summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/man/EVP_EncryptInit.3
blob: 3757bfc8159d33b038ba1944e14545e94695db35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
.\"	$OpenBSD: EVP_EncryptInit.3,v 1.3 2016/11/21 22:19:15 jmc Exp $
.\"
.Dd $Mdocdate: November 21 2016 $
.Dt EVP_ENCRYPTINIT 3
.Os
.Sh NAME
.Nm EVP_CIPHER_CTX_init ,
.Nm EVP_EncryptInit_ex ,
.Nm EVP_EncryptUpdate ,
.Nm EVP_EncryptFinal_ex ,
.Nm EVP_DecryptInit_ex ,
.Nm EVP_DecryptUpdate ,
.Nm EVP_DecryptFinal_ex ,
.Nm EVP_CipherInit_ex ,
.Nm EVP_CipherUpdate ,
.Nm EVP_CipherFinal_ex ,
.Nm EVP_EncryptInit ,
.Nm EVP_EncryptFinal ,
.Nm EVP_DecryptInit ,
.Nm EVP_DecryptFinal ,
.Nm EVP_CipherInit ,
.Nm EVP_CipherFinal ,
.Nm EVP_CIPHER_CTX_set_padding ,
.Nm EVP_CIPHER_CTX_set_key_length ,
.Nm EVP_CIPHER_CTX_ctrl ,
.Nm EVP_CIPHER_CTX_cleanup ,
.Nm EVP_get_cipherbyname ,
.Nm EVP_get_cipherbynid ,
.Nm EVP_get_cipherbyobj ,
.Nm EVP_CIPHER_nid ,
.Nm EVP_CIPHER_block_size ,
.Nm EVP_CIPHER_key_length ,
.Nm EVP_CIPHER_iv_length ,
.Nm EVP_CIPHER_flags ,
.Nm EVP_CIPHER_mode ,
.Nm EVP_CIPHER_type ,
.Nm EVP_CIPHER_CTX_cipher ,
.Nm EVP_CIPHER_CTX_nid ,
.Nm EVP_CIPHER_CTX_block_size ,
.Nm EVP_CIPHER_CTX_key_length ,
.Nm EVP_CIPHER_CTX_iv_length ,
.Nm EVP_CIPHER_CTX_get_app_data ,
.Nm EVP_CIPHER_CTX_set_app_data ,
.Nm EVP_CIPHER_CTX_type ,
.Nm EVP_CIPHER_CTX_flags ,
.Nm EVP_CIPHER_CTX_mode ,
.Nm EVP_CIPHER_param_to_asn1 ,
.Nm EVP_CIPHER_asn1_to_param ,
.Nm EVP_enc_null ,
.Nm EVP_des_cbc ,
.Nm EVP_des_ecb ,
.Nm EVP_des_cfb ,
.Nm EVP_des_ofb ,
.Nm EVP_des_ede_cbc ,
.Nm EVP_des_ede ,
.Nm EVP_des_ede_ofb ,
.Nm EVP_des_ede_cfb ,
.Nm EVP_des_ede3_cbc ,
.Nm EVP_des_ede3 ,
.Nm EVP_des_ede3_ofb ,
.Nm EVP_des_ede3_cfb ,
.Nm EVP_desx_cbc ,
.Nm EVP_rc4 ,
.Nm EVP_rc4_40 ,
.Nm EVP_idea_cbc ,
.Nm EVP_idea_ecb ,
.Nm EVP_idea_cfb ,
.Nm EVP_idea_ofb ,
.Nm EVP_idea_cbc ,
.Nm EVP_rc2_cbc ,
.Nm EVP_rc2_ecb ,
.Nm EVP_rc2_cfb ,
.Nm EVP_rc2_ofb ,
.Nm EVP_rc2_40_cbc ,
.Nm EVP_rc2_64_cbc ,
.Nm EVP_bf_cbc ,
.Nm EVP_bf_ecb ,
.Nm EVP_bf_cfb ,
.Nm EVP_bf_ofb ,
.Nm EVP_cast5_cbc ,
.Nm EVP_cast5_ecb ,
.Nm EVP_cast5_cfb ,
.Nm EVP_cast5_ofb ,
.Nm EVP_aes_128_gcm ,
.Nm EVP_aes_192_gcm ,
.Nm EVP_aes_256_gcm ,
.Nm EVP_aes_128_ccm ,
.Nm EVP_aes_192_ccm ,
.Nm EVP_aes_256_ccm ,
.Nm EVP_rc5_32_12_16_cbc ,
.Nm EVP_rc5_32_12_16_cfb ,
.Nm EVP_rc5_32_12_16_ecb ,
.Nm EVP_rc5_32_12_16_ofb
.Nd EVP cipher routines
.Sh SYNOPSIS
.In openssl/evp.h
.Ft void
.Fo EVP_CIPHER_CTX_init
.Fa "EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_EncryptInit_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "ENGINE *impl"
.Fa "unsigned char *key"
.Fa "unsigned char *iv"
.Fc
.Ft int
.Fo EVP_EncryptUpdate
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fa "unsigned char *in"
.Fa "int inl"
.Fc
.Ft int
.Fo EVP_EncryptFinal_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_DecryptInit_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "ENGINE *impl"
.Fa "unsigned char *key"
.Fa "unsigned char *iv"
.Fc
.Ft int
.Fo EVP_DecryptUpdate
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fa "unsigned char *in"
.Fa "int inl"
.Fc
.Ft int
