diff options
author | Li Jin <dragon-fly@qq.com> | 2020-06-22 16:50:40 +0800 |
---|---|---|
committer | Li Jin <dragon-fly@qq.com> | 2020-06-22 16:50:40 +0800 |
commit | cd2b60b101a398cb9356d746364e70eaed1860f1 (patch) | |
tree | a1fe71b76faabc4883f16905a94164ce5c23e692 /src/lua/ltable.c | |
parent | 88c1052e700f38cf3d8ad82d469da4c487760b7e (diff) | |
download | yuescript-cd2b60b101a398cb9356d746364e70eaed1860f1.tar.gz yuescript-cd2b60b101a398cb9356d746364e70eaed1860f1.tar.bz2 yuescript-cd2b60b101a398cb9356d746364e70eaed1860f1.zip |
add support for local variable declared with attribute 'close' and 'const' for Lua 5.4.
Diffstat (limited to 'src/lua/ltable.c')
-rw-r--r-- | src/lua/ltable.c | 924 |
1 files changed, 924 insertions, 0 deletions
diff --git a/src/lua/ltable.c b/src/lua/ltable.c new file mode 100644 index 0000000..d7eb69a --- /dev/null +++ b/src/lua/ltable.c | |||
@@ -0,0 +1,924 @@ | |||
1 | /* | ||
2 | ** $Id: ltable.c $ | ||
3 | ** Lua tables (hash) | ||
4 | ** See Copyright Notice in lua.h | ||
5 | */ | ||
6 | |||
7 | #define ltable_c | ||
8 | #define LUA_CORE | ||
9 | |||
10 | #include "lprefix.h" | ||
11 | |||
12 | |||
13 | /* | ||
14 | ** Implementation of tables (aka arrays, objects, or hash tables). | ||
15 | ** Tables keep its elements in two parts: an array part and a hash part. | ||
16 | ** Non-negative integer keys are all candidates to be kept in the array | ||
17 | ** part. The actual size of the array is the largest 'n' such that | ||
18 | ** more than half the slots between 1 and n are in use. | ||
19 | ** Hash uses a mix of chained scatter table with Brent's variation. | ||
20 | ** A main invariant of these tables is that, if an element is not | ||
21 | ** in its main position (i.e. the 'original' position that its hash gives | ||
22 | ** to it), then the colliding element is in its own main position. | ||
23 | ** Hence even when the load factor reaches 100%, performance remains good. | ||
24 | */ | ||
25 | |||
26 | #include <math.h> | ||
27 | #include <limits.h> | ||
28 | |||
29 | #include "lua.h" | ||
30 | |||
31 | #include "ldebug.h" | ||
32 | #include "ldo.h" | ||
33 | #include "lgc.h" | ||
34 | #include "lmem.h" | ||
35 | #include "lobject.h" | ||
36 | #include "lstate.h" | ||
37 | #include "lstring.h" | ||
38 | #include "ltable.h" | ||
39 | #include "lvm.h" | ||
40 | |||
41 | |||
42 | /* | ||
43 | ** MAXABITS is the largest integer such that MAXASIZE fits in an | ||
44 | ** unsigned int. | ||
45 | */ | ||
46 | #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) | ||
47 | |||
48 | |||
49 | /* | ||
50 | ** MAXASIZE is the maximum size of the array part. It is the minimum | ||
51 | ** between 2^MAXABITS and the maximum size that, measured in bytes, | ||
52 | ** fits in a 'size_t'. | ||
53 | */ | ||
54 | #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) | ||
55 | |||
56 | /* | ||
57 | ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a | ||
58 | ** signed int. | ||
59 | */ | ||
60 | #define MAXHBITS (MAXABITS - 1) | ||
61 | |||
62 | |||
63 | /* | ||
64 | ** MAXHSIZE is the maximum size of the hash part. It is the minimum | ||
65 | ** between 2^MAXHBITS and the maximum size such that, measured in bytes, | ||
66 | ** it fits in a 'size_t'. | ||
67 | */ | ||
68 | #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) | ||
69 | |||
70 | |||
71 | #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) | ||
72 | |||
73 | #define hashstr(t,str) hashpow2(t, (str)->hash) | ||
74 | #define hashboolean(t,p) hashpow2(t, p) | ||
75 | #define hashint(t,i) hashpow2(t, i) | ||
76 | |||
77 | |||
78 | /* | ||
79 | ** for some types, it is better to avoid modulus by power of 2, as | ||
80 | ** they tend to have many 2 factors. | ||
81 | */ | ||
82 | #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) | ||
83 | |||
84 | |||
85 | #define hashpointer(t,p) hashmod(t, point2uint(p)) | ||
86 | |||
87 | |||
88 | #define dummynode (&dummynode_) | ||
89 | |||
90 | static const Node dummynode_ = { | ||
91 | {{NULL}, LUA_VEMPTY, /* value's value and type */ | ||
92 | LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ | ||
93 | }; | ||
94 | |||
95 | |||
96 | static const TValue absentkey = {ABSTKEYCONSTANT}; | ||
97 | |||
98 | |||
99 | |||
100 | /* | ||
101 | ** Hash for floating-point numbers. | ||
102 | ** The main computation should be just | ||
103 | ** n = frexp(n, &i); return (n * INT_MAX) + i | ||
104 | ** but there are some numerical subtleties. | ||
105 | ** In a two-complement representation, INT_MAX does not has an exact | ||
106 | ** representation as a float, but INT_MIN does; because the absolute | ||
107 | ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the | ||
