diff options
author | Li Jin <dragon-fly@qq.com> | 2022-10-31 11:32:33 +0800 |
---|---|---|
committer | Li Jin <dragon-fly@qq.com> | 2022-11-09 11:29:32 +0800 |
commit | 417ec1a37922c6178900adfec70628cad46731ff (patch) | |
tree | a5a2d74927ad2c41b5a16264a78409e1c0334b72 /win-build/Lua53/lcode.c | |
parent | 3dd607c8887d2fe0186668aabca31bb84a41e2da (diff) | |
download | yuescript-417ec1a37922c6178900adfec70628cad46731ff.tar.gz yuescript-417ec1a37922c6178900adfec70628cad46731ff.tar.bz2 yuescript-417ec1a37922c6178900adfec70628cad46731ff.zip |
fix issue #112 and issue #113.
Diffstat (limited to 'win-build/Lua53/lcode.c')
-rw-r--r-- | win-build/Lua53/lcode.c | 1203 |
1 files changed, 1203 insertions, 0 deletions
diff --git a/win-build/Lua53/lcode.c b/win-build/Lua53/lcode.c new file mode 100644 index 0000000..dc7271d --- /dev/null +++ b/win-build/Lua53/lcode.c | |||
@@ -0,0 +1,1203 @@ | |||
1 | /* | ||
2 | ** $Id: lcode.c,v 2.112.1.1 2017/04/19 17:20:42 roberto Exp $ | ||
3 | ** Code generator for Lua | ||
4 | ** See Copyright Notice in lua.h | ||
5 | */ | ||
6 | |||
7 | #define lcode_c | ||
8 | #define LUA_CORE | ||
9 | |||
10 | #include "lprefix.h" | ||
11 | |||
12 | |||
13 | #include <math.h> | ||
14 | #include <stdlib.h> | ||
15 | |||
16 | #include "lua.h" | ||
17 | |||
18 | #include "lcode.h" | ||
19 | #include "ldebug.h" | ||
20 | #include "ldo.h" | ||
21 | #include "lgc.h" | ||
22 | #include "llex.h" | ||
23 | #include "lmem.h" | ||
24 | #include "lobject.h" | ||
25 | #include "lopcodes.h" | ||
26 | #include "lparser.h" | ||
27 | #include "lstring.h" | ||
28 | #include "ltable.h" | ||
29 | #include "lvm.h" | ||
30 | |||
31 | |||
32 | /* Maximum number of registers in a Lua function (must fit in 8 bits) */ | ||
33 | #define MAXREGS 255 | ||
34 | |||
35 | |||
36 | #define hasjumps(e) ((e)->t != (e)->f) | ||
37 | |||
38 | |||
39 | /* | ||
40 | ** If expression is a numeric constant, fills 'v' with its value | ||
41 | ** and returns 1. Otherwise, returns 0. | ||
42 | */ | ||
43 | static int tonumeral(const expdesc *e, TValue *v) { | ||
44 | if (hasjumps(e)) | ||
45 | return 0; /* not a numeral */ | ||
46 | switch (e->k) { | ||
47 | case VKINT: | ||
48 | if (v) setivalue(v, e->u.ival); | ||
49 | return 1; | ||
50 | case VKFLT: | ||
51 | if (v) setfltvalue(v, e->u.nval); | ||
52 | return 1; | ||
53 | default: return 0; | ||
54 | } | ||
55 | } | ||
56 | |||
57 | |||
58 | /* | ||
59 | ** Create a OP_LOADNIL instruction, but try to optimize: if the previous | ||
60 | ** instruction is also OP_LOADNIL and ranges are compatible, adjust | ||
61 | ** range of previous instruction instead of emitting a new one. (For | ||
62 | ** instance, 'local a; local b' will generate a single opcode.) | ||
63 | */ | ||
64 | void luaK_nil (FuncState *fs, int from, int n) { | ||
65 | Instruction *previous; | ||
66 | int l = from + n - 1; /* last register to set nil */ | ||
67 | if (fs->pc > fs->lasttarget) { /* no jumps to current position? */ | ||
68 | previous = &fs->f->code[fs->pc-1]; | ||
69 | if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ | ||
70 | int pfrom = GETARG_A(*previous); /* get previous range */ | ||
71 | int pl = pfrom + GETARG_B(*previous); | ||
72 | if ((pfrom <= from && from <= pl + 1) || | ||
73 | (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ | ||
74 | if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ | ||
75 | if (pl > l) l = pl; /* l = max(l, pl) */ | ||
76 | SETARG_A(*previous, from); | ||
77 | SETARG_B(*previous, l - from); | ||
78 | return; | ||
79 | } | ||
80 | } /* else go through */ | ||
81 | } | ||
82 | luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ | ||
83 | } | ||
84 | |||
85 | |||
86 | /* | ||
87 | ** Gets the destination address of a jump instruction. Used to traverse | ||
88 | ** a list of jumps. | ||
89 | */ | ||
90 | static int getjump (FuncState *fs, int pc) { | ||
91 | int offset = GETARG_sBx(fs->f->code[pc]); | ||
92 | if (offset == NO_JUMP) /* point to itself represents end of list */ | ||
93 | return NO_JUMP; /* end of list */ | ||
94 | else | ||
95 | return (pc+1)+offset; /* turn offset into absolute position */ | ||
96 | } | ||
97 | |||
98 | |||
99 | /* | ||
100 | ** Fix jump instruction at position 'pc' to jump to 'dest'. | ||
101 | ** (Jump addresses are relative in Lua) | ||
102 | */ | ||
103 | static void fixjump (FuncState *fs, int pc, int dest) { | ||
104 | Instruction *jmp = &fs->f->code[pc]; | ||
105 | int offset = dest - (pc + 1); | ||
106 | lua_assert(dest != NO_JUMP); | ||
107 | if (abs(offset) > MAXARG_sBx) | ||
108 | luaX_syntaxerror(fs->ls, "control structure too long"); | ||
109 | SETARG_sBx(*jmp, offset); | ||
110 | } | ||
111 | |||
112 | |||
113 | /* | ||
114 | ** Concatenate jump-list 'l2' into jump-list 'l1' | ||
115 | */ | ||
116 | void luaK_concat (FuncState *fs, int *l1, int l2) { | ||
117 | if (l2 == NO_JUMP) return; /* nothing to concatenate? */ | ||
118 | else if (*l1 == NO_JUMP) /* no original list? */ | ||
119 | *l1 = l2; /* 'l1' points to 'l2' */ | ||
120 | else { | ||
121 | int list = *l1; | ||
122 | int next; | ||
123 | while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ | ||
124 | list = next; | ||
125 | fixjump(fs, list, l2); /* last element links to 'l2' */ | ||
126 | } | ||
127 | } | ||
128 | |||
129 | |||
130 | /* | ||
131 | ** Create a jump instruction and return its position, so its destination | ||
132 | ** can be fixed later (with 'fixjump'). If there are jumps to | ||
133 | ** this position (kept in 'jpc'), link them all together so that | ||
134 | ** 'patchlistaux' will fix all them directly to the final destination. | ||
135 | */ | ||