.Fo EVP_DecryptFinal_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *outm"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_CipherInit_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "ENGINE *impl"
.Fa "unsigned char *key"
.Fa "unsigned char *iv"
.Fa "int enc"
.Fc
.Ft int
.Fo EVP_CipherUpdate
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fa "unsigned char *in"
.Fa "int inl"
.Fc
.Ft int
.Fo EVP_CipherFinal_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *outm"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_EncryptInit
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "unsigned char *key"
.Fa "unsigned char *iv"
.Fc
.Ft int
.Fo EVP_EncryptFinal
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_DecryptInit
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "unsigned char *key"
.Fa "unsigned char *iv"
.Fc
.Ft int
.Fo EVP_DecryptFinal
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *outm"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_CipherInit
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "unsigned char *key"
.Fa "unsigned char *iv"
.Fa "int enc"
.Fc
.Ft int
.Fo EVP_CipherFinal
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *outm"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_set_padding
.Fa "EVP_CIPHER_CTX *x"
.Fa "int padding"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_set_key_length
.Fa "EVP_CIPHER_CTX *x"
.Fa "int keylen"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_ctrl
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "int type"
.Fa "int arg"
.Fa "void *ptr"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_cleanup
.Fa "EVP_CIPHER_CTX *ctx"
.Fc
.Ft const EVP_CIPHER *
.Fo EVP_get_cipherbyname
.Fa "const char *name"
.Fc
.Fd #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
.Fd #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))
.Fd #define EVP_CIPHER_nid(e)		((e)->nid)
.Fd #define EVP_CIPHER_block_size(e)	((e)->block_size)
.Fd #define EVP_CIPHER_key_length(e)	((e)->key_len)
.Fd #define EVP_CIPHER_iv_length(e)		((e)->iv_len)
.Fd #define EVP_CIPHER_flags(e)		((e)->flags)
.Fd #define EVP_CIPHER_mode(e)		((e)->flags) & EVP_CIPH_MODE)
.Ft int
.Fo EVP_CIPHER_type
.Fa "const EVP_CIPHER *ctx"
.Fc
.Fd #define EVP_CIPHER_CTX_cipher(e)	((e)->cipher)
.Fd #define EVP_CIPHER_CTX_nid(e)		((e)->cipher->nid)
.Fd #define EVP_CIPHER_CTX_block_size(e)	((e)->cipher->block_size)
.Fd #define EVP_CIPHER_CTX_key_length(e)	((e)->key_len)
.Fd #define EVP_CIPHER_CTX_iv_length(e)	((e)->cipher->iv_len)
.Fd #define EVP_CIPHER_CTX_get_app_data(e)	((e)->app_data)
.Fd #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
.Fd #define EVP_CIPHER_CTX_type(c)         EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
.Fd #define EVP_CIPHER_CTX_flags(e)		((e)->cipher->flags)
.Fd #define EVP_CIPHER_CTX_mode(e)		((e)->cipher->flags & EVP_CIPH_MODE)
.Ft int
.Fo EVP_CIPHER_param_to_asn1
.Fa "EVP_CIPHER_CTX *c"
.Fa "ASN1_TYPE *type"
.Fc
.Ft int
.Fo EVP_CIPHER_asn1_to_param
.Fa "EVP_CIPHER_CTX *c"
.Fa "ASN1_TYPE *type"
.Fc
.Sh DESCRIPTION
The EVP cipher routines are a high level interface to certain symmetric
ciphers.