108 | ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal | ||
109 | ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when | ||
110 | ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with | ||
111 | ** INT_MIN. | ||
112 | */ | ||
113 | #if !defined(l_hashfloat) | ||
114 | static int l_hashfloat (lua_Number n) { | ||
115 | int i; | ||
116 | lua_Integer ni; | ||
117 | n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); | ||
118 | if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ | ||
119 | lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); | ||
120 | return 0; | ||
121 | } | ||
122 | else { /* normal case */ | ||
123 | unsigned int u = cast_uint(i) + cast_uint(ni); | ||
124 | return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); | ||
125 | } | ||
126 | } | ||
127 | #endif | ||
128 | |||
129 | |||
130 | /* | ||
131 | ** returns the 'main' position of an element in a table (that is, | ||
132 | ** the index of its hash value). The key comes broken (tag in 'ktt' | ||
133 | ** and value in 'vkl') so that we can call it on keys inserted into | ||
134 | ** nodes. | ||
135 | */ | ||
136 | static Node *mainposition (const Table *t, int ktt, const Value *kvl) { | ||
137 | switch (withvariant(ktt)) { | ||
138 | case LUA_VNUMINT: | ||
139 | return hashint(t, ivalueraw(*kvl)); | ||
140 | case LUA_VNUMFLT: | ||
141 | return hashmod(t, l_hashfloat(fltvalueraw(*kvl))); | ||
142 | case LUA_VSHRSTR: | ||
143 | return hashstr(t, tsvalueraw(*kvl)); | ||
144 | case LUA_VLNGSTR: | ||
145 | return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl))); | ||
146 | case LUA_VFALSE: | ||
147 | return hashboolean(t, 0); | ||
148 | case LUA_VTRUE: | ||
149 | return hashboolean(t, 1); | ||
150 | case LUA_VLIGHTUSERDATA: | ||
151 | return hashpointer(t, pvalueraw(*kvl)); | ||
152 | case LUA_VLCF: | ||
153 | return hashpointer(t, fvalueraw(*kvl)); | ||
154 | default: | ||
155 | return hashpointer(t, gcvalueraw(*kvl)); | ||
156 | } | ||
157 | } | ||
158 | |||
159 | |||
160 | /* | ||
161 | ** Returns the main position of an element given as a 'TValue' | ||
162 | */ | ||
163 | static Node *mainpositionTV (const Table *t, const TValue *key) { | ||
164 | return mainposition(t, rawtt(key), valraw(key)); | ||
165 | } | ||
166 | |||
167 | |||
168 | /* | ||
169 | ** Check whether key 'k1' is equal to the key in node 'n2'. | ||
170 | ** This equality is raw, so there are no metamethods. Floats | ||
171 | ** with integer values have been normalized, so integers cannot | ||
172 | ** be equal to floats. It is assumed that 'eqshrstr' is simply | ||
173 | ** pointer equality, so that short strings are handled in the | ||
174 | ** default case. | ||
175 | */ | ||
176 | static int equalkey (const TValue *k1, const Node *n2) { | ||
177 | if (rawtt(k1) != keytt(n2)) /* not the same variants? */ | ||
178 | return 0; /* cannot be same key */ | ||
179 | switch (ttypetag(k1)) { | ||
180 | case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: | ||
181 | return 1; | ||
182 | case LUA_VNUMINT: | ||
183 | return (ivalue(k1) == keyival(n2)); | ||
184 | case LUA_VNUMFLT: | ||
185 | return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); | ||
186 | case LUA_VLIGHTUSERDATA: | ||
187 | return pvalue(k1) == pvalueraw(keyval(n2)); | ||
188 | case LUA_VLCF: | ||
189 | return fvalue(k1) == fvalueraw(keyval(n2)); | ||
190 | case LUA_VLNGSTR: | ||
191 | return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); | ||
192 | default: | ||
193 | return gcvalue(k1) == gcvalueraw(keyval(n2)); | ||
194 | } | ||
195 | } | ||
196 | |||
197 | |||
198 | /* | ||
199 | ** True if value of 'alimit' is equal to the real size of the array | ||
200 | ** part of table 't'. (Otherwise, the array part must be larger than | ||
201 | ** 'alimit'.) | ||
202 | */ | ||
203 | #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) | ||
204 | |||
205 | |||
206 | /* | ||
207 | ** Returns the real size of the 'array' array | ||
208 | */ | ||
209 | LUAI_FUNC unsigned int luaH_realasize (const Table *t) { | ||
210 | if (limitequalsasize(t)) | ||
211 | return t->alimit; /* this is the size */ | ||
212 | else { | ||
213 | unsigned int size = t->alimit; | ||
214 | /* compute the smallest power of 2 not smaller than 'n' */ | ||
215 | size |= (size >> 1); | ||
216 | size |= (size >> 2); | ||
217 | size |= (size >> 4); | ||
218 | size |= (size >> 8); | ||
219 | size |= (size >> 16); | ||
220 | #if (UINT_MAX >> 30) > 3 | ||
221 | size |= (size >> 32); /* unsigned int has more than 32 bits */ | ||
222 | #endif | ||
223 | size++; | ||
224 | lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); | ||
225 | return size; | ||
226 | } | ||
227 | } | ||
228 | |||
229 | |||
230 | /* | ||