136 | int luaK_jump (FuncState *fs) { | ||
137 | int jpc = fs->jpc; /* save list of jumps to here */ | ||
138 | int j; | ||
139 | fs->jpc = NO_JUMP; /* no more jumps to here */ | ||
140 | j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP); | ||
141 | luaK_concat(fs, &j, jpc); /* keep them on hold */ | ||
142 | return j; | ||
143 | } | ||
144 | |||
145 | |||
146 | /* | ||
147 | ** Code a 'return' instruction | ||
148 | */ | ||
149 | void luaK_ret (FuncState *fs, int first, int nret) { | ||
150 | luaK_codeABC(fs, OP_RETURN, first, nret+1, 0); | ||
151 | } | ||
152 | |||
153 | |||
154 | /* | ||
155 | ** Code a "conditional jump", that is, a test or comparison opcode | ||
156 | ** followed by a jump. Return jump position. | ||
157 | */ | ||
158 | static int condjump (FuncState *fs, OpCode op, int A, int B, int C) { | ||
159 | luaK_codeABC(fs, op, A, B, C); | ||
160 | return luaK_jump(fs); | ||
161 | } | ||
162 | |||
163 | |||
164 | /* | ||
165 | ** returns current 'pc' and marks it as a jump target (to avoid wrong | ||
166 | ** optimizations with consecutive instructions not in the same basic block). | ||
167 | */ | ||
168 | int luaK_getlabel (FuncState *fs) { | ||
169 | fs->lasttarget = fs->pc; | ||
170 | return fs->pc; | ||
171 | } | ||
172 | |||
173 | |||
174 | /* | ||
175 | ** Returns the position of the instruction "controlling" a given | ||
176 | ** jump (that is, its condition), or the jump itself if it is | ||
177 | ** unconditional. | ||
178 | */ | ||
179 | static Instruction *getjumpcontrol (FuncState *fs, int pc) { | ||
180 | Instruction *pi = &fs->f->code[pc]; | ||
181 | if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) | ||
182 | return pi-1; | ||
183 | else | ||
184 | return pi; | ||
185 | } | ||
186 | |||
187 | |||
188 | /* | ||
189 | ** Patch destination register for a TESTSET instruction. | ||
190 | ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). | ||
191 | ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination | ||
192 | ** register. Otherwise, change instruction to a simple 'TEST' (produces | ||
193 | ** no register value) | ||
194 | */ | ||
195 | static int patchtestreg (FuncState *fs, int node, int reg) { | ||
196 | Instruction *i = getjumpcontrol(fs, node); | ||
197 | if (GET_OPCODE(*i) != OP_TESTSET) | ||
198 | return 0; /* cannot patch other instructions */ | ||
199 | if (reg != NO_REG && reg != GETARG_B(*i)) | ||
200 | SETARG_A(*i, reg); | ||
201 | else { | ||
202 | /* no register to put value or register already has the value; | ||
203 | change instruction to simple test */ | ||
204 | *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i)); | ||
205 | } | ||
206 | return 1; | ||
207 | } | ||
208 | |||
209 | |||
210 | /* | ||
211 | ** Traverse a list of tests ensuring no one produces a value | ||
212 | */ | ||
213 | static void removevalues (FuncState *fs, int list) { | ||
214 | for (; list != NO_JUMP; list = getjump(fs, list)) | ||
215 | patchtestreg(fs, list, NO_REG); | ||
216 | } | ||
217 | |||
218 | |||
219 | /* | ||
220 | ** Traverse a list of tests, patching their destination address and | ||
221 | ** registers: tests producing values jump to 'vtarget' (and put their | ||
222 | ** values in 'reg'), other tests jump to 'dtarget'. | ||
223 | */ | ||
224 | static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, | ||
225 | int dtarget) { | ||
226 | while (list != NO_JUMP) { | ||
227 | int next = getjump(fs, list); | ||
228 | if (patchtestreg(fs, list, reg)) | ||
229 | fixjump(fs, list, vtarget); | ||
230 | else | ||
231 | fixjump(fs, list, dtarget); /* jump to default target */ | ||
232 | list = next; | ||
233 | } | ||
234 | } | ||
235 | |||
236 | |||
237 | /* | ||
238 | ** Ensure all pending jumps to current position are fixed (jumping | ||
239 | ** to current position with no values) and reset list of pending | ||
240 | ** jumps | ||
241 | */ | ||
242 | static void dischargejpc (FuncState *fs) { | ||
243 | patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc); | ||
244 | fs->jpc = NO_JUMP; | ||
245 | } | ||
246 | |||
247 | |||
248 | /* | ||
249 | ** Add elements in 'list' to list of pending jumps to "here" | ||
250 | ** (current position) | ||
251 | */ | ||
252 | void luaK_patchtohere (FuncState *fs, int list) { | ||
253 | luaK_getlabel(fs); /* mark "here" as a jump target */ | ||
254 | luaK_concat(fs, &fs->jpc, list); | ||
255 | } | ||
256 | |||
257 | |||
258 | /* | ||
259 | ** Path all jumps in 'list' to jump to 'target'. | ||
260 | ** (The assert means that we cannot fix a jump to a forward address | ||
261 | ** because we only know addresses once code is generated.) | ||
262 | */ | ||
263 | void luaK_patchlist (FuncState *fs, int list, int target) { | ||
264 | if (target == fs->pc) /* 'target' is current position? */ | ||
265 | luaK_patchtohere(fs, list); /* add list to pending jumps */ | ||
266 | else { | ||
267 | lua_assert(target < fs->pc); | ||
268 | patchlistaux(fs, list, target, NO_REG, target); | ||
269 | } | ||
270 | } | ||
271 | |||
272 | |||
273 | /* | ||
274 | ** Path all jumps in 'list' to close upvalues up to given 'level' | ||
275 | ** (The assertion checks that jumps either were closing nothing | ||
276 | ** or were closing higher levels, from inner blocks.) | ||
277 | */ | ||
278 | void luaK_patchclose (FuncState *fs, int list, int level) { | ||
279 | level++; /* argument is +1 to reserve 0 as non-op */ | ||
280 | for (; list != NO_JUMP; list = getjump(fs, list)) { | ||
281 | lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP && | ||
282 | (GETARG_A(fs->f->code[list]) == 0 || | ||
283 | GETARG_A(fs->f->code[list]) >= level)); | ||
284 | SETARG_A(fs->f->code[list], level); | ||