.Pp
.Fn EVP_CIPHER_CTX_init
initializes the cipher context
.Fa ctx .
.Pp
.Fn EVP_EncryptInit_ex
sets up the cipher context
.Fa ctx
for encryption with cipher
.Fa type
from
.Vt ENGINE
.Fa impl .
.Fa ctx
must be initialized before calling this function.
.Fa type
is normally supplied by a function such as
.Fn EVP_aes_256_cbc .
If
.Fa impl
is
.Dv NULL ,
then the default implementation is used.
.Fa key
is the symmetric key to use and
.Fa iv
is the IV to use (if necessary).
The actual number of bytes used for the
key and IV depends on the cipher.
It is possible to set all parameters to
.Dv NULL
except
.Fa type
in an initial call and supply the remaining parameters in subsequent
calls, all of which have
.Fa type
set to
.Dv NULL .
This is done when the default cipher parameters are not appropriate.
.Pp
.Fn EVP_EncryptUpdate
encrypts
.Fa inl
bytes from the buffer
.Fa in
and writes the encrypted version to
.Fa out .
This function can be called multiple times to encrypt successive blocks
of data.
The amount of data written depends on the block alignment of the
encrypted data: as a result the amount of data written may be anything
from zero bytes to (inl + cipher_block_size - 1) so
.Fa outl
should contain sufficient room.
The actual number of bytes written is placed in
.Fa outl .
.Pp
If padding is enabled (the default) then
.Fn EVP_EncryptFinal_ex
encrypts the "final" data, that is any data that remains in a partial
block.
It uses NOTES (aka PKCS padding).
The encrypted final data is written to
.Fa out
which should have sufficient space for one cipher block.
The number of bytes written is placed in
.Fa outl .
After this function is called the encryption operation is finished and
no further calls to
.Fn EVP_EncryptUpdate
should be made.
.Pp
If padding is disabled then
.Fn EVP_EncryptFinal_ex
will not encrypt any more data and it will return an error if any data
remains in a partial block: that is if the total data length is not a
multiple of the block size.
.Pp
.Fn EVP_DecryptInit_ex ,
.Fn EVP_DecryptUpdate ,
and
.Fn EVP_DecryptFinal_ex
are the corresponding decryption operations.
.Fn EVP_DecryptFinal
will return an error code if padding is enabled and the final block is
not correctly formatted.
The parameters and restrictions are identical to the encryption
operations except that if padding is enabled the decrypted data buffer
.Fa out
passed to
.Fn EVP_DecryptUpdate
should have sufficient room for (inl + cipher_block_size) bytes
unless the cipher block size is 1 in which case
.Fa inl
bytes is sufficient.
.Pp
.Fn EVP_CipherInit_ex ,
.Fn EVP_CipherUpdate ,
and
.Fn EVP_CipherFinal_ex
are functions that can be used for decryption or encryption.
The operation performed depends on the value of the
.Fa enc
parameter.
It should be set to 1 for encryption, 0 for decryption and -1 to leave
the value unchanged (the actual value of
.Fa enc
being supplied in a previous call).
.Pp
.Fn EVP_CIPHER_CTX_cleanup
clears all information from a cipher context and free up any allocated
memory associated with it.
It should be called after all operations using a cipher are complete so
sensitive information does not remain in memory.
.Pp
.Fn EVP_EncryptInit ,
.Fn EVP_DecryptInit ,
and
.Fn EVP_CipherInit
behave in a similar way to
.Fn EVP_EncryptInit_ex ,
.Fn EVP_DecryptInit_ex ,
and
.Fn EVP_CipherInit_ex
except the
.Fa ctx
parameter does not need to be initialized and they always use the
default cipher implementation.
.Pp
.Fn EVP_EncryptFinal ,
.Fn EVP_DecryptFinal ,
and
.Fn EVP_CipherFinal
are identical to
.Fn EVP_EncryptFinal_ex ,
.Fn EVP_DecryptFinal_ex ,
and
.Fn EVP_CipherFinal_ex .
