some | ||
| 281 | Galois field. | ||
| 282 | .Pp | ||
| 283 | .Fn BN_GF2m_mod_arr | ||
| 284 | and its wrapper | ||
| 285 | .Fn BN_GF2m_mod | ||
| 286 | divide the polynomial with binary coefficients | ||
| 287 | .Fa a | ||
| 288 | by the polynomial with binary coefficients | ||
| 289 | .Fa p | ||
| 290 | and place the remainder into | ||
| 291 | .Fa r | ||
| 292 | .Po | ||
| 293 | $r = a ( roman mod p )$ | ||
| 294 | .Pc . | ||
| 295 | If | ||
| 296 | .Fa r | ||
| 297 | and | ||
| 298 | .Fa a | ||
| 299 | point to the same object, the modular reduction is done in place. | ||
| 300 | .Pp | ||
| 301 | .Fn BN_GF2m_mod_mul_arr | ||
| 302 | and its wrapper | ||
| 303 | .Fn BN_GF2m_mod_mul | ||
| 304 | multiply | ||
| 305 | .Fa a | ||
| 306 | and | ||
| 307 | .Fa b , | ||
| 308 | divide the result by | ||
| 309 | .Fa p , | ||
| 310 | and place the remainder in | ||
| 311 | .Fa r | ||
| 312 | .Po | ||
| 313 | $r = a * b ( roman mod p )$ | ||
| 314 | .Pc . | ||
| 315 | .Pp | ||
| 316 | .Fn BN_GF2m_mod_sqr_arr | ||
| 317 | and its wrapper | ||
| 318 | .Fn BN_GF2m_mod_sqr | ||
| 319 | divide the square of | ||
| 320 | .Fa a | ||
| 321 | by | ||
| 322 | .Fa p | ||
| 323 | and place the remainder in | ||
| 324 | .Fa r | ||
| 325 | .Po | ||
| 326 | $r = a * a ( roman mod p )$ | ||
| 327 | .Pc . | ||
| 328 | .Pp | ||
| 329 | .Fn BN_GF2m_mod_inv | ||
| 330 | and its wrapper | ||
| 331 | .Fn BN_GF2m_mod_inv_arr | ||
| 332 | reduce | ||
| 333 | .Fa b | ||
| 334 | modulo | ||
| 335 | .Fa p , | ||
| 336 | find the multiplicative inverse element | ||
| 337 | in $roman GF left ( 2 sup m right )$ using the reducing polynomial $p$, | ||
| 338 | and place the result into | ||
| 339 | .Fa r | ||
| 340 | .Po | ||
| 341 | $r = 1 / b ( roman mod p )$ | ||
| 342 | .Pc . | ||
| 343 | .Pp | ||
| 344 | .Fn BN_GF2m_mod_div | ||
| 345 | and its wrapper | ||
| 346 | .Fn BN_GF2m_mod_div_arr | ||
| 347 | reduce | ||
| 348 | .Fa a | ||
| 349 | and | ||
| 350 | .Fa b | ||
| 351 | modulo | ||
| 352 | .Fa p , | ||
| 353 | compute their quotient | ||
| 354 | in $roman GF left ( 2 sup m right )$ using the reducing polynomial $p$, | ||
| 355 | and place the result into | ||
| 356 | .Fa r | ||
| 357 | .Po | ||
| 358 | $r = a / b ( roman mod p )$ | ||
| 359 | .Pc . | ||
| 360 | .Pp | ||
| 361 | .Fn BN_GF2m_mod_exp_arr | ||
| 362 | and its wrapper | ||
| 363 | .Fn BN_GF2m_mod_exp | ||
| 364 | reduce | ||
| 365 | .Fa a | ||
| 366 | modulo | ||
| 367 | .Fa p , | ||
| 368 | raise it to the power of | ||
| 369 | .Fa exponent | ||
| 370 | in $roman GF left ( 2 sup m right )$ using the reducing polynomial $p$, | ||
| 371 | and place the result into | ||
| 372 | .Fa r | ||
| 373 | .Po | ||
| 374 | $r = a sup exponent ( roman mod p )$ | ||
| 375 | .Pc . | ||
| 376 | .Pp | ||
| 377 | .Fn BN_GF2m_mod_sqrt_arr | ||
| 378 | and its wrapper | ||
| 379 | .Fn BN_GF2m_mod_sqrt | ||
| 380 | reduce | ||
| 381 | .Fa a | ||
| 382 | modulo | ||
| 383 | .Fa p , | ||
| 384 | calculate the square root | ||
