diff options
Diffstat (limited to 'src/lua/lopcodes.h')
-rw-r--r-- | src/lua/lopcodes.h | 392 |
1 files changed, 0 insertions, 392 deletions
diff --git a/src/lua/lopcodes.h b/src/lua/lopcodes.h deleted file mode 100644 index d6a47e5..0000000 --- a/src/lua/lopcodes.h +++ /dev/null | |||
@@ -1,392 +0,0 @@ | |||
1 | /* | ||
2 | ** $Id: lopcodes.h $ | ||
3 | ** Opcodes for Lua virtual machine | ||
4 | ** See Copyright Notice in lua.h | ||
5 | */ | ||
6 | |||
7 | #ifndef lopcodes_h | ||
8 | #define lopcodes_h | ||
9 | |||
10 | #include "llimits.h" | ||
11 | |||
12 | |||
13 | /*=========================================================================== | ||
14 | We assume that instructions are unsigned 32-bit integers. | ||
15 | All instructions have an opcode in the first 7 bits. | ||
16 | Instructions can have the following formats: | ||
17 | |||
18 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 | ||
19 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | ||
20 | iABC C(8) | B(8) |k| A(8) | Op(7) | | ||
21 | iABx Bx(17) | A(8) | Op(7) | | ||
22 | iAsBx sBx (signed)(17) | A(8) | Op(7) | | ||
23 | iAx Ax(25) | Op(7) | | ||
24 | isJ sJ(25) | Op(7) | | ||
25 | |||
26 | A signed argument is represented in excess K: the represented value is | ||
27 | the written unsigned value minus K, where K is half the maximum for the | ||
28 | corresponding unsigned argument. | ||
29 | ===========================================================================*/ | ||
30 | |||
31 | |||
32 | enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */ | ||
33 | |||
34 | |||
35 | /* | ||
36 | ** size and position of opcode arguments. | ||
37 | */ | ||
38 | #define SIZE_C 8 | ||
39 | #define SIZE_B 8 | ||
40 | #define SIZE_Bx (SIZE_C + SIZE_B + 1) | ||
41 | #define SIZE_A 8 | ||
42 | #define SIZE_Ax (SIZE_Bx + SIZE_A) | ||
43 | #define SIZE_sJ (SIZE_Bx + SIZE_A) | ||
44 | |||
45 | #define SIZE_OP 7 | ||
46 | |||
47 | #define POS_OP 0 | ||
48 | |||
49 | #define POS_A (POS_OP + SIZE_OP) | ||
50 | #define POS_k (POS_A + SIZE_A) | ||
51 | #define POS_B (POS_k + 1) | ||
52 | #define POS_C (POS_B + SIZE_B) | ||
53 | |||
54 | #define POS_Bx POS_k | ||
55 | |||
56 | #define POS_Ax POS_A | ||
57 | |||
58 | #define POS_sJ POS_A | ||
59 | |||
60 | |||
61 | /* | ||
62 | ** limits for opcode arguments. | ||
63 | ** we use (signed) 'int' to manipulate most arguments, | ||
64 | ** so they must fit in ints. | ||
65 | */ | ||
66 | |||
67 | /* Check whether type 'int' has at least 'b' bits ('b' < 32) */ | ||
68 | #define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1) | ||
69 | |||
70 | |||
71 | #if L_INTHASBITS(SIZE_Bx) | ||
72 | #define MAXARG_Bx ((1<<SIZE_Bx)-1) | ||
73 | #else | ||
74 | #define MAXARG_Bx MAX_INT | ||
75 | #endif | ||
76 | |||
77 | #define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ | ||
78 | |||
79 | |||
80 | #if L_INTHASBITS(SIZE_Ax) | ||
81 | #define MAXARG_Ax ((1<<SIZE_Ax)-1) | ||
82 | #else | ||
83 | #define MAXARG_Ax MAX_INT | ||
84 | #endif | ||
85 | |||
86 | #if L_INTHASBITS(SIZE_sJ) | ||
87 | #define MAXARG_sJ ((1 << SIZE_sJ) - 1) | ||
88 | #else | ||
89 | #define MAXARG_sJ MAX_INT | ||
90 | #endif | ||
91 | |||
92 | #define OFFSET_sJ (MAXARG_sJ >> 1) | ||
93 | |||
94 | |||
95 | #define MAXARG_A ((1<<SIZE_A)-1) | ||
96 | #define MAXARG_B ((1<<SIZE_B)-1) | ||
97 | #define MAXARG_C ((1<<SIZE_C)-1) | ||
98 | #define OFFSET_sC (MAXARG_C >> 1) | ||
99 | |||
100 | #define int2sC(i) ((i) + OFFSET_sC) | ||
101 | #define sC2int(i) ((i) - OFFSET_sC) | ||
102 | |||
103 | |||
104 | /* creates a mask with 'n' 1 bits at position 'p' */ | ||
105 | #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) | ||
106 | |||
107 | /* creates a mask with 'n' 0 bits at position 'p' */ | ||
108 | #define MASK0(n,p) (~MASK1(n,p)) | ||
109 | |||
110 | /* | ||
111 | ** the following macros help to manipulate instructions | ||
112 | */ | ||
113 | |||
114 | #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) | ||
115 | #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ | ||
116 | ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) | ||