In previous releases of OpenSSL, they also used to clean up the
.Fa ctx ,
but this is no longer done and
.Fn EVP_CIPHER_CTX_cleanup
must be called to free any context resources.
.Pp
.Fn EVP_get_cipherbyname ,
.Fn EVP_get_cipherbynid ,
and
.Fn EVP_get_cipherbyobj
return an
.Vt EVP_CIPHER
structure when passed a cipher name, a NID or an
.Vt ASN1_OBJECT
structure.
.Pp
.Fn EVP_CIPHER_nid
and
.Fn EVP_CIPHER_CTX_nid
return the NID of a cipher when passed an
.Vt EVP_CIPHER
or
.Vt EVP_CIPHER_CTX
structure.
The actual NID value is an internal value which may not have a
corresponding OBJECT IDENTIFIER.
.Pp
.Fn EVP_CIPHER_CTX_set_padding
enables or disables padding.
By default encryption operations are padded using standard block padding
and the padding is checked and removed when decrypting.
If the
.Sy padding
parameter is zero, then no padding is performed, the total amount of data
encrypted or decrypted must then be a multiple of the block size or an
error will occur.
.Pp
.Fn EVP_CIPHER_key_length
and
.Fn EVP_CIPHER_CTX_key_length
return the key length of a cipher when passed an
.Vt EVP_CIPHER
or
.Vt EVP_CIPHER_CTX
structure.
The constant
.Dv EVP_MAX_KEY_LENGTH
is the maximum key length for all ciphers.
Note: although
.Fn EVP_CIPHER_key_length
is fixed for a given cipher, the value of
.Fn EVP_CIPHER_CTX_key_length
may be different for variable key length ciphers.
.Pp
.Fn EVP_CIPHER_CTX_set_key_length
sets the key length of the cipher ctx.
If the cipher is a fixed length cipher, then attempting to set the key
length to any value other than the fixed value is an error.
.Pp
.Fn EVP_CIPHER_iv_length
and
.Fn EVP_CIPHER_CTX_iv_length
return the IV length of a cipher when passed an
.Vt EVP_CIPHER
or
.Vt EVP_CIPHER_CTX .
It will return zero if the cipher does not use an IV.
The constant
.Dv EVP_MAX_IV_LENGTH
is the maximum IV length for all ciphers.
.Pp
.Fn EVP_CIPHER_block_size
and
.Fn EVP_CIPHER_CTX_block_size
return the block size of a cipher when passed an
.Vt EVP_CIPHER
or
.Vt EVP_CIPHER_CTX
structure.
The constant
.Dv EVP_MAX_IV_LENGTH
is also the maximum block length for all ciphers.
.Pp
.Fn EVP_CIPHER_type
and
.Fn EVP_CIPHER_CTX_type
return the type of the passed cipher or context.
This "type" is the actual NID of the cipher OBJECT IDENTIFIER as such it
ignores the cipher parameters and 40-bit RC2 and 128-bit RC2 have the
same NID.
If the cipher does not have an object identifier or does not
have ASN.1 support this function will return
.Dv NID_undef .
.Pp
.Fn EVP_CIPHER_CTX_cipher
returns the
.Vt EVP_CIPHER
structure when passed an
.Vt EVP_CIPHER_CTX
structure.
.Pp
.Fn EVP_CIPHER_mode
and
.Fn EVP_CIPHER_CTX_mode
return the block cipher mode:
.Dv EVP_CIPH_ECB_MODE ,
.Dv EVP_CIPH_CBC_MODE ,
.Dv EVP_CIPH_CFB_MODE ,
or
.Dv EVP_CIPH_OFB_MODE .
If the cipher is a stream cipher then
.Dv EVP_CIPH_STREAM_CIPHER
is returned.
.Pp
.Fn EVP_CIPHER_param_to_asn1
sets the AlgorithmIdentifier "parameter" based on the passed cipher.
This will typically include any parameters and an IV.
The cipher IV (if any) must be set when this call is made.
This call should be made before the cipher is actually "used" (before any
.Fn EVP_EncryptUpdate
or
.Fn EVP_DecryptUpdate
calls, for example).
This function may fail if the cipher does not have any ASN.1 support.
.Pp
.Fn EVP_CIPHER_asn1_to_param
sets the cipher parameters based on an ASN.1 AlgorithmIdentifier
"parameter".
The precise effect depends on the cipher.