| 385 | in $roman GF left ( 2 sup m right )$ using the reducing polynomial $p$ | ||
| 386 | by raising it to the power of $2 sup { m - 1 }$, | ||
| 387 | and place the result into | ||
| 388 | .Fa r | ||
| 389 | .Po | ||
| 390 | $r = sqrt a ( roman mod p )$ | ||
| 391 | .Pc . | ||
| 392 | This works because of the identity $a sup {2 sup m} = a$ | ||
| 393 | which holds for all field elements $a$. | ||
| 394 | .Pp | ||
| 395 | .Fn BN_GF2m_mod_solve_quad_arr | ||
| 396 | and its wrapper | ||
| 397 | .Fn BN_GF2m_mod_solve_quad | ||
| 398 | reduce | ||
| 399 | .Fa a | ||
| 400 | modulo | ||
| 401 | .Fa p , | ||
| 402 | solve the quadratic equation $r sup 2 + r = a ( roman mod p )$ | ||
| 403 | in $roman GF left ( 2 sup m right )$ using the reducing polynomial $p$, | ||
| 404 | and place the solution into | ||
| 405 | .Fa r . | ||
| 406 | .Pp | ||
| 407 | .Fn BN_GF2m_poly2arr | ||
| 408 | converts a polynomial from a bit string stored in the | ||
| 409 | .Vt BIGNUM | ||
| 410 | object | ||
| 411 | .Fa poly_in | ||
| 412 | to an array containing the degrees of the non-zero terms. | ||
| 413 | It is the responsibility of the caller to provide an array | ||
| 414 | .Fa arr_out | ||
| 415 | of sufficient size and to provide the number of elements | ||
| 416 | that can be stored in the array as the | ||
| 417 | .Fa arr_size | ||
| 418 | argument. | ||
| 419 | The array is filled with the degrees in decreasing order, | ||
| 420 | followed by an element with the value \-1. | ||
| 421 | .Pp | ||
| 422 | .Fn BN_GF2m_arr2poly | ||
| 423 | converts a polynomial from the array | ||
| 424 | .Fa arr_in | ||
| 425 | containing degrees to a bit string placed in the | ||
| 426 | .Vt BIGNUM | ||
| 427 | object | ||
| 428 | .Ft poly_out . | ||
| 429 | It is the responsibility of the caller to provide the storage for | ||
| 430 | .Fa poly_out | ||
| 431 | and to make sure that | ||
| 432 | .Fa arr_in | ||
| 433 | is terminated with a \-1 element. | ||
| 434 | .Sh RETURN VALUES | ||
| 435 | .Fn BN_GF2m_cmp | ||
| 436 | interprets | ||
| 437 | .Fa a | ||
| 438 | and | ||
| 439 | .Fa b | ||
| 440 | as integer numbers and returns | ||
| 441 | \-1 if $left | a right | < left | b right |$, | ||
| 442 | 0 if $left | a right | = left | b right |$, | ||
| 443 | or 1 if $left | a right | > left | b right |$. | ||
| 444 | .Pp | ||
| 445 | .Fn BN_GF2m_poly2arr | ||
| 446 | returns: | ||
| 447 | .Bl -bullet -compact -offset 2n -width 1n | ||
| 448 | .It | ||
| 449 | 0 if | ||
| 450 | .Fa poly_in | ||
| 451 | has the value 0; | ||
| 452 | .It | ||
| 453 | a number in the range from 2 to | ||
| 454 | .Fa arr_size , | ||
| 455 | inclusive, in case of success, specifying the number of elements | ||
| 456 | that have been stored into the array; | ||
| 457 | .It | ||
| 458 | a number greater than | ||
| 459 | .Fa arr_size | ||
| 460 | if the function failed because the array was too small, | ||
| 461 | specifying the array size that would have been needed. | ||