285 | } | ||
286 | } | ||
287 | |||
288 | |||
289 | /* | ||
290 | ** Emit instruction 'i', checking for array sizes and saving also its | ||
291 | ** line information. Return 'i' position. | ||
292 | */ | ||
293 | static int luaK_code (FuncState *fs, Instruction i) { | ||
294 | Proto *f = fs->f; | ||
295 | dischargejpc(fs); /* 'pc' will change */ | ||
296 | /* put new instruction in code array */ | ||
297 | luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, | ||
298 | MAX_INT, "opcodes"); | ||
299 | f->code[fs->pc] = i; | ||
300 | /* save corresponding line information */ | ||
301 | luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int, | ||
302 | MAX_INT, "opcodes"); | ||
303 | f->lineinfo[fs->pc] = fs->ls->lastline; | ||
304 | return fs->pc++; | ||
305 | } | ||
306 | |||
307 | |||
308 | /* | ||
309 | ** Format and emit an 'iABC' instruction. (Assertions check consistency | ||
310 | ** of parameters versus opcode.) | ||
311 | */ | ||
312 | int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) { | ||
313 | lua_assert(getOpMode(o) == iABC); | ||
314 | lua_assert(getBMode(o) != OpArgN || b == 0); | ||
315 | lua_assert(getCMode(o) != OpArgN || c == 0); | ||
316 | lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C); | ||
317 | return luaK_code(fs, CREATE_ABC(o, a, b, c)); | ||
318 | } | ||
319 | |||
320 | |||
321 | /* | ||
322 | ** Format and emit an 'iABx' instruction. | ||
323 | */ | ||
324 | int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { | ||
325 | lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx); | ||
326 | lua_assert(getCMode(o) == OpArgN); | ||
327 | lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); | ||
328 | return luaK_code(fs, CREATE_ABx(o, a, bc)); | ||
329 | } | ||
330 | |||
331 | |||
332 | /* | ||
333 | ** Emit an "extra argument" instruction (format 'iAx') | ||
334 | */ | ||
335 | static int codeextraarg (FuncState *fs, int a) { | ||
336 | lua_assert(a <= MAXARG_Ax); | ||
337 | return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); | ||
338 | } | ||
339 | |||
340 | |||
341 | /* | ||
342 | ** Emit a "load constant" instruction, using either 'OP_LOADK' | ||
343 | ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' | ||
344 | ** instruction with "extra argument". | ||
345 | */ | ||
346 | int luaK_codek (FuncState *fs, int reg, int k) { | ||
347 | if (k <= MAXARG_Bx) | ||
348 | return luaK_codeABx(fs, OP_LOADK, reg, k); | ||
349 | else { | ||
350 | int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); | ||
351 | codeextraarg(fs, k); | ||
352 | return p; | ||
353 | } | ||
354 | } | ||
355 | |||
356 | |||
357 | /* | ||
358 | ** Check register-stack level, keeping track of its maximum size | ||
359 | ** in field 'maxstacksize' | ||
360 | */ | ||
361 | void luaK_checkstack (FuncState *fs, int n) { | ||
362 | int newstack = fs->freereg + n; | ||
363 | if (newstack > fs->f->maxstacksize) { | ||
364 | if (newstack >= MAXREGS) | ||
365 | luaX_syntaxerror(fs->ls, | ||
366 | "function or expression needs too many registers"); | ||
367 | fs->f->maxstacksize = cast_byte(newstack); | ||
368 | } | ||
369 | } | ||
370 | |||
371 | |||
372 | /* | ||
373 | ** Reserve 'n' registers in register stack | ||
374 | */ | ||
375 | void luaK_reserveregs (FuncState *fs, int n) { | ||
376 | luaK_checkstack(fs, n); | ||
377 | fs->freereg += n; | ||
378 | } | ||
379 | |||
380 | |||
381 | /* | ||
382 | ** Free register 'reg', if it is neither a constant index nor | ||
383 | ** a local variable. | ||
384 | ) | ||
385 | */ | ||
386 | static void freereg (FuncState *fs, int reg) { | ||
387 | if (!ISK(reg) && reg >= fs->nactvar) { | ||
388 | fs->freereg--; | ||
389 | lua_assert(reg == fs->freereg); | ||
390 | } | ||
391 | } | ||
392 | |||
393 | |||
394 | /* | ||
395 | ** Free register used by expression 'e' (if any) | ||
396 | */ | ||
397 | static void freeexp (FuncState *fs, expdesc *e) { | ||
398 | if (e->k == VNONRELOC) | ||
399 | freereg(fs, e->u.info); | ||
400 | } | ||
401 | |||
402 | |||
403 | /* | ||
404 | ** Free registers used by expressions 'e1' and 'e2' (if any) in proper | ||
405 | ** order. | ||
406 | */ | ||
407 | static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { | ||
408 | int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; | ||
409 | int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; | ||
410 | if (r1 > r2) { | ||
411 | freereg(fs, r1); | ||
412 | freereg(fs, r2); | ||
413 | } | ||
414 | else { | ||
415 | freereg(fs, r2); | ||
416 | freereg(fs, r1); | ||
417 | } | ||
418 | } | ||
419 | |||
420 | |||
421 | /* | ||
422 | ** Add constant 'v' to prototype's list of constants (field 'k'). | ||
423 | ** Use scanner's table to cache position of constants in constant list | ||
424 | ** and try to reuse constants. Because some values should not be used | ||
425 | ** as keys (nil cannot be a key, integer keys can collapse with float | ||
426 | ** keys), the caller must provide a useful 'key' for indexing the cache. | ||
427 | */ | ||
428 | static int addk (FuncState *fs, TValue *key, TValue *v) { | ||
429 | lua_State *L = fs->ls->L; | ||
430 | Proto *f = fs->f; | ||
431 | TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */ | ||
432 | int k, oldsize; | ||
433 | if (ttisinteger(idx)) { /* is there an index there? */ | ||
434 | k = cast_int(ivalue(idx)); | ||
435 | /* correct value? (warning: must distinguish floats from integers!) */ | ||
436 | if (k < fs->nk && ttype(&f->k[k]) == ttype(v) && | ||
437 | luaV_rawequalobj(&f->k[k], v)) | ||
438 | return k; /* reuse index */ | ||
439 | } | ||
440 | /* constant not found; create a new entry */ | ||
441 | oldsize = f->sizek; | ||
442 | k = fs->nk; | ||
