1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
// Copyright (c) .NET Foundation and contributors. All rights reserved. Licensed under the Microsoft Reciprocal License. See LICENSE.TXT file in the project root for full license information.
#include "precomp.h"
// Exit macros
#define MemExitOnLastError(x, s, ...) ExitOnLastErrorSource(DUTIL_SOURCE_MEMUTIL, x, s, __VA_ARGS__)
#define MemExitOnLastErrorDebugTrace(x, s, ...) ExitOnLastErrorDebugTraceSource(DUTIL_SOURCE_MEMUTIL, x, s, __VA_ARGS__)
#define MemExitWithLastError(x, s, ...) ExitWithLastErrorSource(DUTIL_SOURCE_MEMUTIL, x, s, __VA_ARGS__)
#define MemExitOnFailure(x, s, ...) ExitOnFailureSource(DUTIL_SOURCE_MEMUTIL, x, s, __VA_ARGS__)
#define MemExitOnRootFailure(x, s, ...) ExitOnRootFailureSource(DUTIL_SOURCE_MEMUTIL, x, s, __VA_ARGS__)
#define MemExitWithRootFailure(x, e, s, ...) ExitWithRootFailureSource(DUTIL_SOURCE_MEMUTIL, x, e, s, __VA_ARGS__)
#define MemExitOnFailureDebugTrace(x, s, ...) ExitOnFailureDebugTraceSource(DUTIL_SOURCE_MEMUTIL, x, s, __VA_ARGS__)
#define MemExitOnNull(p, x, e, s, ...) ExitOnNullSource(DUTIL_SOURCE_MEMUTIL, p, x, e, s, __VA_ARGS__)
#define MemExitOnNullWithLastError(p, x, s, ...) ExitOnNullWithLastErrorSource(DUTIL_SOURCE_MEMUTIL, p, x, s, __VA_ARGS__)
#define MemExitOnNullDebugTrace(p, x, e, s, ...) ExitOnNullDebugTraceSource(DUTIL_SOURCE_MEMUTIL, p, x, e, s, __VA_ARGS__)
#define MemExitOnInvalidHandleWithLastError(p, x, s, ...) ExitOnInvalidHandleWithLastErrorSource(DUTIL_SOURCE_MEMUTIL, p, x, s, __VA_ARGS__)
#define MemExitOnWin32Error(e, x, s, ...) ExitOnWin32ErrorSource(DUTIL_SOURCE_MEMUTIL, e, x, s, __VA_ARGS__)
#define MemExitOnGdipFailure(g, x, s, ...) ExitOnGdipFailureSource(DUTIL_SOURCE_MEMUTIL, g, x, s, __VA_ARGS__)
#if DEBUG
static BOOL vfMemInitialized = FALSE;
#endif
extern "C" HRESULT DAPI MemInitialize()
{
#if DEBUG
vfMemInitialized = TRUE;
#endif
return S_OK;
}
extern "C" void DAPI MemUninitialize()
{
#if DEBUG
vfMemInitialized = FALSE;
#endif
}
extern "C" LPVOID DAPI MemAlloc(
__in SIZE_T cbSize,
__in BOOL fZero
)
{
// AssertSz(vfMemInitialized, "MemInitialize() not called, this would normally crash");
AssertSz(0 < cbSize, "MemAlloc() called with invalid size");
return ::HeapAlloc(::GetProcessHeap(), fZero ? HEAP_ZERO_MEMORY : 0, cbSize);
}
extern "C" LPVOID DAPI MemReAlloc(
__in LPVOID pv,
__in SIZE_T cbSize,
__in BOOL fZero
)
{
// AssertSz(vfMemInitialized, "MemInitialize() not called, this would normally crash");
AssertSz(0 < cbSize, "MemReAlloc() called with invalid size");
return ::HeapReAlloc(::GetProcessHeap(), fZero ? HEAP_ZERO_MEMORY : 0, pv, cbSize);
}