231 | ** Check whether real size of the array is a power of 2. | ||
232 | ** (If it is not, 'alimit' cannot be changed to any other value | ||
233 | ** without changing the real size.) | ||
234 | */ | ||
235 | static int ispow2realasize (const Table *t) { | ||
236 | return (!isrealasize(t) || ispow2(t->alimit)); | ||
237 | } | ||
238 | |||
239 | |||
240 | static unsigned int setlimittosize (Table *t) { | ||
241 | t->alimit = luaH_realasize(t); | ||
242 | setrealasize(t); | ||
243 | return t->alimit; | ||
244 | } | ||
245 | |||
246 | |||
247 | #define limitasasize(t) check_exp(isrealasize(t), t->alimit) | ||
248 | |||
249 | |||
250 | |||
251 | /* | ||
252 | ** "Generic" get version. (Not that generic: not valid for integers, | ||
253 | ** which may be in array part, nor for floats with integral values.) | ||
254 | */ | ||
255 | static const TValue *getgeneric (Table *t, const TValue *key) { | ||
256 | Node *n = mainpositionTV(t, key); | ||
257 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
258 | if (equalkey(key, n)) | ||
259 | return gval(n); /* that's it */ | ||
260 | else { | ||
261 | int nx = gnext(n); | ||
262 | if (nx == 0) | ||
263 | return &absentkey; /* not found */ | ||
264 | n += nx; | ||
265 | } | ||
266 | } | ||
267 | } | ||
268 | |||
269 | |||
270 | /* | ||
271 | ** returns the index for 'k' if 'k' is an appropriate key to live in | ||
272 | ** the array part of a table, 0 otherwise. | ||
273 | */ | ||
274 | static unsigned int arrayindex (lua_Integer k) { | ||
275 | if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ | ||
276 | return cast_uint(k); /* 'key' is an appropriate array index */ | ||
277 | else | ||
278 | return 0; | ||
279 | } | ||
280 | |||
281 | |||
282 | /* | ||
283 | ** returns the index of a 'key' for table traversals. First goes all | ||
284 | ** elements in the array part, then elements in the hash part. The | ||
285 | ** beginning of a traversal is signaled by 0. | ||
286 | */ | ||
287 | static unsigned int findindex (lua_State *L, Table *t, TValue *key, | ||
288 | unsigned int asize) { | ||
289 | unsigned int i; | ||
290 | if (ttisnil(key)) return 0; /* first iteration */ | ||
291 | i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; | ||
292 | if (i - 1u < asize) /* is 'key' inside array part? */ | ||
293 | return i; /* yes; that's the index */ | ||
294 | else { | ||
295 | const TValue *n = getgeneric(t, key); | ||
296 | if (unlikely(isabstkey(n))) | ||
297 | luaG_runerror(L, "invalid key to 'next'"); /* key not found */ | ||
298 | i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ | ||
299 | /* hash elements are numbered after array ones */ | ||
300 | return (i + 1) + asize; | ||
301 | } | ||
302 | } | ||
303 | |||
304 | |||
305 | int luaH_next (lua_State *L, Table *t, StkId key) { | ||
306 | unsigned int asize = luaH_realasize(t); | ||
307 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ | ||
308 | for (; i < asize; i++) { /* try first array part */ | ||
309 | if (!isempty(&t->array[i])) { /* a non-empty entry? */ | ||
310 | setivalue(s2v(key), i + 1); | ||
311 | setobj2s(L, key + 1, &t->array[i]); | ||
312 | return 1; | ||
313 | } | ||
314 | } | ||
315 | for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ | ||
316 | if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ | ||
317 | Node *n = gnode(t, i); | ||
318 | getnodekey(L, s2v(key), n); | ||
319 | setobj2s(L, key + 1, gval(n)); | ||
320 | return 1; | ||
321 | } | ||
322 | } | ||
323 | return 0; /* no more elements */ | ||
324 | } | ||
325 | |||
326 | |||
327 | static void freehash (lua_State *L, Table *t) { | ||
328 | if (!isdummy(t)) | ||
329 | luaM_freearray(L, t->node, cast_sizet(sizenode(t))); | ||
330 | } | ||
331 | |||
332 | |||
333 | /* | ||
334 | ** {============================================================= | ||
335 | ** Rehash | ||
336 | ** ============================================================== | ||
337 | */ | ||
338 | |||
339 | /* | ||
340 | ** Compute the optimal size for the array part of table 't'. 'nums' is a | ||
341 | ** "count array" where 'nums[i]' is the number of integers in the table | ||
342 | ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of | ||
343 | ** integer keys in the table and leaves with the number of keys that | ||
344 | ** will go to the array part; return the optimal size. (The condition | ||
345 | ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) | ||
346 | */ | ||
347 | static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { | ||
348 | int i; | ||
349 | unsigned int twotoi; /* 2^i (candidate for optimal size) */ | ||
350 | unsigned int a = 0; /* number of elements smaller than 2^i */ | ||
351 | unsigned int na = 0; /* number of elements to go to array part */ | ||