443 | /* numerical value does not need GC barrier; | ||
444 | table has no metatable, so it does not need to invalidate cache */ | ||
445 | setivalue(idx, k); | ||
446 | luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); | ||
447 | while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); | ||
448 | setobj(L, &f->k[k], v); | ||
449 | fs->nk++; | ||
450 | luaC_barrier(L, f, v); | ||
451 | return k; | ||
452 | } | ||
453 | |||
454 | |||
455 | /* | ||
456 | ** Add a string to list of constants and return its index. | ||
457 | */ | ||
458 | int luaK_stringK (FuncState *fs, TString *s) { | ||
459 | TValue o; | ||
460 | setsvalue(fs->ls->L, &o, s); | ||
461 | return addk(fs, &o, &o); /* use string itself as key */ | ||
462 | } | ||
463 | |||
464 | |||
465 | /* | ||
466 | ** Add an integer to list of constants and return its index. | ||
467 | ** Integers use userdata as keys to avoid collision with floats with | ||
468 | ** same value; conversion to 'void*' is used only for hashing, so there | ||
469 | ** are no "precision" problems. | ||
470 | */ | ||
471 | int luaK_intK (FuncState *fs, lua_Integer n) { | ||
472 | TValue k, o; | ||
473 | setpvalue(&k, cast(void*, cast(size_t, n))); | ||
474 | setivalue(&o, n); | ||
475 | return addk(fs, &k, &o); | ||
476 | } | ||
477 | |||
478 | /* | ||
479 | ** Add a float to list of constants and return its index. | ||
480 | */ | ||
481 | static int luaK_numberK (FuncState *fs, lua_Number r) { | ||
482 | TValue o; | ||
483 | setfltvalue(&o, r); | ||
484 | return addk(fs, &o, &o); /* use number itself as key */ | ||
485 | } | ||
486 | |||
487 | |||
488 | /* | ||
489 | ** Add a boolean to list of constants and return its index. | ||
490 | */ | ||
491 | static int boolK (FuncState *fs, int b) { | ||
492 | TValue o; | ||
493 | setbvalue(&o, b); | ||
494 | return addk(fs, &o, &o); /* use boolean itself as key */ | ||
495 | } | ||
496 | |||
497 | |||
498 | /* | ||
499 | ** Add nil to list of constants and return its index. | ||
500 | */ | ||
501 | static int nilK (FuncState *fs) { | ||
502 | TValue k, v; | ||
503 | setnilvalue(&v); | ||
504 | /* cannot use nil as key; instead use table itself to represent nil */ | ||
505 | sethvalue(fs->ls->L, &k, fs->ls->h); | ||
506 | return addk(fs, &k, &v); | ||
507 | } | ||
508 | |||
509 | |||
510 | /* | ||
511 | ** Fix an expression to return the number of results 'nresults'. | ||
512 | ** Either 'e' is a multi-ret expression (function call or vararg) | ||
513 | ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that). | ||
514 | */ | ||
515 | void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { | ||
516 | if (e->k == VCALL) { /* expression is an open function call? */ | ||
517 | SETARG_C(getinstruction(fs, e), nresults + 1); | ||
518 | } | ||
519 | else if (e->k == VVARARG) { | ||
520 | Instruction *pc = &getinstruction(fs, e); | ||
521 | SETARG_B(*pc, nresults + 1); | ||
522 | SETARG_A(*pc, fs->freereg); | ||
523 | luaK_reserveregs(fs, 1); | ||
524 | } | ||
525 | else lua_assert(nresults == LUA_MULTRET); | ||
526 | } | ||
527 | |||
528 | |||
529 | /* | ||
530 | ** Fix an expression to return one result. | ||
531 | ** If expression is not a multi-ret expression (function call or | ||
532 | ** vararg), it already returns one result, so nothing needs to be done. | ||
533 | ** Function calls become VNONRELOC expressions (as its result comes | ||
534 | ** fixed in the base register of the call), while vararg expressions | ||
535 | ** become VRELOCABLE (as OP_VARARG puts its results where it wants). | ||
536 | ** (Calls are created returning one result, so that does not need | ||
537 | ** to be fixed.) | ||
538 | */ | ||
539 | void luaK_setoneret (FuncState *fs, expdesc *e) { | ||
540 | if (e->k == VCALL) { /* expression is an open function call? */ | ||
541 | /* already returns 1 value */ | ||
542 | lua_assert(GETARG_C(getinstruction(fs, e)) == 2); | ||
543 | e->k = VNONRELOC; /* result has fixed position */ | ||
544 | e->u.info = GETARG_A(getinstruction(fs, e)); | ||
545 | } | ||
546 | else if (e->k == VVARARG) { | ||
547 | SETARG_B(getinstruction(fs, e), 2); | ||
548 | e->k = VRELOCABLE; /* can relocate its simple result */ | ||
549 | } | ||
550 | } | ||
551 | |||
552 | |||
553 | /* | ||
554 | ** Ensure that expression 'e' is not a variable. | ||
555 | */ | ||
556 | void luaK_dischargevars (FuncState *fs, expdesc *e) { | ||
557 | switch (e->k) { | ||
558 | case VLOCAL: { /* already in a register */ | ||
559 | e->k = VNONRELOC; /* becomes a non-relocatable value */ | ||
560 | break; | ||
561 | } | ||
562 | case VUPVAL: { /* move value to some (pending) register */ | ||
563 | e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); | ||
564 | e->k = VRELOCABLE; | ||
565 | break; | ||
566 | } | ||
567 | case VINDEXED: { | ||
568 | OpCode op; | ||
569 | freereg(fs, e->u.ind.idx); | ||
570 | if (e->u.ind.vt == VLOCAL) { /* is 't' in a register? */ | ||
571 | freereg(fs, e->u.ind.t); | ||
572 | op = OP_GETTABLE; | ||
573 | } | ||
574 | else { | ||
575 | lua_assert(e->u.ind.vt == VUPVAL); | ||
576 | op = OP_GETTABUP; /* 't' is in an upvalue */ | ||
577 | } | ||
578 | e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx); | ||
579 | e->k = VRELOCABLE; | ||
580 | break; | ||
581 | } | ||
582 | case VVARARG: case VCALL: { | ||
583 | luaK_setoneret(fs, e); | ||
584 | break; | ||
585 | } | ||
586 | default: break; /* there is one value available (somewhere) */ | ||
587 | } | ||
588 | } | ||
589 | |||
590 | |||
591 | /* | ||
592 | ** Ensures expression value is in register 'reg' (and therefore | ||
593 | ** 'e' will become a non-relocatable expression). | ||
594 | */ | ||
595 | static void discharge2reg (FuncState *fs, expdesc *e, int reg) { | ||
596 | luaK_dischargevars(fs, e); | ||
597 | switch (e->k) { | ||
598 | case VNIL: { | ||
599 | luaK_nil(fs, reg, 1); | ||
600 | break; | ||
601 | } | ||
602 | case VFALSE: case VTRUE: { | ||
603 | luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0); | ||
604 | break; | ||
605 | } | ||
606 | case VK: { | ||
607 | luaK_codek(fs, reg, e->u.info); | ||
608 | break; | ||
609 | } | ||
610 | case VKFLT: { | ||
611 | luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval)); | ||
612 | break; | ||
613 | } | ||
614 | case VKINT: { | ||
615 | luaK_codek(fs, reg, luaK_intK(fs, e->u.ival)); | ||
616 | break; | ||
617 | } | ||
618 | case VRELOCABLE: { | ||
619 | Instruction *pc = &getinstruction(fs, e); | ||
620 | SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ | ||
621 | break; | ||
622 | } | ||
623 | case VNONRELOC: { | ||
624 | if (reg != e->u.info) | ||
625 | luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); | ||
626 | break; | ||
627 | } | ||
628 | default: { | ||
629 | lua_assert(e->k == VJMP); | ||
630 | return; /* nothing to do... */ | ||
631 | } | ||
632 | } | ||
633 | e->u.info = reg; | ||
634 | e->k = VNONRELOC; | ||
635 | } | ||
636 | |||
637 | |||
638 | /* | ||
639 | ** Ensures expression value is in any register. | ||
640 | */ | ||
641 | static void discharge2anyreg (FuncState *fs, expdesc *e) { | ||
642 | if (e->k != VNONRELOC) { /* no fixed register yet? */ | ||
643 | luaK_reserveregs(fs, 1); /* get a register */ | ||
644 | discharge2reg(fs, e, fs->freereg-1); /* put value there */ | ||
645 | } | ||
646 | } | ||
647 | |||
648 | |||
649 | static int code_loadbool (FuncState *fs, int A, int b, int jump) { | ||
650 | luaK_getlabel(fs); /* those instructions may be jump targets */ | ||
651 | return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump); | ||
652 | } | ||
653 | |||
654 | |||
655 | /* | ||
656 | ** check whether list has any jump that do not produce a value | ||
657 | ** or produce an inverted value | ||
658 | */ | ||
659 | static int need_value (FuncState *fs, int list) { | ||
660 | for (; list != NO_JUMP; list = getjump(fs, list)) { | ||
661 | Instruction i = *getjumpcontrol(fs, list); | ||
662 | if (GET_OPCODE(i) != OP_TESTSET) return 1; | ||
663 | } | ||
664 | return 0; /* not found */ | ||
665 | } | ||
666 | |||
667 | |||
668 | /* | ||
669 | ** Ensures final expression result (including results from its jump | ||
670 | ** lists) is in register 'reg'. | ||
671 | ** If expression has jumps, need to patch these jumps either to | ||
672 | ** its final position or to "load" instructions (for those tests | ||
673 | ** that do not produce values). | ||
674 | */ | ||
675 | static void exp2reg (FuncState *fs, expdesc *e, int reg) { | ||
676 | discharge2reg(fs, e, reg); | ||
677 | if (e->k == VJMP) /* expression itself is a test? */ | ||
678 | luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ | ||
679 | if (hasjumps(e)) { | ||
680 | int final; /* position after whole expression */ | ||
681 | int p_f = NO_JUMP; /* position of an eventual LOAD false */ | ||
682 | int p_t = NO_JUMP; /* position of an eventual LOAD true */ | ||
683 | if (need_value(fs, e->t) || need_value(fs, e->f)) { | ||
684 | int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); | ||
685 | p_f = code_loadbool(fs, reg, 0, 1); | ||
686 | p_t = code_loadbool(fs, reg, 1, 0); | ||
687 | luaK_patchtohere(fs, fj); | ||
688 | } | ||
689 | final = luaK_getlabel(fs); | ||
690 | patchlistaux(fs, e->f, final, reg, p_f); | ||
691 | patchlistaux(fs, e->t, final, reg, p_t); | ||
692 | } | ||
693 | e->f = e->t = NO_JUMP; | ||
694 | e->u.info = reg; | ||
695 | e->k = VNONRELOC; | ||
696 | } | ||
697 | |||
698 | |||
699 | /* | ||
700 | ** Ensures final expression result (including results from its jump | ||
701 | ** lists) is in next available register. | ||
702 | */ | ||
703 | void luaK_exp2nextreg (FuncState *fs, expdesc *e) { | ||
704 | luaK_dischargevars(fs, e); | ||
705 | freeexp(fs, e); | ||
706 | luaK_reserveregs(fs, 1); | ||
707 | exp2reg(fs, e, fs->freereg - 1); | ||
708 | } | ||
709 | |||
710 | |||
711 | /* | ||
712 | ** Ensures final expression result (including results from its jump | ||
713 | ** lists) is in some (any) register and return that register. | ||
714 | */ | ||
715 | int luaK_exp2anyreg (FuncState *fs, expdesc *e) { | ||
716 | luaK_dischargevars(fs, e); | ||
717 | if (e->k == VNONRELOC) { /* expression already has a register? */ | ||
718 | if (!hasjumps(e)) /* no jumps? */ | ||
719 | return e->u.info; /* result is already in a register */ | ||
720 | if (e->u.info >= fs->nactvar) { /* reg. is not a local? */ | ||
721 | exp2reg(fs, e, e->u.info); /* put final result in it */ | ||
722 | return e->u.info; | ||
723 | } | ||
724 | } | ||
725 | luaK_exp2nextreg(fs, e); /* otherwise, use next available register */ | ||
726 | return e->u.info; | ||
727 | } | ||
728 | |||
729 | |||
730 | /* | ||
731 | ** Ensures final expression result is either in a register or in an | ||
732 | ** upvalue. | ||
733 | */ | ||
734 | void luaK_exp2anyregup (FuncState *fs, expdesc *e) { | ||
735 | if (e->k != VUPVAL || hasjumps(e)) | ||
736 | luaK_exp2anyreg(fs, e); | ||
737 | } | ||
738 | |||
739 | |||
740 | /* | ||
741 | ** Ensures final expression result is either in a register or it is | ||
742 | ** a constant. | ||
743 | */ | ||
744 | void luaK_exp2val (FuncState *fs, expdesc *e) { | ||
745 | if (hasjumps(e)) | ||
746 | luaK_exp2anyreg(fs, e); | ||
747 | else | ||
748 | luaK_dischargevars(fs, e); | ||
749 | } | ||
750 | |||
751 | |||
752 | /* | ||
753 | ** Ensures final expression result is in a valid R/K index | ||