extern "C" HRESULT DAPI MemReAllocSecure(
__in LPVOID pv,
__in SIZE_T cbSize,
__in BOOL fZero,
__deref_out LPVOID* ppvNew
)
{
// AssertSz(vfMemInitialized, "MemInitialize() not called, this would normally crash");
AssertSz(ppvNew, "MemReAllocSecure() called with uninitialized pointer");
AssertSz(0 < cbSize, "MemReAllocSecure() called with invalid size");
HRESULT hr = S_OK;
DWORD dwFlags = HEAP_REALLOC_IN_PLACE_ONLY;
LPVOID pvNew = NULL;
SIZE_T cb = 0;
dwFlags |= fZero ? HEAP_ZERO_MEMORY : 0;
pvNew = ::HeapReAlloc(::GetProcessHeap(), dwFlags, pv, cbSize);
if (!pvNew)
{
pvNew = MemAlloc(cbSize, fZero);
if (pvNew)
{
hr = MemSizeChecked(pv, &cb);
MemExitOnFailure(hr, "Failed to get current memory size.");
const SIZE_T cbCurrent = cb;
// HeapReAlloc may allocate more memory than requested.
hr = MemSizeChecked(pvNew, &cb);
MemExitOnFailure(hr, "Failed to get new memory size.");
const SIZE_T cbNew = cb;
cbSize = cbNew;
if (cbSize > cbCurrent)
{
cbSize = cbCurrent;
}
memcpy_s(pvNew, cbNew, pv, cbSize);
SecureZeroMemory(pv, cbCurrent);
MemFree(pv);
}
}
MemExitOnNull(pvNew, hr, E_OUTOFMEMORY, "Failed to reallocate memory");
*ppvNew = pvNew;
pvNew = NULL;
LExit:
ReleaseMem(pvNew);
return hr;
}
extern "C" HRESULT DAPI MemAllocArray(
__inout LPVOID* ppvArray,
__in SIZE_T cbArrayType,
__in DWORD dwItemCount
)
{
return MemReAllocArray(ppvArray, 0, cbArrayType, dwItemCount);
}
extern "C" HRESULT DAPI MemReAllocArray(
__inout LPVOID* ppvArray,
__in DWORD cArray,
__in SIZE_T cbArrayType,
__in DWORD dwNewItemCount
)
{
HRESULT hr = S_OK;
DWORD cNew = 0;
LPVOID pvNew = NULL;
SIZE_T cbNew = 0;
hr = ::DWordAdd(cArray, dwNewItemCount, &cNew);
MemExitOnFailure(hr, "Integer overflow when calculating new element count.");
hr = ::SIZETMult(cNew, cbArrayType, &cbNew);
MemExitOnFailure(hr, "Integer overflow when calculating new block size.");
if (*ppvArray)
{
SIZE_T cbCurrent = 0;
hr = MemSizeChecked(*ppvArray, &cbCurrent);
MemExitOnFailure(hr, "Failed to get current memory size.");
if (cbCurrent < cbNew)
{
pvNew = MemReAlloc(*ppvArray, cbNew, TRUE);
MemExitOnNull(pvNew, hr, E_OUTOFMEMORY, "Failed to allocate larger array.");
*ppvArray = pvNew;
}
}
else
{
pvNew = MemAlloc(cbNew, TRUE);
MemExitOnNull(pvNew, hr, E_OUTOFMEMORY, "Failed to allocate new array.");
*ppvArray = pvNew;
}
LExit:
return hr;
}
extern "C" HRESULT DAPI MemEnsureArraySize(
__deref_inout_bcount(cArray * cbArrayType) LPVOID* ppvArray,
__in DWORD cArray,
__in SIZE_T cbArrayType,
__in DWORD dwGrowthCount
)
{
HRESULT hr = S_OK;
DWORD cNew = 0;
LPVOID pvNew = NULL;
SIZE_T cbNew = 0;
hr = ::DWordAdd(cArray, dwGrowthCount, &cNew);