352 | unsigned int optimal = 0; /* optimal size for array part */ | ||
353 | /* loop while keys can fill more than half of total size */ | ||
354 | for (i = 0, twotoi = 1; | ||
355 | twotoi > 0 && *pna > twotoi / 2; | ||
356 | i++, twotoi *= 2) { | ||
357 | a += nums[i]; | ||
358 | if (a > twotoi/2) { /* more than half elements present? */ | ||
359 | optimal = twotoi; /* optimal size (till now) */ | ||
360 | na = a; /* all elements up to 'optimal' will go to array part */ | ||
361 | } | ||
362 | } | ||
363 | lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); | ||
364 | *pna = na; | ||
365 | return optimal; | ||
366 | } | ||
367 | |||
368 | |||
369 | static int countint (lua_Integer key, unsigned int *nums) { | ||
370 | unsigned int k = arrayindex(key); | ||
371 | if (k != 0) { /* is 'key' an appropriate array index? */ | ||
372 | nums[luaO_ceillog2(k)]++; /* count as such */ | ||
373 | return 1; | ||
374 | } | ||
375 | else | ||
376 | return 0; | ||
377 | } | ||
378 | |||
379 | |||
380 | /* | ||
381 | ** Count keys in array part of table 't': Fill 'nums[i]' with | ||
382 | ** number of keys that will go into corresponding slice and return | ||
383 | ** total number of non-nil keys. | ||
384 | */ | ||
385 | static unsigned int numusearray (const Table *t, unsigned int *nums) { | ||
386 | int lg; | ||
387 | unsigned int ttlg; /* 2^lg */ | ||
388 | unsigned int ause = 0; /* summation of 'nums' */ | ||
389 | unsigned int i = 1; /* count to traverse all array keys */ | ||
390 | unsigned int asize = limitasasize(t); /* real array size */ | ||
391 | /* traverse each slice */ | ||
392 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { | ||
393 | unsigned int lc = 0; /* counter */ | ||
394 | unsigned int lim = ttlg; | ||
395 | if (lim > asize) { | ||
396 | lim = asize; /* adjust upper limit */ | ||
397 | if (i > lim) | ||
398 | break; /* no more elements to count */ | ||
399 | } | ||
400 | /* count elements in range (2^(lg - 1), 2^lg] */ | ||
401 | for (; i <= lim; i++) { | ||
402 | if (!isempty(&t->array[i-1])) | ||
403 | lc++; | ||
404 | } | ||
405 | nums[lg] += lc; | ||
406 | ause += lc; | ||
407 | } | ||
408 | return ause; | ||
409 | } | ||
410 | |||
411 | |||
412 | static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { | ||
413 | int totaluse = 0; /* total number of elements */ | ||
414 | int ause = 0; /* elements added to 'nums' (can go to array part) */ | ||
415 | int i = sizenode(t); | ||
416 | while (i--) { | ||
417 | Node *n = &t->node[i]; | ||
418 | if (!isempty(gval(n))) { | ||
419 | if (keyisinteger(n)) | ||
420 | ause += countint(keyival(n), nums); | ||
421 | totaluse++; | ||
422 | } | ||
423 | } | ||
424 | *pna += ause; | ||
425 | return totaluse; | ||
426 | } | ||
427 | |||
428 | |||
429 | /* | ||
430 | ** Creates an array for the hash part of a table with the given | ||
431 | ** size, or reuses the dummy node if size is zero. | ||
432 | ** The computation for size overflow is in two steps: the first | ||
433 | ** comparison ensures that the shift in the second one does not | ||
434 | ** overflow. | ||
435 | */ | ||
436 | static void setnodevector (lua_State *L, Table *t, unsigned int size) { | ||
437 | if (size == 0) { /* no elements to hash part? */ | ||
438 | t->node = cast(Node *, dummynode); /* use common 'dummynode' */ | ||
439 | t->lsizenode = 0; | ||
440 | t->lastfree = NULL; /* signal that it is using dummy node */ | ||
441 | } | ||
442 | else { | ||
443 | int i; | ||
444 | int lsize = luaO_ceillog2(size); | ||
445 | if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) | ||
446 | luaG_runerror(L, "table overflow"); | ||
447 | size = twoto(lsize); | ||
448 | t->node = luaM_newvector(L, size, Node); | ||
449 | for (i = 0; i < (int)size; i++) { | ||
450 | Node *n = gnode(t, i); | ||
451 | gnext(n) = 0; | ||
452 | setnilkey(n); | ||
453 | setempty(gval(n)); | ||
454 | } | ||
455 | t->lsizenode = cast_byte(lsize); | ||
456 | t->lastfree = gnode(t, size); /* all positions are free */ | ||
457 | } | ||
458 | } | ||
459 | |||
460 | |||
461 | /* | ||
462 | ** (Re)insert all elements from the hash part of 'ot' into table 't'. | ||
463 | */ | ||
464 | static void reinsert (lua_State *L, Table *ot, Table *t) { | ||
465 | int j; | ||
466 | int size = sizenode(ot); | ||
467 | for (j = 0; j < size; j++) { | ||
468 | Node *old = gnode(ot, j); | ||
469 | if (!isempty(gval(old))) { | ||
470 | /* doesn't need barrier/invalidate cache, as entry was | ||
471 | already present in the table */ | ||
472 | TValue k; | ||
473 | getnodekey(L, &k, old); | ||
474 | setobjt2t(L, luaH_set(L, t, &k), gval(old)); | ||
475 | } | ||
476 | } | ||
477 | } | ||
478 | |||
479 | |||