754 | ** (that is, it is either in a register or in 'k' with an index | ||
755 | ** in the range of R/K indices). | ||
756 | ** Returns R/K index. | ||
757 | */ | ||
758 | int luaK_exp2RK (FuncState *fs, expdesc *e) { | ||
759 | luaK_exp2val(fs, e); | ||
760 | switch (e->k) { /* move constants to 'k' */ | ||
761 | case VTRUE: e->u.info = boolK(fs, 1); goto vk; | ||
762 | case VFALSE: e->u.info = boolK(fs, 0); goto vk; | ||
763 | case VNIL: e->u.info = nilK(fs); goto vk; | ||
764 | case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk; | ||
765 | case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk; | ||
766 | case VK: | ||
767 | vk: | ||
768 | e->k = VK; | ||
769 | if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */ | ||
770 | return RKASK(e->u.info); | ||
771 | else break; | ||
772 | default: break; | ||
773 | } | ||
774 | /* not a constant in the right range: put it in a register */ | ||
775 | return luaK_exp2anyreg(fs, e); | ||
776 | } | ||
777 | |||
778 | |||
779 | /* | ||
780 | ** Generate code to store result of expression 'ex' into variable 'var'. | ||
781 | */ | ||
782 | void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { | ||
783 | switch (var->k) { | ||
784 | case VLOCAL: { | ||
785 | freeexp(fs, ex); | ||
786 | exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */ | ||
787 | return; | ||
788 | } | ||
789 | case VUPVAL: { | ||
790 | int e = luaK_exp2anyreg(fs, ex); | ||
791 | luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); | ||
792 | break; | ||
793 | } | ||
794 | case VINDEXED: { | ||
795 | OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP; | ||
796 | int e = luaK_exp2RK(fs, ex); | ||
797 | luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e); | ||
798 | break; | ||
799 | } | ||
800 | default: lua_assert(0); /* invalid var kind to store */ | ||
801 | } | ||
802 | freeexp(fs, ex); | ||
803 | } | ||
804 | |||
805 | |||
806 | /* | ||
807 | ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). | ||
808 | */ | ||
809 | void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { | ||
810 | int ereg; | ||
811 | luaK_exp2anyreg(fs, e); | ||
812 | ereg = e->u.info; /* register where 'e' was placed */ | ||
813 | freeexp(fs, e); | ||
814 | e->u.info = fs->freereg; /* base register for op_self */ | ||
815 | e->k = VNONRELOC; /* self expression has a fixed register */ | ||
816 | luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ | ||
817 | luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key)); | ||
818 | freeexp(fs, key); | ||
819 | } | ||
820 | |||
821 | |||
822 | /* | ||
823 | ** Negate condition 'e' (where 'e' is a comparison). | ||
824 | */ | ||
825 | static void negatecondition (FuncState *fs, expdesc *e) { | ||
826 | Instruction *pc = getjumpcontrol(fs, e->u.info); | ||
827 | lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && | ||
828 | GET_OPCODE(*pc) != OP_TEST); | ||
829 | SETARG_A(*pc, !(GETARG_A(*pc))); | ||
830 | } | ||
831 | |||
832 | |||
833 | /* | ||
834 | ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' | ||
835 | ** is true, code will jump if 'e' is true.) Return jump position. | ||
836 | ** Optimize when 'e' is 'not' something, inverting the condition | ||
837 | ** and removing the 'not'. | ||
838 | */ | ||
839 | static int jumponcond (FuncState *fs, expdesc *e, int cond) { | ||
840 | if (e->k == VRELOCABLE) { | ||
841 | Instruction ie = getinstruction(fs, e); | ||
842 | if (GET_OPCODE(ie) == OP_NOT) { | ||
843 | fs->pc--; /* remove previous OP_NOT */ | ||
844 | return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond); | ||
845 | } | ||
846 | /* else go through */ | ||
847 | } | ||
848 | discharge2anyreg(fs, e); | ||
849 | freeexp(fs, e); | ||
850 | return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond); | ||
851 | } | ||
852 | |||
853 | |||
854 | /* | ||
855 | ** Emit code to go through if 'e' is true, jump otherwise. | ||
856 | */ | ||
857 | void luaK_goiftrue (FuncState *fs, expdesc *e) { | ||
858 | int pc; /* pc of new jump */ | ||
859 | luaK_dischargevars(fs, e); | ||
860 | switch (e->k) { | ||
861 | case VJMP: { /* condition? */ | ||
862 | negatecondition(fs, e); /* jump when it is false */ | ||
863 | pc = e->u.info; /* save jump position */ | ||
864 | break; | ||
865 | } | ||
866 | case VK: case VKFLT: case VKINT: case VTRUE: { | ||
867 | pc = NO_JUMP; /* always true; do nothing */ | ||
868 | break; | ||
869 | } | ||
870 | default: { | ||
871 | pc = jumponcond(fs, e, 0); /* jump when false */ | ||
872 | break; | ||
873 | } | ||
874 | } | ||
875 | luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ | ||
876 | luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ | ||
877 | e->t = NO_JUMP; | ||
878 | } | ||
879 | |||
880 | |||
881 | /* | ||
882 | ** Emit code to go through if 'e' is false, jump otherwise. | ||
883 | */ | ||
884 | void luaK_goiffalse (FuncState *fs, expdesc *e) { | ||
885 | int pc; /* pc of new jump */ | ||
886 | luaK_dischargevars(fs, e); | ||
887 | switch (e->k) { | ||
888 | case VJMP: { | ||
889 | pc = e->u.info; /* already jump if true */ | ||
890 | break; | ||
891 | } | ||
892 | case VNIL: case VFALSE: { | ||
893 | pc = NO_JUMP; /* always false; do nothing */ | ||
894 | break; | ||
895 | } | ||
896 | default: { | ||
897 | pc = jumponcond(fs, e, 1); /* jump if true */ | ||
898 | break; | ||
899 | } | ||
900 | } | ||
901 | luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ | ||
902 | luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ | ||
903 | e->f = NO_JUMP; | ||
904 | } | ||
905 | |||
906 | |||
907 | /* | ||
908 | ** Code 'not e', doing constant folding. | ||
909 | */ | ||