In the case of RC2, for example, it will set the IV and effective
key length.
This function should be called after the base cipher type is set but
before the key is set.
For example
.Fn EVP_CipherInit
will be called with the IV and key set to
.Dv NULL ,
.Fn EVP_CIPHER_asn1_to_param
will be called and finally
.Fn EVP_CipherInit
again with all parameters except the key set to
.Dv NULL .
It is possible for this function to fail if the cipher does not
have any ASN.1 support or the parameters cannot be set (for example
the RC2 effective key length is not supported).
.Pp
.Fn EVP_CIPHER_CTX_ctrl
allows various cipher specific parameters to be determined and set.
Currently only the RC2 effective key length and the number of rounds of
RC5 can be set.
.Sh RETURN VALUES
.Fn EVP_EncryptInit_ex ,
.Fn EVP_EncryptUpdate ,
and
.Fn EVP_EncryptFinal_ex
return 1 for success and 0 for failure.
.Pp
.Fn EVP_DecryptInit_ex
and
.Fn EVP_DecryptUpdate
return 1 for success and 0 for failure.
.Fn EVP_DecryptFinal_ex
returns 0 if the decrypt failed or 1 for success.
.Pp
.Fn EVP_CipherInit_ex
and
.Fn EVP_CipherUpdate
return 1 for success and 0 for failure.
.Fn EVP_CipherFinal_ex
returns 0 for a decryption failure or 1 for success.
.Pp
.Fn EVP_CIPHER_CTX_cleanup
returns 1 for success and 0 for failure.
.Pp
.Fn EVP_get_cipherbyname ,
.Fn EVP_get_cipherbynid ,
and
.Fn EVP_get_cipherbyobj
return an
.Vt EVP_CIPHER
structure or
.Dv NULL
on error.
.Pp
.Fn EVP_CIPHER_nid
and
.Fn EVP_CIPHER_CTX_nid
return a NID.
.Pp
.Fn EVP_CIPHER_block_size
and
.Fn EVP_CIPHER_CTX_block_size
return the block size.
.Pp
.Fn EVP_CIPHER_key_length
and
.Fn EVP_CIPHER_CTX_key_length
return the key length.
.Pp
.Fn EVP_CIPHER_CTX_set_padding
always returns 1.
.Pp
.Fn EVP_CIPHER_iv_length
and
.Fn EVP_CIPHER_CTX_iv_length
return the IV length or zero if the cipher does not use an IV.
.Pp
.Fn EVP_CIPHER_type
and
.Fn EVP_CIPHER_CTX_type
return the NID of the cipher's OBJECT IDENTIFIER or
.Dv NID_undef
if it has no defined OBJECT IDENTIFIER.
.Pp
.Fn EVP_CIPHER_CTX_cipher
returns an
.Vt EVP_CIPHER
structure.
.Pp
.Fn EVP_CIPHER_param_to_asn1
and
.Fn EVP_CIPHER_asn1_to_param
return 1 for success or 0 for failure.
.Pp
Where possible the EVP interface to symmetric ciphers should be
used in preference to the low level interfaces.
This is because the code then becomes transparent to the cipher used and
much more flexible.
.Pp
PKCS padding works by adding n padding bytes of value n to make the
total length of the encrypted data a multiple of the block size.
Padding is always added so if the data is already a multiple of the
block size n will equal the block size.
For example if the block size is 8 and 11 bytes are to be encrypted then
5 padding bytes of value 5 will be added.
.Pp
When decrypting the final block is checked to see if it has the correct
form.
.Pp
Although the decryption operation can produce an error if padding is
enabled, it is not a strong test that the input data or key is correct.
A random block has better than 1 in 256 chance of being of the correct
format and problems with the input data earlier on will not produce a
final decrypt error.
.Pp
If padding is disabled then the decryption operation will always succeed
if the total amount of data decrypted is a multiple of the block size.
.Pp
The functions
.Fn EVP_EncryptInit ,
.Fn EVP_EncryptFinal ,
.Fn EVP_DecryptInit ,
.Fn EVP_CipherInit ,
and
.Fn EVP_CipherFinal
are obsolete but are retained for compatibility with existing code.
New code should use
.Fn EVP_EncryptInit_ex ,
.Fn EVP_EncryptFinal_ex ,
.Fn EVP_DecryptInit_ex ,
.Fn EVP_DecryptFinal_ex ,
.Fn EVP_CipherInit_ex ,
and
.Fn EVP_CipherFinal_ex
because they can reuse an existing context without allocating and
freeing it up on each call.