480 | /* | ||
481 | ** Exchange the hash part of 't1' and 't2'. | ||
482 | */ | ||
483 | static void exchangehashpart (Table *t1, Table *t2) { | ||
484 | lu_byte lsizenode = t1->lsizenode; | ||
485 | Node *node = t1->node; | ||
486 | Node *lastfree = t1->lastfree; | ||
487 | t1->lsizenode = t2->lsizenode; | ||
488 | t1->node = t2->node; | ||
489 | t1->lastfree = t2->lastfree; | ||
490 | t2->lsizenode = lsizenode; | ||
491 | t2->node = node; | ||
492 | t2->lastfree = lastfree; | ||
493 | } | ||
494 | |||
495 | |||
496 | /* | ||
497 | ** Resize table 't' for the new given sizes. Both allocations (for | ||
498 | ** the hash part and for the array part) can fail, which creates some | ||
499 | ** subtleties. If the first allocation, for the hash part, fails, an | ||
500 | ** error is raised and that is it. Otherwise, it copies the elements from | ||
501 | ** the shrinking part of the array (if it is shrinking) into the new | ||
502 | ** hash. Then it reallocates the array part. If that fails, the table | ||
503 | ** is in its original state; the function frees the new hash part and then | ||
504 | ** raises the allocation error. Otherwise, it sets the new hash part | ||
505 | ** into the table, initializes the new part of the array (if any) with | ||
506 | ** nils and reinserts the elements of the old hash back into the new | ||
507 | ** parts of the table. | ||
508 | */ | ||
509 | void luaH_resize (lua_State *L, Table *t, unsigned int newasize, | ||
510 | unsigned int nhsize) { | ||
511 | unsigned int i; | ||
512 | Table newt; /* to keep the new hash part */ | ||
513 | unsigned int oldasize = setlimittosize(t); | ||
514 | TValue *newarray; | ||
515 | /* create new hash part with appropriate size into 'newt' */ | ||
516 | setnodevector(L, &newt, nhsize); | ||
517 | if (newasize < oldasize) { /* will array shrink? */ | ||
518 | t->alimit = newasize; /* pretend array has new size... */ | ||
519 | exchangehashpart(t, &newt); /* and new hash */ | ||
520 | /* re-insert into the new hash the elements from vanishing slice */ | ||
521 | for (i = newasize; i < oldasize; i++) { | ||
522 | if (!isempty(&t->array[i])) | ||
523 | luaH_setint(L, t, i + 1, &t->array[i]); | ||
524 | } | ||
525 | t->alimit = oldasize; /* restore current size... */ | ||
526 | exchangehashpart(t, &newt); /* and hash (in case of errors) */ | ||
527 | } | ||
528 | /* allocate new array */ | ||
529 | newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); | ||
530 | if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ | ||
531 | freehash(L, &newt); /* release new hash part */ | ||
532 | luaM_error(L); /* raise error (with array unchanged) */ | ||
533 | } | ||
534 | /* allocation ok; initialize new part of the array */ | ||
535 | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ | ||
536 | t->array = newarray; /* set new array part */ | ||
537 | t->alimit = newasize; | ||
538 | for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ | ||
539 | setempty(&t->array[i]); | ||
540 | /* re-insert elements from old hash part into new parts */ | ||
541 | reinsert(L, &newt, t); /* 'newt' now has the old hash */ | ||
542 | freehash(L, &newt); /* free old hash part */ | ||
543 | } | ||
544 | |||
545 | |||
546 | void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { | ||
547 | int nsize = allocsizenode(t); | ||
548 | luaH_resize(L, t, nasize, nsize); | ||
549 | } | ||
550 | |||
551 | /* | ||
552 | ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i | ||
553 | */ | ||
554 | static void rehash (lua_State *L, Table *t, const TValue *ek) { | ||
555 | unsigned int asize; /* optimal size for array part */ | ||
556 | unsigned int na; /* number of keys in the array part */ | ||
557 | unsigned int nums[MAXABITS + 1]; | ||
558 | int i; | ||
559 | int totaluse; | ||
560 | for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ | ||
561 | setlimittosize(t); | ||
562 | na = numusearray(t, nums); /* count keys in array part */ | ||
563 | totaluse = na; /* all those keys are integer keys */ | ||
564 | totaluse += numusehash(t, nums, &na); /* count keys in hash part */ | ||
565 | /* count extra key */ | ||
566 | if (ttisinteger(ek)) | ||
567 | na += countint(ivalue(ek), nums); | ||
568 | totaluse++; | ||
569 | /* compute new size for array part */ | ||
570 | asize = computesizes(nums, &na); | ||
571 | /* resize the table to new computed sizes */ | ||
572 | luaH_resize(L, t, asize, totaluse - na); | ||
573 | } | ||
574 | |||
575 | |||
576 | |||
577 | /* | ||
578 | ** }============================================================= | ||
579 | */ | ||
580 | |||
581 | |||
582 | Table *luaH_new (lua_State *L) { | ||
583 | GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); | ||
584 | Table *t = gco2t(o); | ||
585 | t->metatable = NULL; | ||
586 | t->flags = cast_byte(~0); | ||
587 | t->array = NULL; | ||
588 | t->alimit = 0; | ||
589 | setnodevector(L, t, 0); | ||
590 | return t; | ||
591 | } | ||
592 | |||
593 | |||
594 | void luaH_free (lua_State *L, Table *t) { | ||
595 | freehash(L, t); | ||
596 | luaM_freearray(L, t->array, luaH_realasize(t)); | ||
597 | luaM_free(L, t); | ||
598 | } | ||
599 | |||
600 | |||
601 | static Node *getfreepos (Table *t) { | ||
602 | if (!isdummy(t)) { | ||
603 | while (t->lastfree > t->node) { | ||
604 | t->lastfree--; | ||
605 | if (keyisnil(t->lastfree)) | ||
606 | return t->lastfree; | ||
607 | } | ||
608 | } | ||
609 | return NULL; /* could not find a free place */ | ||
610 | } | ||
611 | |||
612 | |||
613 | |||
614 | /* | ||
615 | ** inserts a new key into a hash table; first, check whether key's main | ||
616 | ** position is free. If not, check whether colliding node is in its main | ||
617 | ** position or not: if it is not, move colliding node to an empty place and | ||
618 | ** put new key in its main position; otherwise (colliding node is in its main | ||
619 | ** position), new key goes to an empty position. | ||
620 | */ | ||
621 | TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { | ||
622 | Node *mp; | ||
623 | TValue aux; | ||
624 | if (unlikely(ttisnil(key))) | ||
625 | luaG_runerror(L, "table index is nil"); | ||
626 | else if (ttisfloat(key)) { | ||
627 | lua_Number f = fltvalue(key); | ||
628 | lua_Integer k; | ||
629 | if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ | ||
630 | setivalue(&aux, k); | ||
631 | key = &aux; /* insert it as an integer */ | ||
632 | } | ||
633 | else if (unlikely(luai_numisnan(f))) | ||
634 | luaG_runerror(L, "table index is NaN"); | ||
635 | } | ||
636 | mp = mainpositionTV(t, key); | ||
637 | if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ | ||
638 | Node *othern; | ||
639 | Node *f = getfreepos(t); /* get a free place */ | ||
640 | if (f == NULL) { /* cannot find a free place? */ | ||
641 | rehash(L, t, key); /* grow table */ | ||
642 | /* whatever called 'newkey' takes care of TM cache */ | ||
643 | return luaH_set(L, t, key); /* insert key into grown table */ | ||
644 | } | ||
645 | lua_assert(!isdummy(t)); | ||
646 | othern = mainposition(t, keytt(mp), &keyval(mp)); | ||
647 | if (othern != mp) { /* is colliding node out of its main position? */ | ||
648 | /* yes; move colliding node into free position */ | ||
649 | while (othern + gnext(othern) != mp) /* find previous */ | ||
650 | othern += gnext(othern); | ||
651 | gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ | ||
652 | *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ | ||
653 | if (gnext(mp) != 0) { | ||
654 | gnext(f) += cast_int(mp - f); /* correct 'next' */ | ||
655 | gnext(mp) = 0; /* now 'mp' is free */ | ||
656 | } | ||
657 | setempty(gval(mp)); | ||
658 | } | ||
659 | else { /* colliding node is in its own main position */ | ||
660 | /* new node will go into free position */ | ||
661 | if (gnext(mp) != 0) | ||
662 | gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ | ||
663 | else lua_assert(gnext(f) == 0); | ||
664 | gnext(mp) = cast_int(f - mp); | ||
665 | mp = f; | ||
666 | } | ||
667 | } | ||
668 | setnodekey(L, mp, key); | ||
669 | luaC_barrierback(L, obj2gco(t), key); | ||
670 | lua_assert(isempty(gval(mp))); | ||
671 | return gval(mp); | ||
672 | } | ||
673 | |||
674 | |||
675 | /* | ||
676 | ** Search function for integers. If integer is inside 'alimit', get it | ||
677 | ** directly from the array part. Otherwise, if 'alimit' is not equal to | ||
678 | ** the real size of the array, key still can be in the array part. In | ||
679 | ** this case, try to avoid a call to 'luaH_realasize' when key is just | ||
680 | ** one more than the limit (so that it can be incremented without | ||
681 | ** changing the real size of the array). | ||
682 | */ | ||
683 | const TValue *luaH_getint (Table *t, lua_Integer key) { | ||
684 | if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ | ||
685 | return &t->array[key - 1]; | ||
686 | else if (!limitequalsasize(t) && /* key still may be in the array part? */ | ||
687 | (l_castS2U(key) == t->alimit + 1 || | ||
688 | l_castS2U(key) - 1u < luaH_realasize(t))) { | ||
689 | t->alimit = cast_uint(key); /* probably '#t' is here now */ | ||
690 | return &t->array[key - 1]; | ||
691 | } | ||
692 | else { | ||
693 | Node *n = hashint(t, key); | ||
694 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
695 | if (keyisinteger(n) && keyival(n) == key) | ||
696 | return gval(n); /* that's it */ | ||
697 | else { | ||
698 | int nx = gnext(n); | ||
699 | if (nx == 0) break; | ||
700 | n += nx; | ||
701 | } | ||
702 | } | ||
703 | return &absentkey; | ||
704 | } | ||
705 | } | ||
706 | |||
707 | |||
708 | /* | ||
709 | ** search function for short strings | ||
710 | */ | ||
711 | const TValue *luaH_getshortstr (Table *t, TString *key) { | ||
712 | Node *n = hashstr(t, key); | ||
713 | lua_assert(key->tt == LUA_VSHRSTR); | ||
714 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
715 | if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) | ||
716 | return gval(n); /* that's it */ | ||
717 | else { | ||
718 | int nx = gnext(n); | ||
719 | if (nx == 0) | ||
720 | return &absentkey; /* not found */ | ||
721 | n += nx; | ||
722 | } | ||
723 | } | ||
724 | } | ||
725 | |||
726 | |||
727 | const TValue *luaH_getstr (Table *t, TString *key) { | ||
728 | if (key->tt == LUA_VSHRSTR) | ||
729 | return luaH_getshortstr(t, key); | ||
730 | else { /* for long strings, use generic case */ | ||
731 | TValue ko; | ||
732 | setsvalue(cast(lua_State *, NULL), &ko, key); | ||
733 | return getgeneric(t, &ko); | ||
734 | } | ||
735 | } | ||
736 | |||
737 | |||
738 | /* | ||
739 | ** main search function | ||
740 | */ | ||
741 | const TValue *luaH_get (Table *t, const TValue *key) { | ||
742 | switch (ttypetag(key)) { | ||
743 | case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); | ||
744 | case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); | ||
745 | case LUA_VNIL: return &absentkey; | ||
746 | case LUA_VNUMFLT: { | ||
747 | lua_Integer k; | ||
748 | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ | ||
749 | return luaH_getint(t, k); /* use specialized version */ | ||
750 | /* else... */ | ||
751 | } /* FALLTHROUGH */ | ||
752 | default: | ||
753 | return getgeneric(t, key); | ||
754 | } | ||
755 | } | ||
756 | |||
757 | |||
758 | /* | ||
759 | ** beware: when using this function you probably need to check a GC | ||
760 | ** barrier and invalidate the TM cache. | ||
761 | */ | ||
762 | TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { | ||
763 | const TValue *p = luaH_get(t, key); | ||
764 | if (!isabstkey(p)) | ||
765 | return cast(TValue *, p); | ||
766 | else return luaH_newkey(L, t, key); | ||
767 | } | ||
768 | |||
769 | |||
770 | void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { | ||
771 | const TValue *p = luaH_getint(t, key); | ||
772 | TValue *cell; | ||
773 | if (!isabstkey(p)) | ||
774 | cell = cast(TValue *, p); | ||
775 | else { | ||
776 | TValue k; | ||
777 | setivalue(&k, key); | ||
778 | cell = luaH_newkey(L, t, &k); | ||
779 | } | ||
780 | setobj2t(L, cell, value); | ||
781 | } | ||
782 | |||
783 | |||
784 | /* | ||
785 | ** Try to find a boundary in the hash part of table 't'. From the | ||
786 | ** caller, we know that 'j' is zero or present and that 'j + 1' is | ||
787 | ** present. We want to find a larger key that is absent from the | ||
788 | ** table, so that we can do a binary search between the two keys to | ||
789 | ** find a boundary. We keep doubling 'j' until we get an absent index. | ||
790 | ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is | ||
791 | ** absent, we are ready for the binary search. ('j', being max integer, | ||
792 | ** is larger or equal to 'i', but it cannot be equal because it is | ||
793 | ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a | ||
794 | ** boundary. ('j + 1' cannot be a present integer key because it is | ||
795 | ** not a valid integer in Lua.) | ||
796 | */ | ||
797 | static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { | ||
798 | lua_Unsigned i; | ||
799 | if (j == 0) j++; /* the caller ensures 'j + 1' is present */ | ||
800 | do { | ||
801 | i = j; /* 'i' is a present index */ | ||
802 | if (j <= l_castS2U(LUA_MAXINTEGER) / 2) | ||
803 | j *= 2; | ||
804 | else { | ||
805 | j = LUA_MAXINTEGER; | ||
806 | if (isempty(luaH_getint(t, j))) /* t[j] not present? */ | ||
807 | break; /* 'j' now is an absent index */ | ||
808 | else /* weird case */ | ||
809 | return j; /* well, max integer is a boundary... */ | ||
810 | } | ||
811 | } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ | ||
812 | /* i < j && t[i] present && t[j] absent */ | ||
813 | while (j - i > 1u) { /* do a binary search between them */ | ||
814 | lua_Unsigned m = (i + j) / 2; | ||
815 | if (isempty(luaH_getint(t, m))) j = m; | ||
816 | else i = m; | ||
817 | } | ||
818 | return i; | ||
819 | } | ||
820 | |||
821 | |||
822 | static unsigned int binsearch (const TValue *array, unsigned int i, | ||
823 | unsigned int j) { | ||
824 | while (j - i > 1u) { /* binary search */ | ||
825 | unsigned int m = (i + j) / 2; | ||
826 | if (isempty(&array[m - 1])) j = m; | ||
827 | else i = m; | ||
828 | } | ||
829 | return i; | ||
830 | } | ||
831 | |||
832 | |||
833 | /* | ||
834 | ** Try to find a boundary in table 't'. (A 'boundary' is an integer index | ||
835 | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent | ||
836 | ** and 'maxinteger' if t[maxinteger] is present.) | ||
837 | ** (In the next explanation, we use Lua indices, that is, with base 1. | ||
838 | ** The code itself uses base 0 when indexing the array part of the table.) | ||
839 | ** The code starts with 'limit = t->alimit', a position in the array | ||
840 | ** part that may be a boundary. | ||
841 | ** | ||
842 | ** (1) If 't[limit]' is empty, there must be a boundary before it. | ||
843 | ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' | ||
844 | ** is present. If so, it is a boundary. Otherwise, do a binary search | ||
845 | ** between 0 and limit to find a boundary. In both cases, try to | ||
846 | ** use this boundary as the new 'alimit', as a hint for the next call. | ||
847 | ** | ||
848 | ** (2) If 't[limit]' is not empty and the array has more elements | ||
849 | ** after 'limit', try to find a boundary there. Again, try first | ||
850 | ** the special case (which should be quite frequent) where 'limit+1' | ||
851 | ** is empty, so that 'limit' is a boundary. Otherwise, check the | ||
852 | ** last element of the array part. If it is empty, there must be a | ||
853 | ** boundary between the old limit (present) and the last element | ||
854 | ** (absent), which is found with a binary search. (This boundary always | ||
855 | ** can be a new limit.) | ||
856 | ** | ||
857 | ** (3) The last case is when there are no elements in the array part | ||
858 | ** (limit == 0) or its last element (the new limit) is present. | ||
859 | ** In this case, must check the hash part. If there is no hash part | ||
860 | ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call | ||
861 | ** 'hash_search' to find a boundary in the hash part of the table. | ||
862 | ** (In those cases, the boundary is not inside the array part, and | ||
863 | ** therefore cannot be used as a new limit.) | ||
864 | */ | ||
865 | lua_Unsigned luaH_getn (Table *t) { | ||
866 | unsigned int limit = t->alimit; | ||
867 | if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ | ||
868 | /* there must be a boundary before 'limit' */ | ||
869 | if (limit >= 2 && !isempty(&t->array[limit - 2])) { | ||
870 | /* 'limit - 1' is a boundary; can it be a new limit? */ | ||
871 | if (ispow2realasize(t) && !ispow2(limit - 1)) { | ||
872 | t->alimit = limit - 1; | ||
873 | setnorealasize(t); /* now 'alimit' is not the real size */ | ||
874 | } | ||
875 | return limit - 1; | ||
876 | } | ||
877 | else { /* must search for a boundary in [0, limit] */ | ||
878 | unsigned int boundary = binsearch(t->array, 0, limit); | ||
879 | /* can this boundary represent the real size of the array? */ | ||
880 | if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { | ||
881 | t->alimit = boundary; /* use it as the new limit */ | ||
882 | setnorealasize(t); | ||
883 | } | ||
884 | return boundary; | ||
885 | } | ||
886 | } | ||
887 | /* 'limit' is zero or present in table */ | ||
888 | if (!limitequalsasize(t)) { /* (2)? */ | ||
889 | /* 'limit' > 0 and array has more elements after 'limit' */ | ||
890 | if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ | ||
891 | return limit; /* this is the boundary */ | ||
892 | /* else, try last element in the array */ | ||
893 | limit = luaH_realasize(t); | ||
894 | if (isempty(&t->array[limit - 1])) { /* empty? */ | ||
895 | /* there must be a boundary in the array after old limit, | ||
896 | and it must be a valid new limit */ | ||
897 | unsigned int boundary = binsearch(t->array, t->alimit, limit); | ||
898 | t->alimit = boundary; | ||
899 | return boundary; | ||
900 | } | ||
901 | /* else, new limit is present in the table; check the hash part */ | ||
902 | } | ||
903 | /* (3) 'limit' is the last element and either is zero or present in table */ | ||
904 | lua_assert(limit == luaH_realasize(t) && | ||
905 | (limit == 0 || !isempty(&t->array[limit - 1]))); | ||
906 | if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) | ||
907 | return limit; /* 'limit + 1' is absent */ | ||
908 | else /* 'limit + 1' is also present */ | ||
909 | return hash_search(t, limit); | ||
910 | } | ||
911 | |||
912 | |||
913 | |||
914 | #if defined(LUA_DEBUG) | ||
915 | |||
916 | /* export these functions for the test library */ | ||
917 | |||
918 | Node *luaH_mainposition (const Table *t, const TValue *key) { | ||
919 | return mainpositionTV(t, key); | ||
920 | } | ||
921 | |||
922 | int luaH_isdummy (const Table *t) { return isdummy(t); } | ||
923 | |||
924 | #endif | ||