910 | static void codenot (FuncState *fs, expdesc *e) { | ||
911 | luaK_dischargevars(fs, e); | ||
912 | switch (e->k) { | ||
913 | case VNIL: case VFALSE: { | ||
914 | e->k = VTRUE; /* true == not nil == not false */ | ||
915 | break; | ||
916 | } | ||
917 | case VK: case VKFLT: case VKINT: case VTRUE: { | ||
918 | e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ | ||
919 | break; | ||
920 | } | ||
921 | case VJMP: { | ||
922 | negatecondition(fs, e); | ||
923 | break; | ||
924 | } | ||
925 | case VRELOCABLE: | ||
926 | case VNONRELOC: { | ||
927 | discharge2anyreg(fs, e); | ||
928 | freeexp(fs, e); | ||
929 | e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); | ||
930 | e->k = VRELOCABLE; | ||
931 | break; | ||
932 | } | ||
933 | default: lua_assert(0); /* cannot happen */ | ||
934 | } | ||
935 | /* interchange true and false lists */ | ||
936 | { int temp = e->f; e->f = e->t; e->t = temp; } | ||
937 | removevalues(fs, e->f); /* values are useless when negated */ | ||
938 | removevalues(fs, e->t); | ||
939 | } | ||
940 | |||
941 | |||
942 | /* | ||
943 | ** Create expression 't[k]'. 't' must have its final result already in a | ||
944 | ** register or upvalue. | ||
945 | */ | ||
946 | void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { | ||
947 | lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL)); | ||
948 | t->u.ind.t = t->u.info; /* register or upvalue index */ | ||
949 | t->u.ind.idx = luaK_exp2RK(fs, k); /* R/K index for key */ | ||
950 | t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL; | ||
951 | t->k = VINDEXED; | ||
952 | } | ||
953 | |||
954 | |||
955 | /* | ||
956 | ** Return false if folding can raise an error. | ||
957 | ** Bitwise operations need operands convertible to integers; division | ||
958 | ** operations cannot have 0 as divisor. | ||
959 | */ | ||
960 | static int validop (int op, TValue *v1, TValue *v2) { | ||
961 | switch (op) { | ||
962 | case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: | ||
963 | case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ | ||
964 | lua_Integer i; | ||
965 | return (tointeger(v1, &i) && tointeger(v2, &i)); | ||
966 | } | ||
967 | case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ | ||
968 | return (nvalue(v2) != 0); | ||
969 | default: return 1; /* everything else is valid */ | ||
970 | } | ||
971 | } | ||
972 | |||
973 | |||
974 | /* | ||
975 | ** Try to "constant-fold" an operation; return 1 iff successful. | ||
976 | ** (In this case, 'e1' has the final result.) | ||
977 | */ | ||
978 | static int constfolding (FuncState *fs, int op, expdesc *e1, | ||
979 | const expdesc *e2) { | ||
980 | TValue v1, v2, res; | ||
981 | if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) | ||
982 | return 0; /* non-numeric operands or not safe to fold */ | ||
983 | luaO_arith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ | ||
984 | if (ttisinteger(&res)) { | ||
985 | e1->k = VKINT; | ||
986 | e1->u.ival = ivalue(&res); | ||
987 | } | ||
988 | else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ | ||
989 | lua_Number n = fltvalue(&res); | ||
990 | if (luai_numisnan(n) || n == 0) | ||
991 | return 0; | ||
992 | e1->k = VKFLT; | ||
993 | e1->u.nval = n; | ||
994 | } | ||
995 | return 1; | ||
996 | } | ||
997 | |||
998 | |||
999 | /* | ||
1000 | ** Emit code for unary expressions that "produce values" | ||
1001 | ** (everything but 'not'). | ||
1002 | ** Expression to produce final result will be encoded in 'e'. | ||
1003 | */ | ||
1004 | static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { | ||
1005 | int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ | ||
1006 | freeexp(fs, e); | ||
1007 | e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ | ||
1008 | e->k = VRELOCABLE; /* all those operations are relocatable */ | ||
1009 | luaK_fixline(fs, line); | ||
1010 | } | ||
1011 | |||
1012 | |||
1013 | /* | ||
1014 | ** Emit code for binary expressions that "produce values" | ||
1015 | ** (everything but logical operators 'and'/'or' and comparison | ||
1016 | ** operators). | ||
1017 | ** Expression to produce final result will be encoded in 'e1'. | ||
1018 | ** Because 'luaK_exp2RK' can free registers, its calls must be | ||
1019 | ** in "stack order" (that is, first on 'e2', which may have more | ||
1020 | ** recent registers to be released). | ||
1021 | */ | ||
1022 | static void codebinexpval (FuncState *fs, OpCode op, | ||
1023 | expdesc *e1, expdesc *e2, int line) { | ||
1024 | int rk2 = luaK_exp2RK(fs, e2); /* both operands are "RK" */ | ||
1025 | int rk1 = luaK_exp2RK(fs, e1); | ||
1026 | freeexps(fs, e1, e2); | ||
1027 | e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2); /* generate opcode */ | ||
1028 | e1->k = VRELOCABLE; /* all those operations are relocatable */ | ||
1029 | luaK_fixline(fs, line); | ||
1030 | } | ||
1031 | |||
1032 | |||
1033 | /* | ||
1034 | ** Emit code for comparisons. | ||
1035 | ** 'e1' was already put in R/K form by 'luaK_infix'. | ||
1036 | */ | ||
1037 | static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { | ||
1038 | int rk1 = (e1->k == VK) ? RKASK(e1->u.info) | ||
1039 | : check_exp(e1->k == VNONRELOC, e1->u.info); | ||
1040 | int rk2 = luaK_exp2RK(fs, e2); | ||
1041 | freeexps(fs, e1, e2); | ||
1042 | switch (opr) { | ||
1043 | case OPR_NE: { /* '(a ~= b)' ==> 'not (a == b)' */ | ||
1044 | e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2); | ||
1045 | break; | ||
1046 | } | ||
1047 | case OPR_GT: case OPR_GE: { | ||
1048 | /* '(a > b)' ==> '(b < a)'; '(a >= b)' ==> '(b <= a)' */ | ||
1049 | OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); | ||
1050 | e1->u.info = condjump(fs, op, 1, rk2, rk1); /* invert operands */ | ||
1051 | break; | ||
1052 | } | ||
1053 | default: { /* '==', '<', '<=' use their own opcodes */ | ||
1054 | OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); | ||
1055 | e1->u.info = condjump(fs, op, 1, rk1, rk2); | ||
1056 | break; | ||
1057 | } | ||
1058 | } | ||
1059 | e1->k = VJMP; | ||
1060 | } | ||
1061 | |||
1062 | |||
1063 | /* | ||
1064 | ** Apply prefix operation 'op' to expression 'e'. | ||
1065 | */ | ||
1066 | void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { | ||
1067 | static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; | ||
1068 | switch (op) { | ||
1069 | case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ | ||
1070 | if (constfolding(fs, op + LUA_OPUNM, e, &ef)) | ||
1071 | break; | ||
1072 | /* FALLTHROUGH */ | ||
1073 | case OPR_LEN: | ||
1074 | codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); | ||
1075 | break; | ||
1076 | case OPR_NOT: codenot(fs, e); break; | ||
1077 | default: lua_assert(0); | ||
1078 | } | ||
1079 | } | ||
1080 | |||
1081 | |||
1082 | /* | ||
1083 | ** Process 1st operand 'v' of binary operation 'op' before reading | ||
1084 | ** 2nd operand. | ||
1085 | */ | ||
1086 | void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { | ||
1087 | switch (op) { | ||
1088 | case OPR_AND: { | ||
1089 | luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ | ||
1090 | break; | ||
1091 | } | ||
1092 | case OPR_OR: { | ||
1093 | luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ | ||
1094 | break; | ||
1095 | } | ||
1096 | case OPR_CONCAT: { | ||
1097 | luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */ | ||
1098 | break; | ||
1099 | } | ||
1100 | case OPR_ADD: case OPR_SUB: | ||
1101 | case OPR_MUL: case OPR_DIV: case OPR_IDIV: | ||
1102 | case OPR_MOD: case OPR_POW: | ||
1103 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: | ||
1104 | case OPR_SHL: case OPR_SHR: { | ||
1105 | if (!tonumeral(v, NULL)) | ||
1106 | luaK_exp2RK(fs, v); | ||
1107 | /* else keep numeral, which may be folded with 2nd operand */ | ||
1108 | break; | ||
1109 | } | ||
1110 | default: { | ||
1111 | luaK_exp2RK(fs, v); | ||
1112 | break; | ||
1113 | } | ||
1114 | } | ||
1115 | } | ||
1116 | |||
1117 | |||
1118 | /* | ||
1119 | ** Finalize code for binary operation, after reading 2nd operand. | ||
1120 | ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because | ||
1121 | ** concatenation is right associative), merge second CONCAT into first | ||
1122 | ** one. | ||
1123 | */ | ||
1124 | void luaK_posfix (FuncState *fs, BinOpr op, | ||
1125 | expdesc *e1, expdesc *e2, int line) { | ||
1126 | switch (op) { | ||
1127 | case OPR_AND: { | ||
1128 | lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */ | ||
1129 | luaK_dischargevars(fs, e2); | ||
1130 | luaK_concat(fs, &e2->f, e1->f); | ||
1131 | *e1 = *e2; | ||
1132 | break; | ||
1133 | } | ||
1134 | case OPR_OR: { | ||
1135 | lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */ | ||
1136 | luaK_dischargevars(fs, e2); | ||
1137 | luaK_concat(fs, &e2->t, e1->t); | ||
1138 | *e1 = *e2; | ||
1139 | break; | ||
1140 | } | ||
1141 | case OPR_CONCAT: { | ||
1142 | luaK_exp2val(fs, e2); | ||
1143 | if (e2->k == VRELOCABLE && | ||
1144 | GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) { | ||
1145 | lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1); | ||
1146 | freeexp(fs, e1); | ||
1147 | SETARG_B(getinstruction(fs, e2), e1->u.info); | ||
1148 | e1->k = VRELOCABLE; e1->u.info = e2->u.info; | ||
1149 | } | ||
1150 | else { | ||
1151 | luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */ | ||
1152 | codebinexpval(fs, OP_CONCAT, e1, e2, line); | ||
1153 | } | ||
1154 | break; | ||
1155 | } | ||
1156 | case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV: | ||
1157 | case OPR_IDIV: case OPR_MOD: case OPR_POW: | ||
1158 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: | ||
1159 | case OPR_SHL: case OPR_SHR: { | ||
1160 | if (!constfolding(fs, op + LUA_OPADD, e1, e2)) | ||
1161 | codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line); | ||
1162 | break; | ||
1163 | } | ||
1164 | case OPR_EQ: case OPR_LT: case OPR_LE: | ||
1165 | case OPR_NE: case OPR_GT: case OPR_GE: { | ||
1166 | codecomp(fs, op, e1, e2); | ||
1167 | break; | ||
1168 | } | ||
1169 | default: lua_assert(0); | ||
1170 | } | ||
1171 | } | ||
1172 | |||
1173 | |||
1174 | /* | ||
1175 | ** Change line information associated with current position. | ||
1176 | */ | ||
1177 | void luaK_fixline (FuncState *fs, int line) { | ||
1178 | fs->f->lineinfo[fs->pc - 1] = line; | ||
1179 | } | ||
1180 | |||
1181 | |||
1182 | /* | ||
1183 | ** Emit a SETLIST instruction. | ||
1184 | ** 'base' is register that keeps table; | ||
1185 | ** 'nelems' is #table plus those to be stored now; | ||
1186 | ** 'tostore' is number of values (in registers 'base + 1',...) to add to | ||
1187 | ** table (or LUA_MULTRET to add up to stack top). | ||
1188 | */ | ||
1189 | void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { | ||
1190 | int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1; | ||
1191 | int b = (tostore == LUA_MULTRET) ? 0 : tostore; | ||
1192 | lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); | ||
1193 | if (c <= MAXARG_C) | ||
1194 | luaK_codeABC(fs, OP_SETLIST, base, b, c); | ||
1195 | else if (c <= MAXARG_Ax) { | ||
1196 | luaK_codeABC(fs, OP_SETLIST, base, b, 0); | ||
1197 | codeextraarg(fs, c); | ||
1198 | } | ||
1199 | else | ||
1200 | luaX_syntaxerror(fs->ls, "constructor too long"); | ||
1201 | fs->freereg = base + 1; /* free registers with list values */ | ||
1202 | } | ||
1203 | |||