MemExitOnFailure(hr, "Integer overflow when calculating new element count.");
hr = ::SIZETMult(cNew, cbArrayType, &cbNew);
MemExitOnFailure(hr, "Integer overflow when calculating new block size.");
if (*ppvArray)
{
SIZE_T cbUsed = cArray * cbArrayType;
SIZE_T cbCurrent = 0;
hr = MemSizeChecked(*ppvArray, &cbCurrent);
MemExitOnFailure(hr, "Failed to get current memory size.");
if (cbCurrent < cbUsed)
{
pvNew = MemReAlloc(*ppvArray, cbNew, TRUE);
MemExitOnNull(pvNew, hr, E_OUTOFMEMORY, "Failed to allocate array larger.");
*ppvArray = pvNew;
}
}
else
{
pvNew = MemAlloc(cbNew, TRUE);
MemExitOnNull(pvNew, hr, E_OUTOFMEMORY, "Failed to allocate new array.");
*ppvArray = pvNew;
}
LExit:
return hr;
}
extern "C" HRESULT DAPI MemEnsureArraySizeForNewItems(
__inout LPVOID* ppvArray,
__in DWORD cArray,
__in DWORD cNewItems,
__in SIZE_T cbArrayType,
__in DWORD dwGrowthCount
)
{
HRESULT hr = S_OK;
DWORD cNew = 0;
hr = ::DWordAdd(cArray, cNewItems, &cNew);
MemExitOnFailure(hr, "Integer overflow when calculating new element count.");
hr = MemEnsureArraySize(ppvArray, cNew, cbArrayType, dwGrowthCount);
LExit:
return hr;
}
extern "C" HRESULT DAPI MemInsertIntoArray(
__deref_inout_bcount((cExistingArray + cInsertItems) * cbArrayType) LPVOID* ppvArray,
__in DWORD dwInsertIndex,
__in DWORD cInsertItems,
__in DWORD cExistingArray,
__in SIZE_T cbArrayType,
__in DWORD dwGrowthCount
)
{
HRESULT hr = S_OK;
DWORD i;
BYTE *pbArray = NULL;
if (0 == cInsertItems)
{
ExitFunction1(hr = S_OK);
}
hr = MemEnsureArraySizeForNewItems(ppvArray, cExistingArray, cInsertItems, cbArrayType, dwGrowthCount);
MemExitOnFailure(hr, "Failed to resize array while inserting items");
pbArray = reinterpret_cast<BYTE *>(*ppvArray);
for (i = cExistingArray + cInsertItems - 1; i > dwInsertIndex; --i)
{
memcpy_s(pbArray + i * cbArrayType, cbArrayType, pbArray + (i - 1) * cbArrayType, cbArrayType);
}
// Zero out the newly-inserted items
memset(pbArray + dwInsertIndex * cbArrayType, 0, cInsertItems * cbArrayType);
LExit:
return hr;
}
extern "C" void DAPI MemRemoveFromArray(
__inout_bcount((cExistingArray) * cbArrayType) LPVOID pvArray,
__in DWORD dwRemoveIndex,
__in DWORD cRemoveItems,
__in DWORD cExistingArray,
__in SIZE_T cbArrayType,
__in BOOL fPreserveOrder
)
{
BYTE *pbArray = static_cast<BYTE *>(pvArray);
DWORD cItemsLeftAfterRemoveIndex = (cExistingArray - cRemoveItems - dwRemoveIndex);
if (fPreserveOrder)
{
memmove(pbArray + dwRemoveIndex * cbArrayType, pbArray + (dwRemoveIndex + cRemoveItems) * cbArrayType, cItemsLeftAfterRemoveIndex * cbArrayType);
}
else
{
DWORD cItemsToMove = (cRemoveItems > cItemsLeftAfterRemoveIndex ? cItemsLeftAfterRemoveIndex : cRemoveItems);
memmove(pbArray + dwRemoveIndex * cbArrayType, pbArray + (cExistingArray - cItemsToMove) * cbArrayType, cItemsToMove * cbArrayType);
}
ZeroMemory(pbArray + (cExistingArray - cRemoveItems) * cbArrayType, cRemoveItems * cbArrayType);
}
extern "C" void DAPI MemArraySwapItems(
__inout_bcount(cbArrayType) LPVOID pvArray,
__in DWORD dwIndex1,
__in DWORD dwIndex2,
__in SIZE_T cbArrayType
)
{
BYTE *pbArrayItem1 = static_cast<BYTE *>(pvArray) + dwIndex1 * cbArrayType;
BYTE *pbArrayItem2 = static_cast<BYTE *>(pvArray) + dwIndex2 * cbArrayType;
DWORD dwByteIndex = 0;
if (dwIndex1 == dwIndex2)
{
return;
}
// Use XOR swapping to avoid the need for a temporary item
while (dwByteIndex < cbArrayType)
{
// Try to do many bytes at a time in most cases
if (cbArrayType - dwByteIndex > sizeof(DWORD64))
{
// x: X xor Y
*(reinterpret_cast<DWORD64 *>(pbArrayItem1 + dwByteIndex)) ^= *(reinterpret_cast<DWORD64 *>(pbArrayItem2 + dwByteIndex));
// y: X xor Y
*(reinterpret_cast<DWORD64 *>(pbArrayItem2 + dwByteIndex)) = *(reinterpret_cast<DWORD64 *>(pbArrayItem1 + dwByteIndex)) ^ *(reinterpret_cast<DWORD64 *>(pbArrayItem2 + dwByteIndex));
// x: X xor Y
*(reinterpret_cast<DWORD64 *>(pbArrayItem1 + dwByteIndex)) ^= *(reinterpret_cast<DWORD64 *>(pbArrayItem2 + dwByteIndex));
dwByteIndex += sizeof(DWORD64);
}
else
{
// x: X xor Y
*(reinterpret_cast<unsigned char *>(pbArrayItem1 + dwByteIndex)) ^= *(reinterpret_cast<unsigned char *>(pbArrayItem2 + dwByteIndex));
// y: X xor Y
*(reinterpret_cast<unsigned char *>(pbArrayItem2 + dwByteIndex)) = *(reinterpret_cast<unsigned char *>(pbArrayItem1 + dwByteIndex)) ^ *(reinterpret_cast<unsigned char *>(pbArrayItem2 + dwByteIndex));
// x: X xor Y
*(reinterpret_cast<unsigned char *>(pbArrayItem1 + dwByteIndex)) ^= *(reinterpret_cast<unsigned char *>(pbArrayItem2 + dwByteIndex));
dwByteIndex += sizeof(unsigned char);
}
}
}
extern "C" HRESULT DAPI MemFree(
__in LPVOID pv
)
{
// AssertSz(vfMemInitialized, "MemInitialize() not called, this would normally crash");
return ::HeapFree(::GetProcessHeap(), 0, pv) ? S_OK : HRESULT_FROM_WIN32(::GetLastError());
}
extern "C" SIZE_T DAPI MemSize(
__in LPCVOID pv
)
{
// AssertSz(vfMemInitialized, "MemInitialize() not called, this would normally crash");
return ::HeapSize(::GetProcessHeap(), 0, pv);
}
extern "C" HRESULT DAPI MemSizeChecked(
__in LPCVOID pv,
__out SIZE_T* pcb
)
{
HRESULT hr = S_OK;
// AssertSz(vfMemInitialized, "MemInitialize() not called, this would normally crash");
*pcb = MemSize(pv);
if (-1 == *pcb)
{
MemExitWithRootFailure(hr, E_INVALIDARG, "Failed to get memory size");
}
LExit:
return hr;
}
|