summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/arch/amd64/bignum_sqr.S
blob: 54e3f59442458df7d11ea6a6ccd0af188660b83d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

// ----------------------------------------------------------------------------
// Square z := x^2
// Input x[n]; output z[k]
//
//    extern void bignum_sqr
//     (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x);
//
// Does the "z := x^2" operation where x is n digits and result z is k.
// Truncates the result in general unless k >= 2 * n
//
// Standard x86-64 ABI: RDI = k, RSI = z, RDX = n, RCX = x
// Microsoft x64 ABI:   RCX = k, RDX = z, R8 = n, R9 = x
// ----------------------------------------------------------------------------

#include "s2n_bignum_internal.h"

        .intel_syntax noprefix
        S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_sqr)
        S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_sqr)
        .text

// First three are where arguments come in, but n is moved.

#define p rdi
#define z rsi
#define x rcx
#define n r8

// These are always local scratch since multiplier result is in these

#define a rax
#define d rdx

// Other variables

#define i rbx
#define ll rbp
#define hh r9
#define k r10
#define y r11
#define htop r12
#define l r13
#define h r14
#define c r15

// Short versions

#define llshort ebp

S2N_BN_SYMBOL(bignum_sqr):
	_CET_ENDBR

#if WINDOWS_ABI
        push    rdi
        push    rsi
        mov     rdi, rcx
        mov     rsi, rdx
        mov     rdx, r8
        mov     rcx, r9
#endif

// We use too many registers, and also we need rax:rdx for multiplications

        push    rbx
        push    rbp
        push    r12
        push    r13
        push    r14
        push    r15
        mov     n, rdx

// If p = 0 the result is trivial and nothing needs doing

        test    p, p
        jz      end

// initialize (hh,ll) = 0

        xor     llshort, llshort
        xor     hh, hh

// Iterate outer loop from k = 0 ... k = p - 1 producing result digits

        xor     k, k

outerloop:

// First let bot = MAX 0 (k + 1 - n) and top = MIN (k + 1) n
// We want to accumulate all x[i] * x[k - i] for bot <= i < top
// For the optimization of squaring we avoid duplication and do
// 2 * x[i] * x[k - i] for i < htop, where htop = MIN ((k+1)/2) n
// Initialize i = bot; in fact just compute bot as i directly.

        xor     c, c
        lea     i, [k+1]
        mov     htop, i
        shr     htop, 1
        sub     i, n
        cmovc   i, c
        cmp     htop, n
        cmovnc  htop, n

// Initialize the three-part local sum (c,h,l); c was already done above

        xor     l, l
        xor     h, h

// If htop <= bot then main doubled part of the sum is empty

        cmp     i, htop
        jnc     nosumming

// Use a moving pointer for [y] = x[k-i] for the cofactor

        mov     a, k
        sub     a, i
        lea     y, [x+8*a]

// Do the main part of the sum x[i] * x[k - i] for 2 * i < k

innerloop:
        mov     a, [x+8*i]
        mul     QWORD PTR [y]
        add     l, a
        adc     h, d
        adc     c, 0
        sub     y, 8
        inc     i
        cmp     i, htop
        jc      innerloop

// Now double it

        add     l, l
        adc     h, h
        adc     c, c

// If k is even (which means 2 * i = k) and i < n add the extra x[i]^2 term

nosumming:
        test    k, 1
        jnz     innerend
        cmp     i, n
        jnc     innerend

        mov     a, [x+8*i]
        mul     a
        add     l, a
        adc     h, d
        adc     c, 0

// Now add the local sum into the global sum, store and shift

innerend:
        add     l, ll
        mov     [z+8*k], l
        adc     h, hh
        mov     ll, h
        adc     c, 0
        mov     hh, c

        inc     k
        cmp     k, p
        jc      outerloop

// Restore registers and return

end:
        pop     r15
        pop     r14
        pop     r13
        pop     r12
        pop     rbp
        pop     rbx
#if WINDOWS_ABI
        pop    rsi
        pop    rdi
#endif
        ret

#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif