diff options
| author | Li Jin <dragon-fly@qq.com> | 2022-02-24 10:20:06 +0800 |
|---|---|---|
| committer | Li Jin <dragon-fly@qq.com> | 2022-02-24 10:20:19 +0800 |
| commit | fa9aad9300fd5c1b7ae697881d787d015fa9ef24 (patch) | |
| tree | a3860d3a535ce269ff23be17cdee174bf7416c2e /win-build/Lua51/lopcodes.h | |
| parent | 63878b93b0f142af74b397a02b2c80be039b03ec (diff) | |
| download | yuescript-fa9aad9300fd5c1b7ae697881d787d015fa9ef24.tar.gz yuescript-fa9aad9300fd5c1b7ae697881d787d015fa9ef24.tar.bz2 yuescript-fa9aad9300fd5c1b7ae697881d787d015fa9ef24.zip | |
update for windows build dll.
Diffstat (limited to 'win-build/Lua51/lopcodes.h')
| -rw-r--r-- | win-build/Lua51/lopcodes.h | 268 |
1 files changed, 268 insertions, 0 deletions
diff --git a/win-build/Lua51/lopcodes.h b/win-build/Lua51/lopcodes.h new file mode 100644 index 0000000..41224d6 --- /dev/null +++ b/win-build/Lua51/lopcodes.h | |||
| @@ -0,0 +1,268 @@ | |||
| 1 | /* | ||
| 2 | ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $ | ||
| 3 | ** Opcodes for Lua virtual machine | ||
| 4 | ** See Copyright Notice in lua.h | ||
| 5 | */ | ||
| 6 | |||
| 7 | #ifndef lopcodes_h | ||
| 8 | #define lopcodes_h | ||
| 9 | |||
| 10 | #include "llimits.h" | ||
| 11 | |||
| 12 | |||
| 13 | /*=========================================================================== | ||
| 14 | We assume that instructions are unsigned numbers. | ||
| 15 | All instructions have an opcode in the first 6 bits. | ||
| 16 | Instructions can have the following fields: | ||
| 17 | `A' : 8 bits | ||
| 18 | `B' : 9 bits | ||
| 19 | `C' : 9 bits | ||
| 20 | `Bx' : 18 bits (`B' and `C' together) | ||
| 21 | `sBx' : signed Bx | ||
| 22 | |||
| 23 | A signed argument is represented in excess K; that is, the number | ||
| 24 | value is the unsigned value minus K. K is exactly the maximum value | ||
| 25 | for that argument (so that -max is represented by 0, and +max is | ||
| 26 | represented by 2*max), which is half the maximum for the corresponding | ||
| 27 | unsigned argument. | ||
| 28 | ===========================================================================*/ | ||
| 29 | |||
| 30 | |||
| 31 | enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */ | ||
| 32 | |||
| 33 | |||
| 34 | /* | ||
| 35 | ** size and position of opcode arguments. | ||
| 36 | */ | ||
| 37 | #define SIZE_C 9 | ||
| 38 | #define SIZE_B 9 | ||
| 39 | #define SIZE_Bx (SIZE_C + SIZE_B) | ||
| 40 | #define SIZE_A 8 | ||
| 41 | |||
| 42 | #define SIZE_OP 6 | ||
| 43 | |||
| 44 | #define POS_OP 0 | ||
| 45 | #define POS_A (POS_OP + SIZE_OP) | ||
| 46 | #define POS_C (POS_A + SIZE_A) | ||
| 47 | #define POS_B (POS_C + SIZE_C) | ||
| 48 | #define POS_Bx POS_C | ||
| 49 | |||
| 50 | |||
| 51 | /* | ||
| 52 | ** limits for opcode arguments. | ||
| 53 | ** we use (signed) int to manipulate most arguments, | ||
| 54 | ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) | ||
| 55 | */ | ||
| 56 | #if SIZE_Bx < LUAI_BITSINT-1 | ||
| 57 | #define MAXARG_Bx ((1<<SIZE_Bx)-1) | ||
| 58 | #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ | ||
| 59 | #else | ||
| 60 | #define MAXARG_Bx MAX_INT | ||
| 61 | #define MAXARG_sBx MAX_INT | ||
| 62 | #endif | ||
| 63 | |||
| 64 | |||
| 65 | #define MAXARG_A ((1<<SIZE_A)-1) | ||
| 66 | #define MAXARG_B ((1<<SIZE_B)-1) | ||
| 67 | #define MAXARG_C ((1<<SIZE_C)-1) | ||
| 68 | |||
| 69 | |||
| 70 | /* creates a mask with `n' 1 bits at position `p' */ | ||
| 71 | #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p) | ||
| 72 | |||
| 73 | /* creates a mask with `n' 0 bits at position `p' */ | ||
| 74 | #define MASK0(n,p) (~MASK1(n,p)) | ||
| 75 | |||
| 76 | /* | ||
| 77 | ** the following macros help to manipulate instructions | ||
| 78 | */ | ||
| 79 | |||
| 80 | #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) | ||
| 81 | #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ | ||
| 82 | ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) | ||
| 83 | |||
| 84 | #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0))) | ||
| 85 | #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \ | ||
| 86 | ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A)))) | ||
| 87 | |||
| 88 | #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0))) | ||
| 89 | #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \ | ||
| 90 | ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B)))) | ||
| 91 | |||
| 92 | #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0))) | ||
| 93 | #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \ | ||
| 94 | ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C)))) | ||
| 95 | |||
| 96 | #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0))) | ||
| 97 | #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \ | ||
| 98 | ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx)))) | ||
| 99 | |||
| 100 | #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) | ||
| 101 | #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) | ||
| 102 | |||
| 103 | |||
| 104 | #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ | ||
| 105 | | (cast(Instruction, a)<<POS_A) \ | ||
| 106 | | (cast(Instruction, b)<<POS_B) \ | ||
| 107 | | (cast(Instruction, c)<<POS_C)) | ||
| 108 | |||
| 109 | #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | ||
| 110 | | (cast(Instruction, a)<<POS_A) \ | ||
| 111 | | (cast(Instruction, bc)<<POS_Bx)) | ||
| 112 | |||
| 113 | |||
| 114 | /* | ||
| 115 | ** Macros to operate RK indices | ||
| 116 | */ | ||
| 117 | |||
| 118 | /* this bit 1 means constant (0 means register) */ | ||
| 119 | #define BITRK (1 << (SIZE_B - 1)) | ||
| 120 | |||
| 121 | /* test whether value is a constant */ | ||
| 122 | #define ISK(x) ((x) & BITRK) | ||
| 123 | |||
| 124 | /* gets the index of the constant */ | ||
| 125 | #define INDEXK(r) ((int)(r) & ~BITRK) | ||
| 126 | |||
| 127 | #define MAXINDEXRK (BITRK - 1) | ||
| 128 | |||
| 129 | /* code a constant index as a RK value */ | ||
| 130 | #define RKASK(x) ((x) | BITRK) | ||
| 131 | |||
| 132 | |||
| 133 | /* | ||
| 134 | ** invalid register that fits in 8 bits | ||
| 135 | */ | ||
| 136 | #define NO_REG MAXARG_A | ||
| 137 | |||
| 138 | |||
| 139 | /* | ||
| 140 | ** R(x) - register | ||
| 141 | ** Kst(x) - constant (in constant table) | ||
| 142 | ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) | ||
| 143 | */ | ||
| 144 | |||
| 145 | |||
| 146 | /* | ||
| 147 | ** grep "ORDER OP" if you change these enums | ||
| 148 | */ | ||
| 149 | |||
| 150 | typedef enum { | ||
| 151 | /*---------------------------------------------------------------------- | ||
| 152 | name args description | ||
| 153 | ------------------------------------------------------------------------*/ | ||
| 154 | OP_MOVE,/* A B R(A) := R(B) */ | ||
| 155 | OP_LOADK,/* A Bx R(A) := Kst(Bx) */ | ||
| 156 | OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ | ||
| 157 | OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ | ||
| 158 | OP_GETUPVAL,/* A B R(A) := UpValue[B] */ | ||
| 159 | |||
| 160 | OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ | ||
| 161 | OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ | ||
| 162 | |||
| 163 | OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ | ||
| 164 | OP_SETUPVAL,/* A B UpValue[B] := R(A) */ | ||
| 165 | OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ | ||
| 166 | |||
| 167 | OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ | ||
| 168 | |||
| 169 | OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ | ||
| 170 | |||
| 171 | OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ | ||
| 172 | OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ | ||
| 173 | OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ | ||
| 174 | OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ | ||
| 175 | OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ | ||
| 176 | OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ | ||
| 177 | OP_UNM,/* A B R(A) := -R(B) */ | ||
| 178 | OP_NOT,/* A B R(A) := not R(B) */ | ||
| 179 | OP_LEN,/* A B R(A) := length of R(B) */ | ||
| 180 | |||
| 181 | OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ | ||
| 182 | |||
| 183 | OP_JMP,/* sBx pc+=sBx */ | ||
| 184 | |||
| 185 | OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ | ||
| 186 | OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ | ||
| 187 | OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ | ||
| 188 | |||
| 189 | OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ | ||
| 190 | OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ | ||
| 191 | |||
| 192 | OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ | ||
| 193 | OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ | ||
| 194 | OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ | ||
| 195 | |||
| 196 | OP_FORLOOP,/* A sBx R(A)+=R(A+2); | ||
| 197 | if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ | ||
| 198 | OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ | ||
| 199 | |||
| 200 | OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); | ||
| 201 | if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ | ||
| 202 | OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ | ||
| 203 | |||
| 204 | OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ | ||
| 205 | OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ | ||
| 206 | |||
| 207 | OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ | ||
| 208 | } OpCode; | ||
| 209 | |||
| 210 | |||
| 211 | #define NUM_OPCODES (cast(int, OP_VARARG) + 1) | ||
| 212 | |||
| 213 | |||
| 214 | |||
| 215 | /*=========================================================================== | ||
| 216 | Notes: | ||
| 217 | (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, | ||
| 218 | and can be 0: OP_CALL then sets `top' to last_result+1, so | ||
| 219 | next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. | ||
| 220 | |||
| 221 | (*) In OP_VARARG, if (B == 0) then use actual number of varargs and | ||
| 222 | set top (like in OP_CALL with C == 0). | ||
| 223 | |||
| 224 | (*) In OP_RETURN, if (B == 0) then return up to `top' | ||
| 225 | |||
| 226 | (*) In OP_SETLIST, if (B == 0) then B = `top'; | ||
| 227 | if (C == 0) then next `instruction' is real C | ||
| 228 | |||
| 229 | (*) For comparisons, A specifies what condition the test should accept | ||
| 230 | (true or false). | ||
| 231 | |||
| 232 | (*) All `skips' (pc++) assume that next instruction is a jump | ||
| 233 | ===========================================================================*/ | ||
| 234 | |||
| 235 | |||
| 236 | /* | ||
| 237 | ** masks for instruction properties. The format is: | ||
| 238 | ** bits 0-1: op mode | ||
| 239 | ** bits 2-3: C arg mode | ||
| 240 | ** bits 4-5: B arg mode | ||
| 241 | ** bit 6: instruction set register A | ||
| 242 | ** bit 7: operator is a test | ||
| 243 | */ | ||
| 244 | |||
| 245 | enum OpArgMask { | ||
| 246 | OpArgN, /* argument is not used */ | ||
| 247 | OpArgU, /* argument is used */ | ||
| 248 | OpArgR, /* argument is a register or a jump offset */ | ||
| 249 | OpArgK /* argument is a constant or register/constant */ | ||
| 250 | }; | ||
| 251 | |||
| 252 | LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES]; | ||
| 253 | |||
| 254 | #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) | ||
| 255 | #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) | ||
| 256 | #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) | ||
| 257 | #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) | ||
| 258 | #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) | ||
| 259 | |||
| 260 | |||
| 261 | LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ | ||
| 262 | |||
| 263 | |||
| 264 | /* number of list items to accumulate before a SETLIST instruction */ | ||
| 265 | #define LFIELDS_PER_FLUSH 50 | ||
| 266 | |||
| 267 | |||
| 268 | #endif | ||