.Sh CIPHER LISTING
All algorithms have a fixed key length unless otherwise stated.
.Bl -tag -width Ds
.It Fn EVP_enc_null void
Null cipher: does nothing.
.It Xo
.Fn EVP_aes_128_cbc void ,
.Fn EVP_aes_128_ecb void ,
.Fn EVP_aes_128_cfb void ,
.Fn EVP_aes_128_ofb void
.Xc
128-bit AES in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_aes_192_cbc void ,
.Fn EVP_aes_192_ecb void ,
.Fn EVP_aes_192_cfb void ,
.Fn EVP_aes_192_ofb void
.Xc
192-bit AES in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_aes_256_cbc void ,
.Fn EVP_aes_256_ecb void ,
.Fn EVP_aes_256_cfb void ,
.Fn EVP_aes_256_ofb void
.Xc
256-bit AES in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_des_cbc void ,
.Fn EVP_des_ecb void ,
.Fn EVP_des_cfb void ,
.Fn EVP_des_ofb void
.Xc
DES in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_des_ede_cbc void ,
.Fn EVP_des_ede void ,
.Fn EVP_des_ede_ofb void ,
.Fn EVP_des_ede_cfb void
.Xc
Two key triple DES in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_des_ede3_cbc void ,
.Fn EVP_des_ede3 void ,
.Fn EVP_des_ede3_ofb void ,
.Fn EVP_des_ede3_cfb void
.Xc
Three key triple DES in CBC, ECB, CFB and OFB modes respectively.
.It Fn EVP_desx_cbc void
DESX algorithm in CBC mode.
.It Fn EVP_rc4 void
RC4 stream cipher.
This is a variable key length cipher with default key length 128 bits.
.It Fn EVP_rc4_40 void
RC4 stream cipher with 40-bit key length.
This is obsolete and new code should use
.Fn EVP_rc4
and the
.Fn EVP_CIPHER_CTX_set_key_length
function.
.It Xo
.Fn EVP_idea_cbc void ,
.Fn EVP_idea_ecb void ,
.Fn EVP_idea_cfb void ,
.Fn EVP_idea_ofb void
.Xc
IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_rc2_cbc void ,
.Fn EVP_rc2_ecb void ,
.Fn EVP_rc2_cfb void ,
.Fn EVP_rc2_ofb void
.Xc
RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
This is a variable key length cipher with an additional parameter called
"effective key bits" or "effective key length".
By default both are set to 128 bits.
.It Xo
.Fn EVP_rc2_40_cbc void ,
.Fn EVP_rc2_64_cbc void
.Xc
RC2 algorithm in CBC mode with a default key length and effective key
length of 40 and 64 bits.
These are obsolete and new code should use
.Fn EVP_rc2_cbc ,
.Fn EVP_CIPHER_CTX_set_key_length ,
and
.Fn EVP_CIPHER_CTX_ctrl
to set the key length and effective key length.
.It Xo
.Fn EVP_bf_cbc void ,
.Fn EVP_bf_ecb void ,
.Fn EVP_bf_cfb void ,
.Fn EVP_bf_ofb void
.Xc
Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes
respectively.
This is a variable key length cipher.
.It Xo
.Fn EVP_cast5_cbc void ,
.Fn EVP_cast5_ecb void ,
.Fn EVP_cast5_cfb void ,
.Fn EVP_cast5_ofb void
.Xc
CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
This is a variable key length cipher.
.It Xo
.Fn EVP_rc5_32_12_16_cbc void ,
.Fn EVP_rc5_32_12_16_ecb void ,
.Fn EVP_rc5_32_12_16_cfb void ,
.Fn EVP_rc5_32_12_16_ofb void
.Xc
RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
This is a variable key length cipher with an additional "number of
rounds" parameter.
By default the key length is set to 128 bits and 12 rounds.