117 | |||
118 | #define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m) | ||
119 | |||
120 | |||
121 | #define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0))) | ||
122 | #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ | ||
123 | ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) | ||
124 | |||
125 | #define GETARG_A(i) getarg(i, POS_A, SIZE_A) | ||
126 | #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) | ||
127 | |||
128 | #define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B)) | ||
129 | #define GETARG_sB(i) sC2int(GETARG_B(i)) | ||
130 | #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) | ||
131 | |||
132 | #define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C)) | ||
133 | #define GETARG_sC(i) sC2int(GETARG_C(i)) | ||
134 | #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) | ||
135 | |||
136 | #define TESTARG_k(i) check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k))))) | ||
137 | #define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1)) | ||
138 | #define SETARG_k(i,v) setarg(i, v, POS_k, 1) | ||
139 | |||
140 | #define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx)) | ||
141 | #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) | ||
142 | |||
143 | #define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax)) | ||
144 | #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) | ||
145 | |||
146 | #define GETARG_sBx(i) \ | ||
147 | check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx) | ||
148 | #define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx)) | ||
149 | |||
150 | #define GETARG_sJ(i) \ | ||
151 | check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ) | ||
152 | #define SETARG_sJ(i,j) \ | ||
153 | setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ) | ||
154 | |||
155 | |||
156 | #define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ | ||
157 | | (cast(Instruction, a)<<POS_A) \ | ||
158 | | (cast(Instruction, b)<<POS_B) \ | ||
159 | | (cast(Instruction, c)<<POS_C) \ | ||
160 | | (cast(Instruction, k)<<POS_k)) | ||
161 | |||
162 | #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | ||
163 | | (cast(Instruction, a)<<POS_A) \ | ||
164 | | (cast(Instruction, bc)<<POS_Bx)) | ||
165 | |||
166 | #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ | ||
167 | | (cast(Instruction, a)<<POS_Ax)) | ||
168 | |||
169 | #define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \ | ||
170 | | (cast(Instruction, j) << POS_sJ) \ | ||
171 | | (cast(Instruction, k) << POS_k)) | ||
172 | |||
173 | |||
174 | #if !defined(MAXINDEXRK) /* (for debugging only) */ | ||
175 | #define MAXINDEXRK MAXARG_B | ||
176 | #endif | ||
177 | |||
178 | |||
179 | /* | ||
180 | ** invalid register that fits in 8 bits | ||
181 | */ | ||
182 | #define NO_REG MAXARG_A | ||
183 | |||
184 | |||
185 | /* | ||
186 | ** R[x] - register | ||
187 | ** K[x] - constant (in constant table) | ||
188 | ** RK(x) == if k(i) then K[x] else R[x] | ||
189 | */ | ||
190 | |||
191 | |||
192 | /* | ||
193 | ** grep "ORDER OP" if you change these enums | ||
194 | */ | ||
195 | |||
196 | typedef enum { | ||
197 | /*---------------------------------------------------------------------- | ||
198 | name args description | ||
199 | ------------------------------------------------------------------------*/ | ||
200 | OP_MOVE,/* A B R[A] := R[B] */ | ||
201 | OP_LOADI,/* A sBx R[A] := sBx */ | ||
202 | OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */ | ||
203 | OP_LOADK,/* A Bx R[A] := K[Bx] */ | ||
204 | OP_LOADKX,/* A R[A] := K[extra arg] */ | ||
205 | OP_LOADFALSE,/* A R[A] := false */ | ||
206 | OP_LFALSESKIP,/*A R[A] := false; pc++ */ | ||
207 | OP_LOADTRUE,/* A R[A] := true */ | ||
208 | OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */ | ||
209 | OP_GETUPVAL,/* A B R[A] := UpValue[B] */ | ||
210 | OP_SETUPVAL,/* A B UpValue[B] := R[A] */ | ||
211 | |||
212 | OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:string] */ | ||
213 | OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */ | ||