| 462 | .El | ||
| 463 | .Pp | ||
| 464 | The other functions return 1 for success or 0 for failure. | ||
| 465 | .Sh ERRORS | ||
| 466 | After some cases of failure, the following diagnostics can be retrieved with | ||
| 467 | .Xr ERR_get_error 3 , | ||
| 468 | .Xr ERR_GET_REASON 3 , | ||
| 469 | and | ||
| 470 | .Xr ERR_reason_error_string 3 : | ||
| 471 | .Bl -tag -width Ds | ||
| 472 | .It Dv BN_R_NO_SOLUTION Qq "no solution" | ||
| 473 | No solution exists for the equation that | ||
| 474 | .Fn BN_GF2m_mod_solve_quad_arr | ||
| 475 | or | ||
| 476 | .Fn BN_GF2m_mod_solve_quad | ||
| 477 | attempted to solve. | ||
| 478 | .It Dv BN_R_INVALID_LENGTH Qq "invalid length" | ||
| 479 | In one of the functions wrapping an | ||
| 480 | .Fn *_arr | ||
| 481 | variant, the | ||
| 482 | .Fa "BIGNUM *p" | ||
| 483 | argument had a value of zero. | ||
| 484 | .El | ||
| 485 | .Sh SEE ALSO | ||
| 486 | .Xr BN_add 3 , | ||
| 487 | .Xr BN_CTX_new 3 , | ||
| 488 | .Xr BN_new 3 , | ||
| 489 | .Xr BN_set_bit 3 , | ||
| 490 | .Xr EC_POINT_new 3 | ||
| 491 | .Rs | ||
| 492 | .%A Darrel Hankerson | ||
| 493 | .%A Julio L\('opez Hernandez | ||
| 494 | .%A Alfred Menezes | ||
| 495 | .%T Software Implementation of Elliptic Curve Cryptography over Binary Fields | ||
| 496 | .%B CHES 2000: International Workshop on Cryptographic Hardware\ | ||
| 497 | and Embedded Systems | ||
| 498 | .%U https://doi.org/10.1007/3-540-44499-8_1 | ||
| 499 | .%C Worcester, MA, USA | ||
| 500 | .%D August 2000 | ||
| 501 | .%I Springer | ||
| 502 | .%J Lecture Notes in Computer Science | ||
| 503 | .%V vol 1965 | ||
| 504 | .%O Algorithm 10: Modified Almost Inverse Algorithm for inversion in FP(2\(ham) | ||
| 505 | .Re | ||
| 506 | .Rs | ||
| 507 | .%V IEEE Standard 1363 | ||
| 508 | .%B Specifications for Public-Key Cryptography | ||
| 509 | .%D August 29, 2000 | ||
| 510 | .%U https://doi.org/10.1109/IEEESTD.2000.92292 | ||
| 511 | .%O square-and-multiply algorithm A.5.1 for exponentiation,\ | ||
| 512 | exponentiation algorithm A.4.1 for square roots, and\ | ||
| 513 | algorithms A.4.7 and A.4.6 for the quadratic equation | ||
| 514 | .Re | ||
diff --git a/src/lib/libcrypto/man/Makefile b/src/lib/libcrypto/man/Makefile index 85f6feea44..d20c8d8ed5 100644 --- a/src/lib/libcrypto/man/Makefile +++ b/src/lib/libcrypto/man/Makefile | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | # $OpenBSD: Makefile,v 1.246 2023/04/27 06:54:09 tb Exp $ | 1 | # $OpenBSD: Makefile,v 1.247 2023/04/27 09:08:08 tb Exp $ |
| 2 | 2 | ||
| 3 | .include <bsd.own.mk> | 3 | .include <bsd.own.mk> |
| 4 | 4 | ||
| @@ -75,7 +75,6 @@ MAN= \ | |||
| 75 | BN_cmp.3 \ | 75 | BN_cmp.3 \ |
| 76 | BN_copy.3 \ | 76 | BN_copy.3 \ |
| 77 | BN_generate_prime.3 \ | 77 | BN_generate_prime.3 \ |
| 78 | BN_GF2m_add.3 \ | ||
| 79 | BN_kronecker.3 \ | 78 | BN_kronecker.3 \ |
| 80 | BN_mod_inverse.3 \ | 79 | BN_mod_inverse.3 \ |
| 81 | BN_mod_mul_montgomery.3 \ | 80 | BN_mod_mul_montgomery.3 \ |