.El
.Sh EXAMPLES
Get the number of rounds used in RC5:
.Bd -literal -offset indent
int nrounds;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds);
.Ed
.Pp
Get the RC2 effective key length:
.Bd -literal -offset indent
int key_bits;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits);
.Ed
.Pp
Set the number of rounds used in RC5:
.Bd -literal -offset indent
int nrounds;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL);
.Ed
.Pp
Set the effective key length used in RC2:
.Bd -literal -offset indent
int key_bits;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL);
.Ed
.Pp
Encrypt a string using blowfish:
.Bd -literal -offset 3n
int
do_crypt(char *outfile)
{
	unsigned char outbuf[1024];
	int outlen, tmplen;
	/*
	 * Bogus key and IV: we'd normally set these from
	 * another source.
	 */
	unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
	unsigned char iv[] = {1,2,3,4,5,6,7,8};
	const char intext[] = "Some Crypto Text";
	EVP_CIPHER_CTX ctx;
	FILE *out;
	EVP_CIPHER_CTX_init(&ctx);
	EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv);

	if (!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext,
	    strlen(intext))) {
		/* Error */
		return 0;
	}
	/*
	 * Buffer passed to EVP_EncryptFinal() must be after data just
	 * encrypted to avoid overwriting it.
	 */
	if (!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen)) {
		/* Error */
		return 0;
	}
	outlen += tmplen;
	EVP_CIPHER_CTX_cleanup(&ctx);
	/*
	 * Need binary mode for fopen because encrypted data is
	 * binary data. Also cannot use strlen() on it because
	 * it won't be NUL terminated and may contain embedded
	 * NULs.
	 */
	out = fopen(outfile, "wb");
	fwrite(outbuf, 1, outlen, out);
	fclose(out);
	return 1;
}
.Ed
.Pp
The ciphertext from the above example can be decrypted using the
.Xr openssl 1
utility with the command line:
.Bd -literal -offset indent
openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F \e
           -iv 0102030405060708 -d
.Ed
.Pp
General encryption, decryption function example using FILE I/O and RC2
with an 80-bit key:
.Bd -literal
int
do_crypt(FILE *in, FILE *out, int do_encrypt)
{
	/* Allow enough space in output buffer for additional block */
	inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
	int inlen, outlen;
	/*
	 * Bogus key and IV: we'd normally set these from
	 * another source.
	 */
	unsigned char key[] = "0123456789";
	unsigned char iv[] = "12345678";

	/* Don't set key or IV because we will modify the parameters */
	EVP_CIPHER_CTX_init(&ctx);
	EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt);
	EVP_CIPHER_CTX_set_key_length(&ctx, 10);
	/* We finished modifying parameters so now we can set key and IV */
	EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);

	for(;;) {
		inlen = fread(inbuf, 1, 1024, in);
		if (inlen <= 0)
			break;
		if (!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf,
		    inlen)) {
			/* Error */
			EVP_CIPHER_CTX_cleanup(&ctx);
			return 0;
		}
		fwrite(outbuf, 1, outlen, out);
	}
	if (!EVP_CipherFinal_ex(&ctx, outbuf, &outlen)) {
		/* Error */
		EVP_CIPHER_CTX_cleanup(&ctx);
		return 0;
	}
	fwrite(outbuf, 1, outlen, out);

	EVP_CIPHER_CTX_cleanup(&ctx);
	return 1;
}
.Ed
.Sh SEE ALSO
.Xr evp 3
.Sh HISTORY
.Fn EVP_CIPHER_CTX_init ,
.Fn EVP_EncryptInit_ex ,
.Fn EVP_EncryptFinal_ex ,
.Fn EVP_DecryptInit_ex ,
.Fn EVP_DecryptFinal_ex ,
.Fn EVP_CipherInit_ex ,
.Fn EVP_CipherFinal_ex ,
and
.Fn EVP_CIPHER_CTX_set_padding
appeared in OpenSSL 0.9.7.
.Sh BUGS
For RC5 the number of rounds can currently only be set to 8, 12 or 16.
This is a limitation of the current RC5 code rather than the EVP
interface.
.Pp
.Dv EVP_MAX_KEY_LENGTH
and
.Dv EVP_MAX_IV_LENGTH
only refer to the internal ciphers with default key lengths.
If custom ciphers exceed these values the results are unpredictable.
This is because it has become standard practice to define a generic key
as a fixed unsigned char array containing
.Dv EVP_MAX_KEY_LENGTH
bytes.
.Pp
The ASN.1 code is incomplete (and sometimes inaccurate).
It has only been tested for certain common S/MIME ciphers
(RC2, DES, triple DES) in CBC mode.