214 | OP_GETI,/* A B C R[A] := R[B][C] */ | ||
215 | OP_GETFIELD,/* A B C R[A] := R[B][K[C]:string] */ | ||
216 | |||
217 | OP_SETTABUP,/* A B C UpValue[A][K[B]:string] := RK(C) */ | ||
218 | OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */ | ||
219 | OP_SETI,/* A B C R[A][B] := RK(C) */ | ||
220 | OP_SETFIELD,/* A B C R[A][K[B]:string] := RK(C) */ | ||
221 | |||
222 | OP_NEWTABLE,/* A B C k R[A] := {} */ | ||
223 | |||
224 | OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */ | ||
225 | |||
226 | OP_ADDI,/* A B sC R[A] := R[B] + sC */ | ||
227 | |||
228 | OP_ADDK,/* A B C R[A] := R[B] + K[C]:number */ | ||
229 | OP_SUBK,/* A B C R[A] := R[B] - K[C]:number */ | ||
230 | OP_MULK,/* A B C R[A] := R[B] * K[C]:number */ | ||
231 | OP_MODK,/* A B C R[A] := R[B] % K[C]:number */ | ||
232 | OP_POWK,/* A B C R[A] := R[B] ^ K[C]:number */ | ||
233 | OP_DIVK,/* A B C R[A] := R[B] / K[C]:number */ | ||
234 | OP_IDIVK,/* A B C R[A] := R[B] // K[C]:number */ | ||
235 | |||
236 | OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */ | ||
237 | OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */ | ||
238 | OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */ | ||
239 | |||
240 | OP_SHRI,/* A B sC R[A] := R[B] >> sC */ | ||
241 | OP_SHLI,/* A B sC R[A] := sC << R[B] */ | ||
242 | |||
243 | OP_ADD,/* A B C R[A] := R[B] + R[C] */ | ||
244 | OP_SUB,/* A B C R[A] := R[B] - R[C] */ | ||
245 | OP_MUL,/* A B C R[A] := R[B] * R[C] */ | ||
246 | OP_MOD,/* A B C R[A] := R[B] % R[C] */ | ||
247 | OP_POW,/* A B C R[A] := R[B] ^ R[C] */ | ||
248 | OP_DIV,/* A B C R[A] := R[B] / R[C] */ | ||
249 | OP_IDIV,/* A B C R[A] := R[B] // R[C] */ | ||
250 | |||
251 | OP_BAND,/* A B C R[A] := R[B] & R[C] */ | ||
252 | OP_BOR,/* A B C R[A] := R[B] | R[C] */ | ||
253 | OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */ | ||
254 | OP_SHL,/* A B C R[A] := R[B] << R[C] */ | ||
255 | OP_SHR,/* A B C R[A] := R[B] >> R[C] */ | ||
256 | |||
257 | OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] */ | ||
258 | OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */ | ||
259 | OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */ | ||
260 | |||
261 | OP_UNM,/* A B R[A] := -R[B] */ | ||
262 | OP_BNOT,/* A B R[A] := ~R[B] */ | ||
263 | OP_NOT,/* A B R[A] := not R[B] */ | ||
264 | OP_LEN,/* A B R[A] := #R[B] (length operator) */ | ||
265 | |||
266 | OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */ | ||
267 | |||
268 | OP_CLOSE,/* A close all upvalues >= R[A] */ | ||
269 | OP_TBC,/* A mark variable A "to be closed" */ | ||
270 | OP_JMP,/* sJ pc += sJ */ | ||
271 | OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */ | ||
272 | OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */ | ||
273 | OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */ | ||
274 | |||
275 | OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */ | ||
276 | OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */ | ||
277 | OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */ | ||
278 | OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */ | ||
279 | OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */ | ||
280 | OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */ | ||
281 | |||
282 | OP_TEST,/* A k if (not R[A] == k) then pc++ */ | ||
283 | OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] */ | ||
284 | |||
285 | OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */ | ||
286 | OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */ | ||
287 | |||
288 | OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */ | ||
289 | OP_RETURN0,/* return */ | ||
290 | OP_RETURN1,/* A return R[A] */ | ||
291 | |||
292 | OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */ | ||
293 | OP_FORPREP,/* A Bx <check values and prepare counters>; | ||
294 | if not to run then pc+=Bx+1; */ | ||
295 | |||
296 | OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */ | ||
297 | OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */ | ||
298 | OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */ | ||
299 | |||
300 | OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */ | ||
301 | |||
302 | OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */ | ||
303 | |||
304 | OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */ | ||
305 | |||
306 | OP_VARARGPREP,/*A (adjust vararg parameters) */ | ||
307 | |||
308 | OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ | ||
309 | } OpCode; | ||
310 | |||
311 | |||
312 | #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) | ||
313 | |||
314 | |||
315 | |||
316 | /*=========================================================================== | ||
317 | Notes: | ||
318 | (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then | ||
319 | 'top' is set to last_result+1, so next open instruction (OP_CALL, | ||
320 | OP_RETURN*, OP_SETLIST) may use 'top'. | ||
321 | |||
322 | (*) In OP_VARARG, if (C == 0) then use actual number of varargs and | ||
323 | set top (like in OP_CALL with C == 0). | ||
324 | |||
325 | (*) In OP_RETURN, if (B == 0) then return up to 'top'. | ||
326 | |||
327 | (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always | ||
328 | OP_EXTRAARG. | ||
329 | |||
330 | (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then | ||
331 | real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the | ||
332 | bits of C). | ||
333 | |||
334 | (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a | ||
335 | power of 2) plus 1, or zero for size zero. If not k, the array size | ||
336 | is C. Otherwise, the array size is EXTRAARG _ C. | ||
337 | |||
338 | (*) For comparisons, k specifies what condition the test should accept | ||
339 | (true or false). | ||
340 | |||
341 | (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped | ||
342 | (the constant is the first operand). | ||
343 | |||
344 | (*) All 'skips' (pc++) assume that next instruction is a jump. | ||
345 | |||
346 | (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the | ||
347 | function builds upvalues, which may need to be closed. C > 0 means | ||
348 | the function is vararg, so that its 'func' must be corrected before | ||
349 | returning; in this case, (C - 1) is its number of fixed parameters. | ||
350 | |||
351 | (*) In comparisons with an immediate operand, C signals whether the | ||
352 | original operand was a float. (It must be corrected in case of | ||
353 | metamethods.) | ||
354 | |||
355 | ===========================================================================*/ | ||
356 | |||
357 | |||
358 | /* | ||
359 | ** masks for instruction properties. The format is: | ||
360 | ** bits 0-2: op mode | ||
361 | ** bit 3: instruction set register A | ||
362 | ** bit 4: operator is a test (next instruction must be a jump) | ||
363 | ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) | ||
364 | ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) | ||
365 | ** bit 7: instruction is an MM instruction (call a metamethod) | ||
366 | */ | ||
367 | |||
368 | LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) | ||
369 | |||
370 | #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) | ||
371 | #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) | ||
372 | #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) | ||
373 | #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) | ||
374 | #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) | ||
375 | #define testMMMode(m) (luaP_opmodes[m] & (1 << 7)) | ||
376 | |||
377 | /* "out top" (set top for next instruction) */ | ||
378 | #define isOT(i) \ | ||
379 | ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \ | ||
380 | GET_OPCODE(i) == OP_TAILCALL) | ||
381 | |||
382 | /* "in top" (uses top from previous instruction) */ | ||
383 | #define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0) | ||
384 | |||
385 | #define opmode(mm,ot,it,t,a,m) \ | ||
386 | (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m)) | ||
387 | |||
388 | |||
389 | /* number of list items to accumulate before a SETLIST instruction */ | ||
390 | #define LFIELDS_PER_FLUSH 50 | ||
391 | |||
392 | #endif | ||